首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is the most widely used method for mapping neural activity in the brain. The interpretation of altered BOLD signals is problematic when cerebral blood flow (CBF) or cerebral blood volume change because of aging and/or neurodegenerative diseases. In this study, a recently developed quantitative arterial spin labeling (ASL) approach, bolus-tracking ASL (btASL), was applied to an fMRI experiment in the rat brain. The mean transit time (MTT), capillary transit time (CTT), relative cerebral blood volume of labeled water (rCBVlw), relative cerebral blood flow (rCBF), and perfusion coefficient in the forelimb region of the somatosensory cortex were quantified during neuronal activation and in the resting state. The average MTT and CTT were 1.939±0.175 and 1.606±0.106 secs, respectively, in the resting state. Both times decreased significantly to 1.616±0.207 and 1.305±0.201 secs, respectively, during activation. The rCBVlw, rCBF, and perfusion coefficient increased on average by a factor of 1.123±0.006, 1.353±0.078, and 1.479±0.148, respectively, during activation. In contrast to BOLD techniques, btASL yields physiologically relevant indices of the functional hyperemia that accompanies neuronal activation.  相似文献   

2.
OBJECTIVE: The anatomical location of the motor area of the hand may be revealed using functional magnetic resonance imaging (fMRI). The motor cortex representation of the intrinsic hand muscles consists of a knob-like structure. This is omega- or epsilon-shaped in the axial plane and hook-shaped in the sagittal plane. As this knob lies on the surface of the brain, it can be stimulated non-invasively by transcranial magnetic stimulation (TMS). It was the aim of our study to identify the hand knob using fMRI and to reveal if the anatomical hand knob corresponds to the hand area of the motor cortex, as identified by TMS, by means of a frameless MRI-based neuronavigation system. METHODS: Suprathreshold transcranial magnetic stimuli were applied over a grid on the left side of the scalp of 4 healthy volunteers. The motor evoked potentials (MEPs) were recorded from the contralateral small hand muscles, and the centers of gravity (CoG) of the MEPs were calculated. The exact anatomical localization of each point on the grid was determined using a frameless MRI-based neuronavigation system. In each subject, the hand area of the motor cortex was visualized using fMRI during sensorimotor activation achieved by clenching the right hand. RESULTS: In all 4 subjects, the activated precentral site in the fMRI and the CoG of the MEP of all investigated muscles lay within the predicted anatomical area, the so-called hand knob. This knob had the form of an omega in two subjects and an epsilon in the other two subjects. CONCLUSIONS: TMS is a reliable method for mapping the motor cortex. The CoG calculated from the motor output maps may be used as an accurate estimation of the location of the represented muscle in the motor cortex.  相似文献   

3.
BACKGROUND: While brain-imaging studies in healthy adults have indicated that multiple cortical regions are involved in swallowing, these functional imaging techniques have not been extensively applied to the complete understand neurophysiology of swallowing in China. A full understanding of normal swallowing neurophysiology is important for improving functional outcomes for dysphagia due to neurologic disorders or damage with increasing age. Thus the interpretations of the functional contributions of various brain areas in swallowing should be scientifically researched. OBJECTIVE: To identify the activation and characteristic of swallowing center in healthy adults using functional magnetic resonance imaging. DESIGN, TIME AND SETTING: An uncontrolled neuroimaging study was performed at the Outpatient Clinic, Department of Radiology, West China Hospital of Sichuan University between March and November 2008. PARTICIPANTS: Ten healthy right-handed volunteers, aged over 20 years with a mean age of (34.2 + 8.1) years, a range of 25-45 years and including five males and five females participated. A medical history was obtained from all potential subjects and all subjects were free of systemic diseases and neurological disorders. METHODS: The healthy volunteers were examined with event-related functional magnetic resonance imaging of blood oxygenation level-dependent while laryngeal swallow-related movements were recorded. Subjects were scanned during voluntary saliva swallowing and water bolus swallowing activation tasks. Data was processed using the General Linear Model. A voxel by voxel group comparison was performed using random effect analysis. Any cluster with a corrected P 〈 0.05 for spatial extent was considered significant. MAIN OUTCOME MEASURES: The cerebral cortical activation maps of voluntary swallowing of saliva and swallowing of water bolus in healthy adults were observed. RESULTS: A multifocal cortical representation of swallowing was in the precentral gyrus, postcentral gyrus, insula, anterior cingulate gyrus, thalamus, basal ganglia and cerebellum, in a bilateral and asymmetrical manner, predominantly on the left hemisphere in the volunteers (P 〈 0.05). CONCLUSION: Activation of the cortex during normal swallowing tasks may be functionally linked to basal nuclei, thalamus, and cerebellum, greatly appearing in the left hemisphere.  相似文献   

4.
Arterial spin labeling (ASL) is a noninvasive method to measure cerebral blood flow (CBF). Arterial spin labeling is susceptible to artifact generated by head motion; this artifact is propagated through the subtraction procedure required to calculate CBF. We introduce a novel strategy for mitigating this artifact based on weighting tag/control volumes according to a noise estimate. We evaluated this strategy (DVARS weighting) in application to both pulsed ASL (PASL) and pseudo-continuous ASL (pCASL) in a cohort of normal adults (N=57). Application of DVARS weighting significantly improved test–retest repeatability as assessed by the intra-class correlation coefficient. Before the application of DVARS weighting, mean gray matter intra-class correlation (ICC) between subsequent ASL runs was 0.48 and 0.51 in PASL and pCASL, respectively. With weighting, ICC was significantly improved to 0.63 and 0.58.  相似文献   

5.
Specially designed optoelectronic and data postprocessing methods are described that permit electromyography (EMG) of muscle activity simultaneous with functional MRI (fMRI). Hardware characterization and validation included simultaneous EMG and event-related fMRI in 17 healthy participants during either ankle (n = 12), index finger (n = 3), or wrist (n = 2) contractions cued by visual stimuli. Principal component analysis (PCA) and independent component analysis (ICA) were evaluated for their ability to remove residual fMRI gradient-induced signal contamination in EMG data. Contractions of ankle tibialis anterior and index finger abductor were clearly distinguishable, although observing contractions from the wrist flexors proved more challenging. To demonstrate the potential utility of simultaneous EMG and fMRI, data from the ankle experiments were analyzed using two approaches: 1) assuming contractions coincided precisely with visual cues, and 2) using EMG to time the onset and offset of muscle contraction precisely for each participant. Both methods produced complementary activation maps, although the EMG-guided approach recovered more active brain voxels and revealed activity better in the basal ganglia and cerebellum. Furthermore, numerical simulations confirmed that precise knowledge of behavioral responses, such as those provided by EMG, are much more important for event-related experimental designs compared to block designs. This simultaneous EMG and fMRI methodology has important applications where the amplitude or timing of motor output is impaired, such as after stroke.  相似文献   

6.
BACKGROUND: To date, interleaved transcranial magnetic stimulation and functional magnetic resonance imaging (TMS/fMRI) studies of motor activation have not recorded whole brain patterns. We hypothesized that TMS would activate known motor circuitry with some additional regions plus some areas dropping out. METHODS: We used interleaved TMS/fMRI (11 subjects, three scans each) to elucidate whole brain activation patterns from 1-Hz TMS over left primary motor cortex. RESULTS: Both TMS (110% motor threshold) and volitional movement of the same muscles excited by TMS caused blood oxygen level-dependent (BOLD) patterns encompassing known motor circuitry. Additional activation was observed bilaterally in superior temporal auditory areas. Decreases in BOLD signal with unexpected post-task "rebounds" were observed for both tasks in the right motor area, right superior parietal lobe, and in occipital regions. Paired t test of parametric contrast maps failed to detect significant differences between TMS- and volition-induced effects. Differences were detectable, however, in primary data time-intensity profiles. CONCLUSIONS: Using this interleaved TMS/fMRI technique, TMS over primary motor cortex produces a whole brain pattern of BOLD activation similar to known motor circuitry, without detectable differences from mimicked volitional movement. Some differences may exist between time courses of BOLD intensity during TMS circuit activation and volitional circuit activation.  相似文献   

7.
Functional magnetic resonance imaging (fMRI) has become one of the primary tools used for noninvasively measuring brain activity in humans. For the most part, the blood oxygen level‐dependent (BOLD) contrast is used, which reflects the changes in hemodynamics associated with active brain tissue. The main advantage of the BOLD signal is that it is relatively easy to measure and thus is often used as a proxy for comparing brain function across population groups (i.e., control vs. patient). However, it is particularly weighted toward veins whose structural architecture is known to vary considerably across the brain. This makes it difficult to interpret whether differences in BOLD between cortical areas reflect true differences in neural activity or vascular structure. We therefore investigated how regional variations of vascular density (VAD) relate to the amplitude of resting‐state and task‐evoked BOLD signals. To address this issue, we first developed an automated method for segmenting veins in images acquired with susceptibility‐weighted imaging, allowing us to visualize the venous vascular tree across the brain. In 19 healthy subjects, we then applied voxel‐based morphometry (VBM) to T1‐weighted images and computed regional measures of gray matter density (GMD). We found that, independent of spatial scale, regional variations in resting‐state and task‐evoked fMRI amplitudes were better correlated to VAD compared to GMD. Using a general linear model (GLM), it was observed that the bulk of regional variance in resting‐state activity could be modeled by VAD. Cortical areas whose resting‐state activity was most suppressed by VAD correction included Cuneus, Precuneus, Culmen, and BA 9, 10, and 47. Taken together, our results suggest that resting‐state BOLD signals are significantly related to the underlying structure of the brain vascular system. Calibrating resting BOLD activity by venous structure may result in a more accurate interpretation of differences observed between cortical areas and/or individuals. Hum Brain Mapp 35:1906–1920, 2014. © 2013 Wiley Periodicals, Inc .  相似文献   

8.
There are ample functional magnetic resonance imaging (fMRI) studies on functional brain asymmetries, and the asymmetry of cerebral network in the resting state may be crucial to brain function organization. In this paper, a unified schema of voxel-wise functional connectivity and asymmetry analysis was presented and the network asymmetry of motor areas was studied. Twelve healthy male subjects with mean age 29.8 ± 6.4 were studied. Functional network in the resting state was described by using functional connectivity magnetic resonance imaging (fcMRI) analysis. Motor areas were selected as regions of interest (ROIs). Network asymmetry, including intra- and inter-network asymmetries, was formulated and analyzed. The intra-network asymmetry was defined as the difference between the left and right part of a particular functional network. The inter-network asymmetry was defined as the difference between the networks for a specific ROI in the left hemisphere and its homotopic ROI in the right hemisphere. Primary motor area (M1), primary sensory area (S1) and premotor area (PMA) exhibited higher functional correlation with the right parietal-temporal-occipital circuit and the middle frontal gyrus than they did with the left hemisphere. Right S1 and right PMA exhibited higher functional correlation with the ipsilateral precentral and supramarginal areas. There exist the large-scale hierarchical network asymmetries of the motor areas in the resting state. These asymmetries imply the right hemisphere dominance for predictive motor coding based on spatial attention and higher sensory processing load for the motor performance of non-dominant hemisphere.  相似文献   

9.
Neurofeedback training using real‐time functional magnetic resonance imaging (rtfMRI‐NF) allows subjects voluntary control of localised and distributed brain activity. It has sparked increased interest as a promising non‐invasive treatment option in neuropsychiatric and neurocognitive disorders, although its efficacy and clinical significance are yet to be determined. In this work, we present the first extensive review of acquisition, processing and quality control methods available to improve the quality of the neurofeedback signal. Furthermore, we investigate the state of denoising and quality control practices in 128 recently published rtfMRI‐NF studies. We found: (a) that less than a third of the studies reported implementing standard real‐time fMRI denoising steps, (b) significant room for improvement with regards to methods reporting and (c) the need for methodological studies quantifying and comparing the contribution of denoising steps to the neurofeedback signal quality. Advances in rtfMRI‐NF research depend on reproducibility of methods and results. Notably, a systematic effort is needed to build up evidence that disentangles the various mechanisms influencing neurofeedback effects. To this end, we recommend that future rtfMRI‐NF studies: (a) report implementation of a set of standard real‐time fMRI denoising steps according to a proposed COBIDAS‐style checklist ( https://osf.io/kjwhf/ ), (b) ensure the quality of the neurofeedback signal by calculating and reporting community‐informed quality metrics and applying offline control checks and (c) strive to adopt transparent principles in the form of methods and data sharing and support of open‐source rtfMRI‐NF software. Code and data for reproducibility, as well as an interactive environment to explore the study data, can be accessed at https://github.com/jsheunis/quality‐and‐denoising‐in‐rtfmri‐nf.  相似文献   

10.
Very low‐frequency blood oxygen level‐dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7–30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low‐frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low‐frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large‐scale brain networks. Hum Brain Mapp 35:1273–1283, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
We examined the brain activation induced by a complex finger movement task using functional magnetic resonance imaging (fMRI) with echo planar imaging (EPI). Imaging planes were set up for the observation of non-primary motor areas. Among five normal males examined, four subjects naive to the task showed activations in contralateral primary and supplementary motor areas and the ipsilateral superior anterior part of the cerebellar hemisphere. Also, the bilateral premotor areas and the contralateral ventrolateral nucleus of thalamus were occasionally activated. No changes were observed in the putamen and globus pallidus. The subject accustomed to the task showed activation in the narrow areas of the contralateral primary motor and supplementary motor and premotor areas but not in the cerebellum. These results suggest that fMRI has nearly the same degree of detectability to that of positron emission tomography (PET) in regard to motor functions.  相似文献   

12.
13.
Resting‐state functional magnetic resonance imaging (rs‐fMRI) is frequently used to study brain function; but, it is unclear whether BOLD‐signal fluctuation amplitude and functional connectivity are associated with vascular factors, and how vascular‐health factors are reflected in rs‐fMRI metrics in the healthy population. As arterial stiffening is a known age‐related cardiovascular risk factor, we investigated the associations between aortic stiffening (as measured using pulse‐wave velocity [PWV]) and rs‐fMRI metrics. We used cardiac MRI to measure aortic PWV (an established indicator of whole‐body vascular stiffness), as well as dual‐echo pseudo‐continuous arterial‐spin labeling to measure BOLD and CBF dynamics simultaneously in a group of generally healthy adults. We found that: (1) higher aortic PWV is associated with lower variance in the resting‐state BOLD signal; (2) higher PWV is also associated with lower BOLD‐based resting‐state functional connectivity; (3) regions showing lower connectivity do not fully overlap with those showing lower BOLD variance with higher PWV; (4) CBF signal variance is a significant mediator of the above findings, only when averaged across regions‐of‐interest. Furthermore, we found no significant association between BOLD signal variance and systolic blood pressure, which is also a known predictor of vascular stiffness. Age‐related vascular stiffness, as measured by PWV, provides a unique scenario to demonstrate the extent of vascular bias in rs‐fMRI signal fluctuations and functional connectivity. These findings suggest that a substantial portion of age‐related rs‐fMRI differences may be driven by vascular effects rather than directly by brain function.  相似文献   

14.
Recent evidence suggests that three specific brain networks show state‐dependent levels of synchronization before, during, and after episodes of generalized spike‐wave discharges (GSW) in patients with genetic generalized epilepsy (GGE). Here, we investigate whether synchronization in these networks differs between patients with GGE (n = 13), their unaffected first‐degree relatives (n = 17), and healthy controls (n = 18). All subjects underwent two 10‐minute simultaneous electroencephalographic–functional magnetic resonance imaging (fMRI) recordings without GSW. Whole‐brain data were divided into 90 regions, and blood oxygen level–dependent (BOLD) phase synchrony in a 0.04–0.07‐Hz band was estimated between all pairs of regions. Three networks were defined: (1) the network with highest synchrony during GSW events, (2) a sensorimotor network, and (3) an occipital network. Average synchrony (mean node degree) was inferred across each network over time. Notably, synchrony was significantly higher in the sensorimotor network in patients and in unaffected relatives, compared to controls. There was a trend toward higher synchrony in the GSW network in patients and in unaffected relatives. There was no difference between groups for the occipital network. Our findings provide evidence that elevated fMRI BOLD synchrony in a sensorimotor network is a state‐independent endophenotype of GGE, present in patients in the absence of GSW, and present in unaffected relatives.  相似文献   

15.
Calibrated functional magnetic resonance imaging can remove unwanted sources of signal variability in the blood oxygenation level‐dependent (BOLD) response. This is achieved by scaling, using information from a perfusion‐sensitive scan during a purely vascular challenge, typically induced by a gas manipulation or a breath‐hold task. In this work, we seek for a validation of the use of the resting‐state fluctuation amplitude (RSFA ) as a scaling factor to remove vascular contributions from the BOLD response. Given the peculiarity of depth‐dependent vascularization in gray matter, BOLD and vascular space occupancy (VASO) data were acquired at submillimeter resolution and averaged across cortical laminae. RSFA from the primary motor cortex was, thus, compared to the amplitude of hypercapnia‐induced signal changes (tSDhc ) and with the M factor of the Davis model on a laminar level. High linear correlations were observed for RSFA and tSDhc ( R2 = 0.92 ± 0.06 ) and somewhat reduced for RSFA and M ( R2 = 0.62 ± 0.19 ). Laminar profiles of RSFA ‐normalized BOLD signal changes yielded good agreement with corresponding VASO profiles. Overall, this suggests that RSFA contains strong vascular components and is also modulated by baseline quantities contained in the M factor. We conclude that RSFA may replace the scaling factor tSDhc for normalizing the laminar BOLD response.  相似文献   

16.
We localized the neuroanatomical correlates for control of saccadic eye movements and for finger movements using a combined transcranial magnetic stimulation (TMS) and magnetic resonance imaging (MRI) approach. Two participants underwent TMS while performing an endogenous saccade task. The motor hand area was localized by TMS and the region anterior to it was mapped to identify the borders of a region where TMS produced delays in generating contralateral saccades. MRI scans were then obtained with fiducial markers placed over the motor hand area and 2 cm anterior to it, the common cortical region that produced saccadic delays in these two subjects. It was also shown that the structural anatomy of the hand area, physiologically defined by visible contractions of the contralateral hand following TMS, corresponded to the knob-like structure recently reported [18, 19]. These results demonstrate that TMS can be a precise, non-invasive tool for neuroanatomical mapping of cortical structures when combined with structural images of the brain.  相似文献   

17.
Objectives:  Individuals with bipolar disorder (BPD) exhibit motor, perceptual, and cognitive disturbances involving predominantly right hemisphere dysfunction. This asymmetry has been used to advance the hypothesis that the pathogenesis of bipolar disorder may be related to disturbances of the right cerebral hemisphere. We employed functional magnetic resonance imaging to examine hemispheric asymmetries in manic and depressed BPD. A secondary goal of the study was to examine effects of psychotropic medications on blood volume changes in the motor cortices.
Methods:  We studied 18 right-handed BPD and 13 right-handed normal healthy comparison subjects. Blood oxygen level dependent (BOLD) responses in the primary motor area (M1) and supplementary motor area (SMA) of both hemispheres were elicited during reaction time (RT) tasks.
Results:  Healthy subjects activated the SMA in a reciprocal fashion with significantly greater activity in the left SMA for right hand trials and the right SMA for left hand trials. Depressed BPD subjects failed to show this normal reciprocity indicating a failure to suppress unwanted activity in the ipsilateral right SMA, whereas manic BPD subjects failed to suppress unwanted ipsilateral SMA activity in both hemispheres. Manic and depressed BPD subjects exhibited greater activity in the left primary motor area suggesting increased cortical excitability. BPD subjects treated with antipsychotics or mood-stabilizing medications exhibited longer RTs, lower BOLD responses in M1 and SMA, and a loss of normal hemispheric asymmetry in the SMA than untreated subjects.
Conclusions:  The presence of a right hemisphere disturbance in BPD is consistent with the hypothesis that the right hemisphere may be dominant in mood regulation. The presence of both left and right hemisphere disturbances in mania may explain the coexisting psychotic and affective symptoms observed in this condition.  相似文献   

18.
Functional magnetic resonance imaging (fMRI) of older adults at risk for Alzheimer's disease (AD) by virtue of their cognitive (i.e., mild cognitive impairment [MCI]) and/or genetic (i.e., apolipoprotein E [APOE] ε4 allele) status demonstrate divergent brain response patterns during memory encoding across studies. Using arterial spin labeling MRI, we examined the influence of AD risk on resting cerebral blood flow (CBF) as well as the CBF and blood oxygenation level dependent (BOLD) signal response to memory encoding in the medial temporal lobes (MTL) in 45 older adults (29 cognitively normal [14 APOE ε4 carriers and 15 noncarriers]; 16 MCI [8 APOE ε4 carriers, 8 noncarriers]). Risk groups were comparable in terms of mean age, years of education, gender distribution, and vascular risk burden. Individuals at genetic risk for AD by virtue of the APOE ε4 allele demonstrated increased MTL resting state CBF relative to ε4 noncarriers, whereas individuals characterized as MCI showed decreased MTL resting state CBF relative to their cognitively normal peers. For percent change CBF, there was a trend toward a cognitive status by genotype interaction. In the cognitively normal group, there was no difference in percent change CBF based on APOE genotype. In contrast, in the MCI group, APOE ε4 carriers demonstrated significantly greater percent change in CBF relative to ε4 noncarriers. No group differences were found for BOLD response. Findings suggest that abnormal resting state CBF and CBF response to memory encoding may be early indicators of brain dysfunction in individuals at risk for developing AD.  相似文献   

19.
The ability to detect single trial responses in functional magnetic resonance imaging (fMRI) studies is essential, particularly if investigating learning or adaptation processes or unpredictable events. We recently introduced paradigm free mapping (PFM), an analysis method that detects single trial blood oxygenation level dependent (BOLD) responses without specifying prior information on the timing of the events. PFM is based on the deconvolution of the fMRI signal using a linear hemodynamic convolution model. Our previous PFM method (Caballero‐Gaudes et al., 2011: Hum Brain Mapp) used the ridge regression estimator for signal deconvolution and required a baseline signal period for statistical inference. In this work, we investigate the application of sparse regression techniques in PFM. In particular, a novel PFM approach is developed using the Dantzig selector estimator, solved via an efficient homotopy procedure, along with statistical model selection criteria. Simulation results demonstrated that, using the Bayesian information criterion to select the regularization parameter, this method obtains high detection rates of the BOLD responses, comparable with a model‐based analysis, but requiring no information on the timing of the events and being robust against hemodynamic response function variability. The practical operation of this sparse PFM method was assessed with single‐trial fMRI data acquired at 7T, where it automatically detected all task‐related events, and was an improvement on our previous PFM method, as it does not require the definition of a baseline state and amplitude thresholding and does not compromise on specificity and sensitivity. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.  相似文献   

20.
正常人手运动功能脑皮质定位的研究   总被引:5,自引:1,他引:4  
目的 研究正常人手复杂运动时脑皮质的功能定位。方法 采用SIEMENS成像系统的EPI-Bolding程序,采集7例受试运动和静止状态的T1W图像共6个时相,应用相应软件分析得到差异信号图像,在T1W结构图像融合,并进行三维重建。结果 7例受试在执行握拳运动时,对侧皮质中央前回的第一运动区(Broadman 4区)均可见明显激活信号,对侧或双侧的补充运动区均有激活信号,2例运动前区激活,3例可见同侧中央前回运动皮质的激活信号。三维重建显示第一运动区的激活信号主要位于对侧中央沟的中外侧,补充运动区的激活信号位于运动前区(Broadman 6区)近正中的内侧面。结论 正常人手复杂运动时脑皮质运动网络被广泛激活,功能核磁共振的激活信号反映了脑的高级功能活动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号