首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of our ongoing research program aimed at the identification of highly potent, selective, and systemically active agonists for group II metabotropic glutamate (mGlu) receptors, we have prepared novel heterobicyclic amino acids (-)-2-oxa-4-aminobicyclo[3.1. 0]hexane-4,6-dicarboxylate (LY379268, (-)-9) and (-)-2-thia-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY389795, (-)-10). Compounds (-)-9 and (-)-10 are structurally related to our previously described nanomolar potency group II mGlu receptor agonist, (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate monohydrate (LY354740 monohydrate, 5), with the C4-methylene unit of 5 being replaced with either an oxygen atom (as in (-)-9) or a sulfur atom (as in (-)-10). Compounds (-)-9 and (-)-10 potently and stereospecifically displaced specific binding of the mGlu2/3 receptor antagonist ([3H]LY341495) in rat cerebral cortical homogenates, displaying IC50 values of 15 +/- 4 and 8.4 +/- 0.8 nM, respectively, while having no effect up to 100 000 nM on radioligand binding to the glutamate recognition site on NMDA, AMPA, or kainate receptors. Compounds (-)-9 and (-)-10 also potently displaced [3H]LY341495 binding from membranes expressing recombinant human group II mGlu receptor subtypes: (-)-9, Ki = 14.1 +/- 1.4 nM at mGlu2 and 5.8 +/- 0.64 nM at mGlu3; (-)-10, Ki = 40.6 +/- 3.7 nM at mGlu2 and 4.7 +/- 1.2 nM at mGlu3. Evaluation of the functional effects of (-)-9 and (-)-10 on second-messenger responses in nonneuronal cells expressing human mGlu receptor subtypes demonstrated each to be a highly potent agonist for group II mGlu receptors: (-)-9, EC50 = 2.69 +/- 0.26 nM at mGlu2 and 4.58 +/- 0.04 nM at mGlu3; (-)-10, EC50 = 3.91 +/- 0.81 nM at mGlu2 and 7.63 +/- 2. 08 nM at mGlu3. In contrast, neither compound (up to 10 000 nM) displayed either agonist or antagonist activity in cells expressing recombinant human mGlu1a, mGlu5a, mGlu4a, or mGlu7a receptors. The agonist effects of (-)-9 and (-)-10 at group II mGlu receptors were not totally specific, however, as mGlu6 agonist activity was observed at high nanomolar concentrations for (-)-9 (EC50 = 401 +/- 46 nM) and at micromolar concentrations (EC50 = 2 430 +/- 600 nM) for (-)-10; furthermore, each activated mGlu8 receptors at micromolar concentrations (EC50 = 1 690 +/- 130 and 7 340 +/- 2 720 nM, respectively). Intraperitoneal administration of either (-)-9 or (-)-10 in the mouse resulted in a dose-related blockade of limbic seizure activity produced by the nonselective group I/group II mGluR agonist (1S,3R)-ACPD ((-)-9 ED50 = 19 mg/kg, (-)-10 ED50 = 14 mg/kg), indicating that these molecules effectively cross the blood-brain barrier following systemic administration and suppress group I mGluR-mediated limbic excitation. Thus, heterobicyclic amino acids (-)-9 and (-)-10 are novel pharmacological tools useful for exploring the functions of mGlu receptors in vitro and in vivo.  相似文献   

2.
The selective mGlu5 antagonists, MPEP, 2-methyl-6-phenylethynyl-pyridine, and SIB1893, (E)-6-methyl-2-styryl-pyridine, have been evaluated as antiepileptic drugs in DBA/2 mice and lethargic mice. Clonic seizures induced by the selective mGlu5 agonist, (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG), 3 micromol intracerebroventricularly (i.c.v.), are potently suppressed by both compounds (MPEP, ED(50)=0.42 [0.28-0.62] mg/kg intraperitoneally (i.p.); SIB 1893 ED(50)=0.19 [0.11-0.33] mg/kg i.p. ). Clonic seizures induced by the mGlu1,5 agonist, 3, 5-dihydroxyphenylglycine (DHPG), 1.5 micromol i.c.v., are less potently suppressed by both compounds (MPEP, ED(50)=22 [13-38] mg/kg i.p., 110 [67-180] nmol i.c.v.; SIB1893, ED(50)=31 [18-54] mg/kg i.p. , 95 [82-110] nmol i.c.v.). Sound-induced seizures in DBA/2 mice are suppressed at 15 min by MPEP and SIB 1893 (MPEP ED(50) clonic seizures=18 [10-32] mg/kg i.p., 93 [69-125] nmol i.c.v.; tonic seizures=6.1 [4.5-8.3] mg/kg i.p., 46 [26-80] nmol i.c.v.; SIB 1893 ED(50) clonic seizures=27 [17-44] mg/kg i.p., 825 [615-1108] nmol i. c.v., tonic seizures=5.4 [3.4-8.6] mg/kg i.p., 194 [113-332] nmol i. c.v.). The ED(50) for MPEP for impaired rotarod performance is 128 [83-193] mg/kg i.p., at 15 min, i.e. a therapeutic index for sound-induced seizures of 5-20. In lethargic mice (lh/lh), a genetic absence model, MPEP, 50 mg/kg i.p., caused a marked reduction in the incidence of spontaneous spike-and-wave discharges. These selective antagonists of mGlu5 block seizures due to activation of mGlu5 at very low systemic doses. At rather higher doses they block convulsive and non-convulsive primary generalised seizures.  相似文献   

3.
The effect of the group II metabotropic receptor agonist (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268), on basal and phencyclidine-induced dopamine efflux were measured in the shell and core subdivisions of the nucleus accumbens--regions which are associated with limbic and motor functions, respectively. Extracellular levels of dopamine were measured using microdialysis in conscious animals, and LY379268 was delivered locally by inclusion in the artificial cerebrospinal fluid (aCSF) flowing through the microdialysis probe. Local administration of LY379268 in the concentration range 10 nM-10 microM reduced basal levels of dopamine in the nucleus accumbens shell, whilst having no effect in the nucleus accumbens core. In the nucleus accumbens shell, basal levels were reduced to approximately 60% compared to the pre-injection control, with a maximal reduction occurring at concentrations of LY379268 > or =100 nM. The response to LY379268 (100 nM) was reversible, with levels returning to baseline following its removal from the aCSF. In a separate experiment, local perfusion of the nucleus accumbens shell with LY379268 (at both 1 and 10 microM) reduced the magnitude of the response to a subsequent systemic administration of phencyclidine (5 mg/kg i.p.). The reduction in the peak dopamine response was only evident with doses of LY379268 that also reduced basal dopamine efflux--LY379268 being ineffective against PCP at 10 nM. However, in animals pre-treated with LY379268 at 1 or 10 microM, PCP still evoked a dopamine response, and in these animals the relative extent of the response was not significantly different between the respective treatment groups. In contrast, in the nucleus accumbens core the magnitude of the dopamine response to PCP was unaffected by local application of LY379268 (at 1 or 10 microM). Our data suggest that within the nucleus accumbens, there exists a distinct regional difference in the control of dopamine release by group II mGluRs, with the nucleus accumbens shell being preferentially affected. Moreover, the selective action of LY379268 on dopamine levels in the nucleus accumbens shell may have implications for the potential antipsychotic activity of group II mGluR agonists.  相似文献   

4.
In rat cortical neuronal cultures, metabotropic glutamate (mGlu) receptor agonists: LY354740 (+)-2-aminobicyclo[3.1.0]hexane-2,6dicarboxylate); LY379268 (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate, and LY389795 (-)-2-thia-4-aminobicyclo[3.1.0]-hexane-4,6-dicarboxylate, were neuroprotective against toxicity induced by N-methyl-D-aspartic acid (NMDA), kainic acid and staurosporine as measured by release of lactate dehydrogenase (LDH) activity into culture supernatants and DNA fragmentation by oligonucleosome formation. The potencies of the agonists were at least 100 times greater in reducing nucleosome formation than LDH release indicating a differential effect on neurons dying by apoptosis than by necrosis. In vivo studies showed that LY354740 was able to mediate a partial protection against apoptosis in CA1 hippocampal cells under ischaemic conditions where substantial CA1 cell loss occurred. The effects of the agonists in vitro were: (a) reversed by mGlu receptor antagonist LY341495, (b) enhanced by the presence of glial cells, (c) abrogated by RNA and protein synthesis inhibitors, and (d) unaltered by inhibition of endogenous adenosine activity. These results suggest that group II mGlu receptor agonists may represent a novel therapeutic strategy for the treatment of neurodegenerative diseases.  相似文献   

5.
(-)-4-Amino-2-thiabicyclo-[3.1.0]hexane-4,6-dicarboxylate (LY389795, (-)-3) is a highly potent and selective agonist of metabotropic glutamate receptors 2 (mGlu2) and 3 (mGlu3). As part of our ongoing research program, we have prepared S-oxidized variants of (-)-3, compounds (-)-10, (+)-11 (LY404040), and (-)-12 (LY404039). Each of these chiral heterobicyclic amino acids displaced specific binding of the mGlu2/3 receptor antagonist 3H-2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid (3H-LY341495) from membranes expressing recombinant human mGlu2 or mGlu3 and acted as potent agonists in cells expressing these receptor subtypes. Docking of the most potent of these derivatives, (+)-11, to mGlu2 revealed the possibility of an additional H-bond interaction between the sulfoxide oxygen of (+)-11 with tyrosine residue Y236. Pharmacokinetic analysis of mGlu active enantiomers (+)-11 and (-)-12 in rats showed each to be well absorbed following oral administration. Consistent with their mGlu2/3 agonist potency and pharmacokinetic properties, both (+)-11 and (-)-12 blocked phencyclidine-evoked ambulations in a dose-dependent manner, indicating their potential as nonclassical antipsychotic agents.  相似文献   

6.
We have studied the effects in three rodent models of generalised convulsive or absence epilepsy of two antagonists of group I metabotropic glutamate receptors that are selective for the mGlu1 receptor. LY 367385 ((+)-2-methyl-4-carboxyphenylglycine) and AIDA ((RS)-1-aminoindan-1,5-dicarboxylic acid) have been administered intracerebroventricularly (i.c.v.) to DBA/2 mice and lethargic mice (lh/lh), and focally into the inferior colliculus of genetically epilepsy prone rats (GEPR). In DBA/2 mice both compounds produce a rapid, transient suppression of sound-induced clonic seizures (LY 367385: ED50 = 12 nmol, i.c.v., 5 min; AIDA: ED50 = 79 nmol, i.c.v., 15 min). In lethargic mice both compounds significantly reduce the incidence of spontaneous spike and wave discharges on the electroencephalogram, from <30 to >150 min after the administration of AIDA, 500 nmol, i.c.v., and from 30 to >150 min after the administration of LY 367385, 250 nmol, i.c.v. LY 367385, 50 nmol, suppresses spontaneous spike and wave discharges from 30 to 60 min. In genetically epilepsy prone rats both compounds reduce sound-induced clonic seizures. LY 367385, 160 nmol bilaterally, fully suppresses clonic seizures after 2-4 h. AIDA is fully effective 30 min after 100 nmol bilaterally. It is concluded that antagonists of mGlu1 receptors are potential anticonvulsant agents and that activation of mGlu1 receptors probably contributes to a variety of epileptic syndromes.  相似文献   

7.
Imre G 《CNS drug reviews》2007,13(4):444-464
Activation of group II metabotropic glutamate (mGlu2/3) receptors reduces excessive glutamate release that is often associated with neurodegenerative and psychiatric disorders. This finding encouraged the search for potent and selective agonists as potential therapeutic agents. The search led to the discovery of LY379268 {(-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylic acid}, which is a highly potent and systemically available mGlu2/3 receptor agonist. LY379268 was effective in several animal models of stroke, epilepsy, drug abuse, schizophrenia, and pain. Suppression of motor activity is the major side effect of LY379268. Upon repeated administration tolerance develops to this side effect, while the therapeutic effects of LY379268 remain. To date, no clinical data with LY379268 are available. This review article summarizes the preclinical pharmacology of LY379268.  相似文献   

8.
Activation of group II metabotropic glutamate receptors (mGlu2 and -3 receptors) has shown a potential antipsychotic activity, yet the underlying mechanism is only partially known. Altered epigenetic mechanisms contribute to the pathogenesis of schizophrenia and currently used medications exert chromatin remodeling effects. Here, we show that systemic injection of the brain-permeant mGlu2/3 receptor agonist (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268; 0.3-1 mg/kg i.p.) increased the mRNA and protein levels of growth arrest and DNA damage 45-β (Gadd45-β), a molecular player of DNA demethylation, in the mouse frontal cortex and hippocampus. Induction of Gadd45-β by LY379268 was abrogated by the mGlu2/3 receptor antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495; 1 mg/kg i.p.). Treatment with LY379268 also increased the amount of Gadd45-β bound to specific promoter regions of reelin, brain-derived neurotrophic factor (BDNF), and glutamate decarboxylase-67 (GAD67). We directly assessed gene promoter methylation in control mice and in mice pretreated for 7 days with the methylating agent methionine (750 mg/kg i.p.). Both single and repeated injections with LY379268 reduce cytosine methylation in the promoters of the three genes, although the effect on the GAD67 was significant only in response to repeated injections. Single and repeated treatment with LY379268 could also reverse the defect in social interaction seen in mice pretreated with methionine. The action of LY379268 on Gadd45-β was mimicked by valproate and clozapine but not haloperidol. These findings show that pharmacological activation of mGlu2/3 receptors has a strong impact on the epigenetic regulation of genes that have been linked to the pathophysiology of schizophrenia.  相似文献   

9.
The involvement of Group II metabotropic receptors in acute and persistent pain states was evaluated in several in vivo models of pain with selective and potent Group II metabotropic glutamate (mGlu) 2,3 agonists. LY354740, LY379268 and LY389795 attenuated late-phase paw-licking pain behavior in a dose-dependent manner in the formalin model of persistent pain. Effects occurred in the absence of overt neuromuscular deficits as measured by performance in the rotorod test for ataxia. The effects of LY354740 and LY379268 were also stereoselective. The order of potency of the agonists was LY389795>LY379268>LY354740. The attenuation of licking behavior by LY379268 (3 mg/kg) in the formalin model was reversed by a potent and selective mGlu2,3 receptor antagonist, LY341495 (1 mg/kg). In the L5/L6 spinal nerve ligation model of neuropathic pain in rats, LY379268 significantly reversed mechanical allodynia behavior in a dose-related manner. In contrast, LY379268 had no significant effects on the tail flick test or paw withdrawal test of acute thermal nociceptive function. These results support the involvement of Group II mGlu2,3 receptors in persistent pain mechanisms and suggest the potential utility of selective Group II mGlu agonists for the treatment of persistent pain.  相似文献   

10.
Group II (mGluR2/3) metabotropic glutamate receptors have been implicated in the mechanisms of persistent pain states. In the present study, the effects of the selective group II metabotropic glutamate receptor agonists LY379268 and LY389795 were evaluated in the formalin test, carrageenan-induced thermal hyperalgesia and mechanical allodynia, and capsaicin-induced mechanical allodynia in rats. The agonists LY379268 and LY389795 produced dose-dependent decreases in formalin-induced behaviors that were antagonized by the mGlu2/3 receptor antagonist LY341495. The group II antagonist LY341495 produced parallel shifts in the LY379268 dose-response curve, consistent with a competitive antagonism. LY379268 decreased formalin-induced behaviors after intracisternal but not intrathecal administration, suggesting primarily a supraspinal site of action. Both LY379268 and LY389795 produced a dose-related reversal of carrageenan-induced thermal hyperalgesia and capsaicin-induced mechanical allodynia, but had no effect on carrageenan-induced mechanical allodynia. Both agonists also increased response latencies in the hot plate test, but were without effect in the tail-flick test. However, both agonists produced motor impairment on the inverted screen at doses that were analgesic. Moreover, tolerance to the analgesic effects of LY379268 developed after 4 days of once-daily repeated administration in the formalin, carrageenan, capsaicin and hot plate tests. The present findings indicate that group II (mGluR2/3) metabotropic glutamate receptors may be involved in the mechanisms of hyperalgesia and allodynia, however tolerance rapidly develops to these effects.  相似文献   

11.
The metabotropic Group III agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid (ACPT-1), selective for the mGlu(4alpha) receptor, suppresses sound-induced seizures in DBA/2 mice following its intracerebroventricular (i.c.v.) administration (ED(50) 5.6 [2.9-10.7], nmol i.c.v., 15 min, clonic phase) and in genetically epilepsy-prone (GEP) rats following focal administration into the inferior colliculus (ED(50) 0.08 [0.01-0.50], nmol, 60 min, clonic phase). ACPT-1 also protects against clonic seizures induced in DBA/2 mice by the Group I agonist, (RS)-3,5-dihydroxyphenylglycine (3,5-DHPG) (ED(50) 0.60 [0.29-1.2], nmol i.c.v.) and by the Group III antagonist, (RS)-alpha-methylserine-O-phosphate (MSOP) (ED(50) 49.3 [37.9-64.1], nmol i.c.v.). Another Group III agonist, (RS)-4-phosphonophenyl-glycine (PPG), preferentially activating the mGlu(8) receptor, previously shown to protect against sound-induced seizures in DBA/2 mice and GEP rats, also protects against seizures induced in DBA/2 by 3,5-DHPG (ED(50) 3.7 [2.4-5.7], nmol i.c.v.) and by the Group III antagonist, MSOP (ED(50) 40.2 [21.0-77.0], nmol i.c.v.). At very high doses (500 nmol i.c.v. and above), Group III antagonists have pro-convulsant and convulsant activity. The anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(4) receptor agonist ACPT-1, is partially reversed by the co-administration of the Group III antagonists, MSOP, (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG) or (S)-2-amino-2-methyl-4-phosphonobutanoic acid (MAP4), in the 20-50 nmol dose range. At doses of 50-200 nmol, MPPG and MAP4 cause further reversal of the ACPT-1 anticonvulsant protection, while the MSOP effect on ACPT-1 protection is abolished at higher doses. In contrast, the anticonvulsant protection against sound-induced seizures in DBA/2 mice provided by a fully protective dose (20 nmol, i.c.v.) of the mGlu(8) receptor agonist PPG, is not significantly affected by the co-administration of the same Group III antagonists, MSOP, MPPG or MAP4. We conclude that activation of either mGlu(4alpha) or mGlu(8) receptors confer anticonvulsant protection in DBA/2 mice. Furthermore, the metabotropic Group III receptor antagonists, MSOP, MPPG, and MAP4 appear to be functionally selective for the mGlu(4) receptor in this system.  相似文献   

12.
Stimulation of specific guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding by l-glutamate was pharmacologically characterized in rat cerebral cortical membranes. Optimization of the experimental conditions with respect to the concentrations of GDP, MgCl(2) and NaCl in assay buffer prompted us to adopt the incubation of rat cerebral cortical membranes with 0.2 nM [(35)S]GTPγS at 30°C for 60 min. in the presence of 20 μM GDP, 5 mM MgCl(2) and 100 mM NaCl as a standard condition. Specific [(35)S]GTPγS binding was stimulated by l-glutamate in a concentration-dependent manner but not by ionotropic glutamate receptor agonists. The stimulatory responses were also elicited by many agonists for metabotropic glutamate (mGlu) receptor, with (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268) being the most potent. l-glutamate-stimulated [(35)S]GTPγS binding was inhibited by several mGlu antagonists, with (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495) being the most potent. The pharmacological properties of a series of agonists and antagonists indicated the involvement of group II mGlu receptors, especially mGlu2. Supportive of this notion was the finding that l-glutamate-stimulated specific [(35)S]GTPγS binding was augmented by 2,2,2-trifluoro-N-[4-(2-methoxyphenoxy)phenyl]-N-(3-pyridinylmethyl)ethanesulphonamide hydrochloride (LY487379), a reportedly selective allosteric positive modulator for mGlu2, by means of upward and leftward shift of the concentration-response curve. In addition, LY487379 per se stimulated [(35)S]GTPγS binding, though, through a mechanism different from the stimulation by l-glutamate. Pre-treatment of the membranes with N-ethylmaleimide (NEM) cancelled l-glutamate-stimulated [(35)S]GTPγS binding in a concentration- and incubation time-dependent manner. Taken altogether, l-glutamate-stimulated [(35)S]GTPγS binding serves as a useful functional assay for the activation of NEM-sensitive G(i/o) -mediated group II mGlu receptors in rat cerebral cortical membranes.  相似文献   

13.
We examined the expression and function of group-II metabotropic glutamate (mGlu) receptors in an animal model of absence seizures using genetically epileptic WAG/Rij rats, which develop spontaneous non-convulsive seizures after 2-3 months of age. Six-month-old WAG/Rij rats showed an increased expression of mGlu2/3 receptors in the ventrolateral regions of the somatosensory cortex, ventrobasal thalamic nuclei, and hippocampus, but not in the reticular thalamic nucleus and in the corpus striatum, as assessed by immunohistochemistry and Western blotting. In contrast, mGlu2/3 receptor signalling was reduced in slices prepared from the somatosensory cortex of 6-month-old WAG/Rij rats, as assessed by the ability of the agonist, LY379268, to inhibit forskolin-stimulated cAMP formation. None of these changes was found in "pre-symptomatic" 2-month-old WAG/Rij rats. To examine whether pharmacological activation or inhibition of mGlu2/3 receptors affects absence seizures, we recorded spontaneous spike-wave discharges (SWDs) in 6-month-old WAG/Rij rats systemically injected with saline, the mGlu2/3 receptor agonist LY379268 (0.33 or 1 mg/kg, i.p.), or with the preferential mGlu2/3 receptor antagonist, LY341495 (0.33, 1 or 5 mg/kg, i.p.). Injection of 1mg/kg of LY379268 (1 mg/kg, i.p.) increased the number of SWDs during 3-7 h post-treatment, whereas injection with LY341495 reduced the number of seizures in a dose-dependent manner. It can be concluded that mGlu2/3 receptors are involved in the generation of SWDs and that an upregulation of these receptors in the somatosensory cortex might be involved in the pathogenesis of absence epilepsy.  相似文献   

14.
The aim of the present studies was to examine the ability of a potent, systemically active, selective Group II mGlu receptor (mGluR2/3) agonist, 1R,4R,5S,6R-2-oxa-4-minobicyclo[3.1.0.]hexane-4,6-dicarboxylate (LY379268) to provide both functional relief and neuroprotection in rodent models of Parkinson's disease (PD). In functional studies, intracerebroventricular administration of LY379268 (1, 5, 10, 20 nmol/2 microl) produced a dose-dependent increase in locomotor activity in the reserpine (5 mg/kg ip)-treated rat. In contrast, systemic administration of LY379268 (0.1, 1, 10 mg/kg ip) did not reverse reserpine-induced akinesia and failed to effect rotational behaviour 1 month after unilateral lesioning of the nigrostriatal tract by 6-hydroxydopamine (6-OHDA; 4 microg infused into the substantia nigra (SN)). In neuroprotective studies, animals were treated with LY379268 (10 mg/kg/day ip) either for 7 days following 6-OHDA injection into the SN (4 microg) or for 21 days following 6-OHDA injection into the striatum (10 microg) before measurement of tyrosine hydroxylase immunoreactivity in the striatum and/or SN as an index of neuroprotection. LY379268 provided some protection against nigral infusion of 6-OHDA and also some functional improvement and correction of dopamine turnover was observed. The compound also provided significant protection in the striatum and some protection in the SN against striatal infusion of 6-OHDA. These data suggest that activation of Group II mGlu receptors can provide some protection in models of PD, while their role in providing functional improvement is less clear.  相似文献   

15.
Novel group II metabotropic glutamate receptor (mGluR) antagonists, 3-alkoxy-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid derivatives 11 and 12, were discovered by the incorporation of a hydroxy or alkoxyl group onto the C-3 portion of selective and potent group II mGluR agonist 5, (1R,2S,5R,6R)-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid. Among these compounds, (1R,2R,3R,5R,6R)-2-amino-3-(3,4-dichlorobenzyloxy)-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (-)-11be (MGS0039) was a highly selective and potent group II mGluR antagonist with the best pharmacokinetic profile. Compound (-)-11be exhibited high affinities for mGlu 2 (Ki = 2.38 +/- 0.40 nM) and mGlu 3 (4.46 +/- 0.31 nM) but low affinity for mGluR 7 (Ki = 664 +/- 106 nM), and potent antagonist activities for mGlu 2 (IC50 = 20.0 +/- 3.67 nM) and mGluR 3 (IC50 = 24.0 +/- 3.54 nM) but much less potent antagonist activities for mGlu 4 (IC50 = 1740 +/- 1080 nM), mGlu 6 (IC50 = 2060 +/- 1270 nM), mGlu 1 (IC50 = 93300 +/- 14600 nM), and mGluR 5 (IC(50) = 117000 +/- 38600 nM). No significant agonist activities of (-)-11be were found for mGluRs 2, 3, 4, 6, 1, and 5 (EC50 > 100,000 nM). Furthermore, (-)-11be exhibited dose-dependent oral absorption (plasma C(max): 214 +/- 56.7, 932 +/- 235, and 2960 +/- 1150 ng/mL for 3 mg/kg, 10 mg/kg, and 30 mg/kg, po, respectively) and acceptable blood-brain barrier penetration (brain C(max): 13.2 ng/mL for 10 mg/kg, p.o. 6 h). In this paper, we report the synthesis, in vitro pharmacological profile, and structure-activity relationships (SARs) of 3-alkoxy-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid derivatives 11 and 12, and pharmacokinetic profiles of several typical compounds.  相似文献   

16.
(+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (4, LY354740), a highly selective and orally active group II metabotropic glutamate receptor (mGluR) agonist, has increased interest in the study of group II mGluRs. Our interest focused on a conformationally constrained form of compound 4, because it appeared that the rigid form resulted in not only selectivity for group II mGluR but was orally active. Therefore, we introduced a fluorine atom to compound 4, based on the molecular size (close resemblance to hydrogen atom) and electronegativity (effects on the electron distribution in the molecule) of this atom and carbon-fluorine bond energy. Compound (+)-7 (MGS0008), the best compound among 3-fluoro derivatives 7-10, retained the agonist activity of compound 4 for mGluR2 and mGluR3 ((+)-7: EC(50) = 29.4 +/- 3.3 nM and 45.4 +/- 8.4 nM for mGluR2 and mGluR3, respectively; 4: EC(50) = 18.3 +/- 1.6 nM and 62.8 +/- 12 nM for mGluR2 and mGluR3, respectively) and increased the oral activity of compound 4 ((+)-7: ED(50) = 5.1 mg/kg and 0.26 mg/kg for phencyclidine (PCP)-induced hyperactivity and PCP-induced head-weaving behavior, respectively; 4: ED(50) = >100 mg/kg and 3.0 mg/kg for PCP-induced hyperactivity and PCP-induced head-weaving behavior, respectively). In addition, a compound [(3)H]-(+)-7 binding study using mGluR2 or 3 expressed in CHO cells was successful ((+)-7: K(i) = 47.7 +/- 17 nM and 65.9 +/- 7.1 nM for mGluR2 and mGluR3, respectively; 4: K(i) = 23.4 +/- 7.1 nM and 53.5 +/- 13 nM for mGluR2 and mGluR3, respectively). On the basis of a successful result of compound 7, we focused on the introduction of a fluorine atom on the C6 position of compound 4. (1R,2S,5R, 6R)-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid ((-)-11) exhibited a high degree of agonist activity for group II mGluRs equal to that of compound 4 or 7 ((-)-11: K(i) = 16.6 +/- 5.6 and 80.9 +/- 31 nM for mGluR2 and mGluR3, respectively). Our interest shifted to modification on CH(2) at C4 position of compound 11, since replacement of the CH(2) group with either an oxygen atom or sulfur atom yielded compound 5 or 6, resulting in increased agonist activity. We selected a carbonyl group instead of CH(2) at the C4 position of compound 11. The carbonyl group might slightly change the relative conformation of three functional groups, the amino group and two carboxylic acids, which have important roles in mediating the interaction between group II mGluRs and their ligand, compared with the CH(2) group of 4, oxygen atom of 5, and sulfur atom of 6. (1R,2S,5S,6S)-2-Amino-6-fluoro-4-oxobicyclo[3.1. 0]hexane-2,6-dicarboxylic acid monohydrate ((+)-14, MGS0028) exhibited a remarkably high degree of agonist activity for mGluR2 (K(i) = 0.570 +/- 0.10 nM) and mGluR3 (K(i) = 2.07 +/- 0.40 nM) expressed in CHO cells but not mGluR4, 6, 7, 1a, or 5 expressed in CHO cells (K(i) = >100 000 nM). Furthermore, compound (+)-14 strongly inhibited phencyclidine (PCP)-induced head-weaving behavior (ED(50) = 0.090 microg/kg) and hyperactivity (ED(50) = 0.30 mg/kg) in rats. Thus, (+)-7 and (+)-14 are potent, selective, and orally active group II mGluR agonists and might be useful not only for exploring the functions of mGluRs but in the treatment of schizophrenia.  相似文献   

17.
Acute treatment with LY354740 {1S,2S,5R,6S-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate monohydrate}, a potent and selective agonist for group II metabotropic glutamate receptors (mGlu2/3), has previously been shown to block some schizophrenia-like effects of N-methyl-D-aspartate (NMDA) receptor antagonists, suggesting a novel therapeutic strategy for schizophrenia. The present study examined the effects of subchronic pretreatment with LY354740 (0.3, 3 and 10 mg/kg i.p.) on ketamine-evoked (12 mg/kg s.c.) prepulse inhibition deficits, hyperlocomotion and c-fos expression. At all doses, LY354740 failed to reverse both behavioral and neuronal effects of the ketamine. These results therefore do not support the putative antipsychotic role of LY354740.  相似文献   

18.
(+)-2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (1), also known as LY354740, is a highly potent and selective agonist for group II metabotropic glutamate receptors (mGlu receptors 2 and 3) tested in clinical trials. It has been shown to block anxiety in the fear-potentiated startle model. Its relatively low bioavailability in different animal species drove the need for an effective prodrug form that would produce a therapeutic response at lower doses for the treatment of anxiety disorders. We have investigated the increase of intestinal absorption of this compound by targeting the human peptide transporter hPepT1 for active transport of di- and tripeptides derived from 1. We have found that oral administration of an N dipeptide derivative of 1 (12a) in rats shows up to an 8-fold increase in drug absorption and a 300-fold increase in potency in the fear-potentiated startle model in rats when compared with the parent drug 1.  相似文献   

19.
The present study used an elevated platform procedure to investigate the effects of diazepam, a CRF1 antagonist CP-154,526 and a group II mGlu2/3 receptor agonist LY379268 on stress-evoked increase in extracellular norepinephrine (NE). Pretreatment with either diazepam (1 mg/kg, i.p.), CP-154,526 (20 mg/kg, i.p.) or LY379268 (1, 3 and 10 mg/kg, p.o.) significantly reduced platform stress-evoked NE. Interestingly, at the highest dose tested (10 mg/kg) LY379268 caused a marked increase in baseline NE levels. We tested whether this effect would diminish after repeated dosing. In contrast to acute administration, a challenge injection of LY379268 after repeated dosing (10 mg/kg x days) did not alter basal NE. Importantly, although less effective, LY379268 still significantly reduced stress-evoked NE. We further show that this increase in basal NE may involve mGlu2/3 receptor regulation of the GABAergic system. To this end, administration of the GABAB agonist, baclofen (4 mg/kg, i.p.), 2 h after dosing with LY379268, reversed the increase in baseline NE. These data suggest that, like diazepam and CP-154,526, group II mGlu2/3 receptor agonists can attenuate stress-evoked increase in extracellular NE in the rat prefrontal cortex. In addition they reveal a 'stress-like' increase in NE after high doses of LY379268 which may reflect mGlu3 receptor modulation of GABAergic transmission.  相似文献   

20.
It is known for the non-selective group I metabotropic glutamate (mGlu) receptors agonist (S)-3,5-dihydroxyphenylglycine (S-3,5-DHPG) to cause convulsions, which are mediated by mGlu1 receptor. However, the behavioral changes other than convulsions caused by (S)-3,5-DHPG have not been well studied. The purpose of the present study was to explore the behavioral changes elicited by activation of group I mGlu receptors with (S)-3,5-DHPG and to clarify which, mGlu1 receptor or mGlu5 receptor, is responsible for such behavior. (S)-3,5-DHPG at doses of 3-30 nmol caused characteristic face-washing behavior. This behavioral change was inhibited by both the competitive mGlu1 receptor antagonists (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA) and (S)-4-carboxyphenylglycine (S-4CPG) and the non-competitive mGlu1 receptor antagonist, 4-[1-(2-fluoropyridin-3-yl)-5-methyl-1H-1,2,3-triazol-4-yl]-N-isopropyl-N-methyl-3,6-dihydropyridine-1(2H)-carboxamide (FTIDC), but not by the mGlu5 receptor antagonist 2-Methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP), the mGlu2/3 receptor agonist (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268), the mGlu2/3 receptor antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495), the N-methyl-d-asparate (NMDA) receptor antagonist 5R,10S-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801), or the competitive non-NMDA receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX). These findings indicate that face-washing behavior is due to selective activation of mGlu1 receptor by (S)-3,5-DHPG, and that the face-washing behavior induced by (S)-3,5-DHPG in mice can be used for in vivo testing of the antagonistic potency of both competitive and non-competitive mGlu1 receptor antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号