首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Mucosal immunology》2013,6(2):324-334
Thymic induction of CD4+Foxp3+ regulatory T (Treg) cells relies on CD28 costimulation and high-affinity T-cell receptor (TCR) signals, whereas Foxp3 (forkhead box P3) induction on activated peripheral CD4+ T cells is inhibited by these signals. Accordingly, the inhibitory molecule CTLA-4 (cytotoxic T-lymphocyte antigen 4) promoted, but was not essential for CD4+ T-cell Foxp3 induction in vitro. We show that CTLA-4-deficient cells are equivalent to wild-type cells in the thymic induction of Foxp3 and maintenance of Foxp3 populations in the spleen and mesenteric lymph nodes, but their accumulation in the colon, where Treg cells specific for commensal bacteria accumulate, is impaired. In a T cell–transfer model of colitis, the two known CTLA-4 ligands, B7-1 and B7-2, had largely redundant roles in inducing inflammation and promoting Treg cell function. However, B7-2 proved more efficient than B7-1 in inducing Foxp3 in vitro and in vivo. Our data reveal an unappreciated role for CTLA-4 in establishing the Foxp3+ compartment in the intestine.  相似文献   

2.
3.
4.
Recently, we demonstrated elevated numbers of CD4+ Foxp3+ regulatory T (Treg) cells in Plasmodium yoelii‐infected mice contributing to the regulation of anti‐malarial immune response. However, it remains unclear whether this increase in Treg cells is due to thymus‐derived Treg cell expansion or induction of Treg cells in the periphery. Here, we show that the frequency of Foxp3+ Treg cells expressing neuropilin‐1 (Nrp‐1) decreased at early time‐points during P. yoelii infection, whereas percentages of Helios+ Foxp3+ Treg cells remained unchanged. Both Foxp3+ Nrp‐1+ and Foxp3+ Nrp‐1? Treg cells from P. yoelii‐infected mice exhibited a similar T‐cell receptor Vβ chain usage and methylation pattern in the Treg‐specific demethylation region within the foxp3 locus. Strikingly, we did not observe induction of Foxp3 expression in Foxp3? T cells adoptively transferred to P. yoelii‐infected mice. Hence, our results suggest that P. yoelii infection triggered expansion of naturally occurring Treg cells rather than de novo induction of Foxp3+ Treg cells.  相似文献   

5.
CD4+CD25+Foxp3+ regulatory T (Treg) cells can undergo both thymic selection and peripheral expansion in response to self peptides that are agonists for their T cell receptors (TCR). However, the specificity by which these TCR must recognize peptide:MHC complexes to activate Treg cell function is not known. We show that CD4+CD25+Foxp3+ Treg cells can mediate suppression in response to peptides that are only weakly cross‐reactive with the self peptide that induced their formation in vivo. Moreover, suppression could be efficiently activated by peptide analogs that were inefficient at inducing CD69 up‐regulation, and that also induced little or no proliferation of naïve CD4+CD25Foxp3 T cells expressing the same TCR. These findings provide evidence that self peptide‐specific CD4+CD25+Foxp3+ Treg cells can exert regulatory function in response to self‐ and/or pathogen‐derived peptides with which they are only weakly cross‐reactive.  相似文献   

6.
7.
8.
Foxp3+ regulatory T (Treg) cells are key immune regulators during helminth infections, and identifying the mechanisms governing their induction is of principal importance for the design of treatments for helminth infections, allergies and autoimmunity. Little is yet known regarding the co‐stimulatory environment that favours the development of Foxp3+ Treg‐cell responses during helminth infections. As recent evidence implicates the co‐stimulatory receptor ICOS in defining Foxp3+ Treg‐cell functions, we investigated the role of ICOS in helminth‐induced Foxp3+ Treg‐cell responses. Infection of ICOS?/? mice with Heligmosomoides polygyrus or Schistosoma mansoni led to a reduced expansion and maintenance of Foxp3+ Treg cells. Moreover, during H. polygyrus infection, ICOS deficiency resulted in increased Foxp3+ Treg‐cell apoptosis, a Foxp3+ Treg‐cell specific impairment in IL‐10 production, and a failure to mount putatively adaptive Helios?Foxp3+ Treg‐cell responses within the intestinal lamina propria. Impaired lamina propria Foxp3+ Treg‐cell responses were associated with increased production of IL‐4 and IL‐13 by CD4+ T cells, demonstrating that ICOS dominantly downregulates Type 2 responses at the infection site, sharply contrasting with its Type 2‐promoting effects within lymphoid tissue. Thus, ICOS regulates Type 2 immunity in a tissue‐specific manner, and plays a key role in driving Foxp3+ Treg‐cell expansion and function during helminth infections.  相似文献   

9.
Foxp3+ Treg cells, which are crucial for maintenance of self-tolerance, mainly develop within the thymus, where they arise from CD25+Foxp3 or CD25Foxp3+ Treg cell precursors. Although it is known that infections can cause transient thymic involution, the impact of infection-induced thymus atrophy on thymic Treg (tTreg) cell development is unknown. Here, we infected mice with influenza A virus (IAV) and studied thymocyte population dynamics post infection. IAV infection caused a massive, but transient thymic involution, dominated by a loss of CD4+CD8+ double-positive (DP) thymocytes, which was accompanied by a significant increase in the frequency of CD25+Foxp3+ tTreg cells. Differential apoptosis susceptibility could be experimentally excluded as a reason for the relative tTreg cell increase, and mathematical modeling suggested that enhanced tTreg cell generation cannot explain the increased frequency of tTreg cells. Yet, an increased death of DP thymocytes and augmented exit of single-positive (SP) thymocytes was suggested to be causative. Interestingly, IAV-induced thymus atrophy resulted in a significantly reduced T-cell receptor (TCR) repertoire diversity of newly produced tTreg cells. Taken together, IAV-induced thymus atrophy is substantially altering the dynamics of major thymocyte populations, finally resulting in a relative increase of tTreg cells with an altered TCR repertoire.  相似文献   

10.
Costimulatory signals are required for priming and activation of naive T cells, while it is less clear how they contribute to induction of regulatory T (Treg)‐cell activity. We previously reported that the blockade of the B7‐CD28 and CD40L‐CD40 interaction efficiently suppresses allogeneic T‐cell activation in vivo. This was characterized by an initial rise in Foxp3+ cells, followed by depletion of host‐reactive T cells. To further investigate effects of costimulatory blockade on Treg cells, we used an in vitro model of allogeneic CD4+ cell activation. When CTLA‐4Ig and anti‐CD40L mAb (MR1) were added to the cultures, T‐cell proliferation and IL‐2 production were strongly reduced. However, Foxp3+ cells proliferated and acquired suppressive activity. They suppressed activation of syngeneic CD4+ cells much more efficiently than did freshly isolated Treg cells. CD4+ cells activated by allogeneic cells in the presence of MR1 and CTLA‐4Ig were hyporesponsive on restimulation, but their response was restored to that of naive CD4+ cells when Foxp3+ Treg cells were removed. We conclude that natural Treg cells are less dependent on B7‐CD28 or CD40‐CD40L costimulation compared with Foxp3? T cells. Reduced costimulation therefore alters the balance between Teff and Treg‐cell activation in favor of Treg‐cell activity.  相似文献   

11.
Tolerogenic DC and suppressive Foxp3+ Treg play important roles in preventing autoimmunity and allograft rejection. We report that (adenovirus mediated) ectopic expression of Foxp3 in human DC (i.e. DC.Foxp3) yields an APC that severely limits T‐cell proliferation and type‐1 immune responses from the naïve, but not memory, pool of responder T cells in vitro. In marked contrast, the frequencies of type‐2 and Treg responses were dramatically increased after stimulation of naïve T cells with DC.Foxp3 versus control DC. DC.Foxp3‐induced CD4+CD25+ Treg cells potently suppressed the proliferation of, and IFN‐γ production from, CD4+ and CD8+ responder T cells. Notably, the immunosuppressive biology of DC.Foxp3 was effectively normalized by addition of 1‐methyl‐tryptophan or neutralizing anti‐TGF‐β1 Ab during the period of T‐cell priming. These data suggest the potential utility of regulatory DC.Foxp3 and/or DC.Foxp3‐induced CD4+CD25+ Treg as translational agents for the amelioration or prevention of pathology in the setting of allograft transplantation and/or autoimmunity.  相似文献   

12.
TGF‐β plays an important role in the induction of Treg and maintenance of immunologic tolerance, but whether other members of TGF‐β superfamily act together or independently to achieve this effect is poorly understood. Although others have reported that the bone morphogenetic proteins (BMP) and TGF‐β have similar effects on the development of thymocytes and T cells, in this study, we report that members of the BMP family, BMP‐2 and ‐4, are unable to induce non‐regulatory T cells to become Foxp3+ Treg. Neutralization studies with Noggin have revealed that BMP‐2/4 and the BMP receptor signaling pathway is not required for TGF‐β to induce naïve CD4+CD25? cells to express Foxp3; however, BMP‐2/4 and TGF‐β have a synergistic effect on the induction of Foxp3+ Treg. BMP‐2/4 affects non‐Smad signaling molecules including phosphorylated ERK and JNK, which could subsequently promote the differentiation of Foxp3+ Treg induced by TGF‐β. Data further advocate that TGF‐β is a key signaling factor for Foxp3+ Treg development. In addition, the synergistic effect of BMP‐2/4 and TGF‐β indicates that the simultaneous manipulation of TGF‐β and BMP signaling might have considerable effects in the clinical setting for the enhancement of Treg purity and yield.  相似文献   

13.
《Immunology》2017,152(2):265-275
Induction of tolerance is a key mechanism to maintain or to restore immunological homeostasis. Here we show that Foxp3+ regulatory T (Treg) cells use Dickkopf‐1 (DKK‐1) to regulate T‐cell‐mediated tolerance in the T‐cell‐mediated autoimmune colitis model. Treg cells from DKK‐1 hypomorphic doubleridge mice failed to control CD4+ T‐cell proliferation, resulting in CD4 T‐cell‐mediated autoimmune colitis. Thymus‐derived Treg cells showed a robust expression of DKK‐1 but not in naive or effector CD4 T cells. DKK‐1 expression in Foxp3+ Treg cells was further increased upon T‐cell receptor stimulation in vitro and in vivo. Interestingly, Foxp3+ Treg cells expressed DKK‐1 in the cell membrane and the functional inhibition of DKK‐1 using DKK‐1 monoclonal antibody abrogated the suppressor function of Foxp3+ Treg cells. DKK‐1 expression was dependent on de novo protein synthesis and regulated by the mitogen‐activated protein kinase pathway but not by the canonical Wnt pathway. Taken together, our results highlight membrane‐bound DKK‐1 as a novel Treg‐derived mediator to maintain immunological tolerance in T‐cell‐mediated autoimmune colitis.  相似文献   

14.
The p21‐activated kinase 2 (Pak2), an effector molecule of the Rho family GTPases Rac and Cdc42, regulates diverse functions of T cells. Previously, we showed that Pak2 is required for development and maturation of T cells in the thymus, including thymus‐derived regulatory T (Treg) cells. However, whether Pak2 is required for the functions of various subsets of peripheral T cells, such as naive CD4 and helper T‐cell subsets including Foxp3+ Treg cells, is unknown. To determine the role of Pak2 in CD4 T cells in the periphery, we generated inducible Pak2 knockout (KO) mice, in which Pak2 was deleted in CD4 T cells acutely by administration of tamoxifen. Temporal deletion of Pak2 greatly reduced the number of Foxp3+ Treg cells, while minimally affecting the homeostasis of naive CD4 T cells. Pak2 was required for proliferation and Foxp3 expression of Foxp3+ Treg cells upon T‐cell receptor and interleukin‐2 stimulation, differentiation of in vitro induced Treg cells, and activation of naive CD4 T cells. Together, Pak2 is essential in maintaining the peripheral Treg cell pool by providing proliferation and maintenance signals to Foxp3+ Treg cells.  相似文献   

15.
CD4+ Foxp3+ regulatory T (Treg) cells are necessary for the maintenance of self‐tolerance and T‐cell homeostasis. This population is kept at stable frequencies in secondary lymphoid organs for the majority of the lifetime, despite permanent thymic emigration or in the face of thymic involution. Continuous competition is expected to occur between recently thymus‐emigrated and resident Treg cells (either natural or post‐thymically induced). In the present work, we analysed the renewal dynamics of Treg cells compared with CD4+Foxp3‐ conventional T cells (Tconv), using protocols of single or successive T‐cell transfers into syngeneic euthymic or lymphopenic (nu/nu or RAG2?/?) mice, respectively. Our results show a higher turnover for Treg cells in the peripheral compartment, compared with Tconv cells, when B cell‐sufficient euthymic or nude hosts are studied. This increased renewal within the Treg pool, shown by the greater replacement of resident Treg cells by donor counterparts, correlates with augmented rates of proliferation and is not modified following temporary environmental perturbations induced by inflammatory state or microbiota alterations. Notably, the preferential substitution of Treg lymphocytes was not observed in RAG2?/? hosts. We showed that limited B‐cell replenishment in the RAG2?/? hosts decisively contributed to the altered peripheral T‐cell homeostasis. Accordingly, weekly transfers of B cells to RAG2?/? hosts rescued the preferential substitution of Treg lymphocytes. Our study discloses a new aspect of T‐cell homeostasis that depends on the presence of B lymphocytes to regulate the relative incorporation of recently arrived Treg and Tconv cells in the peripheral compartment.  相似文献   

16.
17.
Foxp3+ regulatory T (Treg) cells play a key role in suppression of immune responses during parasitic helminth infection, both by controlling damaging immunopathology and by inhibiting protective immunity. During the patent phase of Schistosoma mansoni infection, Foxp3+ Treg cells are activated and suppress egg-elicited Th2 responses, but little is known of their induction and role during the early prepatent larval stage of infection. We quantified Foxp3+ Treg cell responses during the first 3 weeks of murine S. mansoni infection in C57BL/6 mice, a time when larval parasites migrate from the skin and transit the lungs en route to the hepatic and mesenteric vasculature. In contrast to other helminth infections, S. mansoni did not elicit a Foxp3+ Treg cell response during this early phase of infection. We found that the numbers and proportions of Foxp3+ Treg cells remained unchanged in the lungs, draining lymph nodes, and spleens of infected mice. There was no increase in the activation status of Foxp3+ Treg cells upon infection as assessed by their expression of CD25, Foxp3, and Helios. Furthermore, infection failed to induce Foxp3+ Treg cells to produce the suppressive cytokine interleukin 10 (IL-10). Instead, only CD4+ Foxp3 IL-4+ Th2 cells showed increased IL-10 production upon infection. These data indicate that Foxp3+ Treg cells do not play a prominent role in regulating immunity to S. mansoni larvae and that the character of the initial immune response invoked by S. mansoni parasites contrasts with the responses to other parasitic helminth infections that promote rapid Foxp3+ Treg cell responses.  相似文献   

18.
The gut is home to a large number of Treg, with both CD4+ CD25+ Treg and bacterial antigen‐specific Tr1 cells present in normal mouse intestinal lamina propria. It has been shown recently that intestinal mucosal DC are able to induce Foxp3+ Treg through production of TGF‐β plus retinoic acid (RA). However, the factors instructing DC toward this mucosal phenotype are currently unknown. Curcumin has been shown to possess a number of biologic activities including the inhibition of NF‐κB signaling. We asked whether curcumin could modulate DC to be tolerogenic whose function could mimic mucosal DC. We report here that curcumin modulated BM‐derived DC to express ALDH1a and IL‐10. These curcumin‐treated DC induced differentiation of naïve CD4+ T cells into Treg resembling Treg in the intestine, including both CD4+CD25+ Foxp3+ Treg and IL‐10‐producing Tr1 cells. Such Treg induction required IL‐10, TGF‐β and retinoic acid produced by curcumin‐modulated DC. Cell contact as well as IL‐10 and TGF‐β production were involved in the function of such induced Treg. More importantly, these Treg inhibited antigen‐specific T‐cell activation in vitro and inhibited colitis due to antigen‐specific pathogenic T cells in vivo.  相似文献   

19.
The identification of regulatory T cells (Treg cells) in human peripheral blood is an important tool in diagnosis, research, and therapeutic intervention. As compared to lymphoid tissues, the frequencies of circulating Treg cells identified as CD4+CD25+Foxp3+ are, however, low. We here show that many of these cells remain undetected due to transient down regulation of Foxp3, which rapidly decays in the absence of cytokine‐mediated STAT5 signals. Short‐term incubation of PBMCs or isolated CD4+ T cells, but not of lymph node cells, with IL‐2, ‐7, or ‐15 more than doubles the frequency of Foxp3+CD25+ among CD4+ T cells detectable by flow cytometry. This increase is not due to cell division but to upregulation of both proteins. At the same time, the uncovered Treg cells up‐regulate CD25 and down‐regulate CD127, making them accessible to viable cell sorting. “Latent” Treg cells have a demethylated FOXP3 TSDR sequence, are enriched in naïve, non‐cycling cells, and are functional. The confirmation of our findings in RA and SLE patients shows the feasibility of uncovering latent Treg cells for immune monitoring in clinical settings. Finally, our results suggest that unmasking of latent Treg cells contributes to the increase in circulating CD4+CD25+Foxp3+ cells reported in IL‐2 treated patients.  相似文献   

20.
Human helminth infections are synonymous with impaired immune responsiveness indicating suppression of host immunity. Using a permissive murine model of filariasis, Litomosoides sigmodontis infection of inbred mice, we demonstrate rapid recruitment and increased in vivo proliferation of CD4+Foxp3+ Treg cells upon exposure to infective L3 larvae. Within 7 days post‐infection this resulted in an increased percentage of CD4+T cells at the infection site expressing Foxp3. Antibody‐mediated depletion of CD25+ cells prior to infection to remove pre‐existing ‘natural’ CD4+CD25+Foxp3+ Treg cells, while not affecting initial larval establishment, significantly reduced the number of adult parasites recovered 60 days post‐infection. Anti‐CD25 pre‐treatment also impaired the fecundity of the surviving female parasites, which had reduced numbers of healthy eggs and microfilaria within their uteri, translating to a reduced level of blood microfilaraemia. Enhanced parasite killing was associated with augmented in vitro production of antigen‐specific IL‐4, IL‐5, IL‐13 and IL‐10. Thus, upon infection filarial larvae rapidly provoke a CD4+Foxp3+ Treg‐cell response, biasing the initial CD4+ T‐cell response towards a regulatory phenotype. These CD4+Foxp3+ Treg cells are predominantly recruited from the ‘natural’ regulatory pool and act to inhibit protective immunity over the full course of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号