首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
INTRODUCTION: It has been widely assumed that osteoclasts play a pivotal role during the entire process of fracture healing. Bisphosphonates (BPs) are anti-catabolic agents commonly used to treat metabolic bone diseases including osteoporosis, minimizing fracture incidence. Yet, fractures do occur in these patients and the potential for negative effects of BPs on healing has been suggested. We aimed to examine the effect of different dosing regimes of the potent BP zoledronic acid (ZA) on early endochondral fracture repair and later callus remodeling in a normal bone healing environment. METHODS: Saline, a Bolus dose of 0.1 degrees mg/kg ZA or 5 weekly divided doses of 0.02 degrees mg/kg of ZA commenced 1 week post operatively in a rat closed fracture model. Samples at 1, 2, 4 and 6 weeks post fracture were used to analyze initial fracture union, and 12 and 26 weeks post fracture to investigate the progress of remodeling. RESULTS: ZA did not alter the rate of endochondral fracture union. All fractures united by 6 weeks, with no difference in the progressive reduction of cartilaginous soft callus between control and treatment groups over time. ZA treatment increased hard callus bone mineral content (BMC), volume and increased callus strength at 6 and 26 weeks post fracture. Hard callus remodeling commenced at 4 weeks post fracture with Bolus ZA treatment but was delayed until after 6 weeks in the Weekly ZA group. By 12 and 26 weeks, Bolus ZA had equivalent callus content of remodeled neo-cortical bone to the Saline controls, whereas Weekly ZA remained reduced compared to Saline controls at these times (P<0.01). Callus material properties such as peak stress were significantly reduced in both ZA groups at 6 weeks. At 26 weeks, Bolus ZA-treated calluses generated peak stress equivalent to control values, whereas Weekly ZA callus peak stress remained significantly reduced, indicating remodeling delay. CONCLUSIONS: Osteoclast inhibition with ZA does not delay endochondral fracture repair in healthy rats. Bolus ZA treatment increased net callus size and strength at 6 weeks while allowing hard callus remodeling to proceed in the long term, albeit more slowly than control. Prolonged bisphosphonate dosing during repair does not delay endochondral ossification but can significantly affect remodeling long after the drug is ceased.  相似文献   

2.
Osteonecrosis of the jaws (ONJ) is a significant complication of antiresorptive medications, such as bisphosphonates and denosumab. Antiresorptive discontinuation to promote healing of ONJ lesions remains highly controversial and understudied. Here, we investigated whether antiresorptive discontinuation alters ONJ features in mice, employing the potent bisphosphonate zoledronic acid (ZA) or the receptor activator of NF‐κB ligand (RANKL) inhibitor OPG‐Fc, utilizing previously published ONJ animal models. Mice were treated with vehicle (veh), ZA, or OPG‐Fc for 11 weeks to induce ONJ, and antiresorptives were discontinued for 6 or 10 weeks. Maxillae and mandibles were examined by μCT imaging and histologically. ONJ features in ZA and OPG‐Fc groups included periosteal bone deposition, empty osteocyte lacunae, osteonecrotic areas, and bone exposure, each of which substantially resolved 10 weeks after discontinuing OPG‐Fc but not ZA. Full recovery of tartrate‐resistant acid phosphatase‐positive (TRAP+) osteoclast numbers occurred after discontinuing OPG‐Fc but not ZA. Our data provide the first experimental evidence demonstrating that discontinuation of a RANKL inhibitor, but not a bisphosphonate, reverses features of osteonecrosis in mice. It remains unclear whether antiresorptive discontinuation increases the risk of skeletal‐related events in patients with bone metastases or fracture risk in osteoporosis patients, but these preclinical data may nonetheless help to inform discussions on the rationale for a “drug holiday” in managing the ONJ patient. © 2015 American Society for Bone and Mineral Research.  相似文献   

3.
Calcium and its putative receptor (CaSR) control skeletal development by pacing chondrocyte differentiation and mediating osteoblast (OB) function during endochondral bone formation—an essential process recapitulated during fracture repair. Here, we delineated the role of the CaSR in mediating transition of callus chondrocytes into the OB lineage and subsequent bone formation at fracture sites and explored targeting CaSRs pharmacologically to enhance fracture repair. In chondrocytes cultured from soft calluses at a closed, unfixed fracture site, extracellular [Ca2+] and the allosteric CaSR agonist (NPS-R568) promoted terminal differentiation of resident cells and the attainment of an osteoblastic phenotype. Knockout (KO) of the Casr gene in chondrocytes lengthened the chondrogenic phase of fracture repair by increasing cell proliferation in soft calluses but retarded subsequent osteogenic activity in hard calluses. Tracing growth plate (GP) and callus chondrocytes that express Rosa26-tdTomato showed reduced chondrocyte transition into OBs (by >80%) in the spongiosa of the metaphysis and in hard calluses. In addition, KO of the Casr gene specifically in mature OBs suppressed osteogenic activity and mineralizing function in bony calluses. Importantly, in experiments using PTH (1-34) to enhance fracture healing, co-injection of NPS-R568 not only normalized the hypercalcemic side effects of intermittent PTH (1-34) treatment in mice but also produced synergistic osteoanabolic effects in calluses. These data indicate a functional role of CaSR in mediating chondrogenesis and osteogenesis in the fracture callus and the potential of CaSR agonism to facilitate fracture repair. © 2019 American Society for Bone and Mineral Research.  相似文献   

4.
We hypothesized that ZA treatment would bolster fracture repair. In a rat model for closed fracture healing, a single dose of ZA at 0, 1, or 2 wk after fracture significantly increased BMC and strength of the healed fracture. Delaying the dose (1 or 2 wk after fracture) displayed superior results compared with dosing at the time of fracture. INTRODUCTION: Bisphosphonates are known to increase bone strength and thus the resistance to fracture by decreasing osteoclastic bone resorption. These properties may enable bisphosphonates to also increase the strength of fracture repair. Zoledronic acid (ZA) is a potent bisphosphonate with a high affinity for bone mineral, allowing bolus intravenous dosing in a range of indications. In this study, we examined the application of bolus dose ZA in endochondral fracture repair. MATERIALS AND METHODS: Carbon-14 labeled ZA was used in a closed rat fracture model. Rats were divided into five treatment groups (n = 25 per group): saline control, local ZA (0.01 mg/kg), and three systemic bolus ZA groups (0.1 mg/kg) with different administration times: at fracture, 1 wk after fracture, and 2 wk after fracture. Rats were killed 6 wk postoperatively. Postmortem analyses included radiography, QCT, microCT, biomechanical testing, scintillation counting, autoradiography, and histology. RESULTS: Single-dose systemic ZA administration significantly increased callus volume, callus BMC, and mechanical strength. Perioperative treatment increased mechanical strength by 30% compared with controls (p < 0.05). Administering the systemic dose at 1 or 2 wk after fracture further increased mechanical strength compared with controls by 44% and 50%, respectively (p < 0.05). No significant differences in mechanical parameters were seen with local injection at the dose studied. Autoradiographic analysis indicated that ZA binds significantly to bone that is present at the time of administration. ZA quantification indicated that delayed administration significantly increased the uptake efficiency in the callus. Histological and microCT analysis showed that ZA treated calluses had a distinctive internal structure consisting of an intricate network of retained trabecular bone. CONCLUSIONS: The timing of a single systemic dose of ZA plays an important role in the modulation of callus properties in this rat fracture model; delaying the single dose produces a larger and stronger callus.  相似文献   

5.
6.
Osteopetrotic patients possess a genetic condition that leads to a deficiency in osteoclast number or function. Patients have a high bone density and suffer from an increased risk of fracture. The lack of normal osteoclast activity has the potential to impede repair by complicating orthopedic fixation and/or by affecting the biology of fracture healing. The naturally occurring incisors absent (ia/ia) rat was adopted as a rodent model of congenital osteopetrosis. A detailed phenotypic analysis of the ia/ia rat indicated that some functional recovery occurred between 7 and 9 weeks. Consequently a fracture repair study was undertaken using 5‐week‐old rats. Closed femoral fractures were generated in ia/ia rats and control ia/+ and +/+ rats using an Einhorn apparatus. Fracture healing was examined radiologically and histologically at 1–3 weeks. No difference was seen in bridging between ia/ia and control rats at any time point. The ia/ia rats showed no delay in cartilage removal but showed a significant delay in hard callus remodeling. This is consistent with an essential role for osteoclasts in only the latter stages of endochondral bone repair. This delay in hard callus remodeling was offset by an increase in moment of inertia. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 29:726–733, 2011  相似文献   

7.
Pharmacological interventions that combine pro-anabolic and anti-catabolic drugs to treat recalcitrant fractures have shown remarkable efficacy in augmenting the regenerative response. Specifically, in rodent models of fracture repair, treatment with BMP-7 and Zoledronate (ZA) has almost uniformally resulted in complete union. However, delayed remodeling may be problematic for ZA-treated fractures. The increase in newly formed bone is substantial but if translated in humans, delayed remodeling may delay functional recovery. Our objective was to determine if, and to what extent, bone morphogenetic protein (BMP) (in synergistically administered BMP-7 + ZA) can modulate the delayed hard callus remodeling caused by ZA. Callus remodeling in BMP-7-only and BMP-7 + ZA-treated osteotomies were monitored using in vivo µCT to follow the progression of healing at 6-week intervals over 24 weeks in an open femoral fracture rat model. None of the groups recovered baseline cortical bone volumes within 24 weeks post-osteotomy. Treatment prolonged the remodeling phase but the kinetics of remodeling appeared to differ between BMP and BMP + ZA groups. However, the mechanical characteristics were largely restored. Callus/bone volumes in BMP-only treated fractures peaked as early as week 3 suggesting that remodeling is stimulated prematurely. However, this rate of remodeling was not maintained as BMP-7 was found to exhibit negligible changes in callus/bone volumes between weeks 6 and 18, whereas declines in callus/bone volumes were present at these time points in the BMP-7 + ZA group. Our findings suggest that inclusion of ZA as an anti-catabolic agent may not be detrimental to the regenerative process despite a prolonged remodeling phase.  相似文献   

8.
9.
Antiosteoporotic medications are often used to concurrently treat a patient’s fragility fractures and underlying osteoporosis. This review evaluates the existing literature from animal and clinical models to determine these drugs’ effects on fracture healing. The data suggest that these medications may enhance bone healing, yet more thorough prospective studies are warranted. Pharmacologic agents that influence bone remodeling are an essential component of osteoporosis management. Because many patients are first diagnosed with osteoporosis when presenting with a fragility fracture, it is critical to understand how osteoporotic medications influence fracture healing. Vitamin D and its analogs are essential for the mineralization of the callus and may also play a role in callus formation and remodeling that enhances biomechanical strength. In animal models, antiresorptive medications, including bisphosphonates, denosumab, calcitonin, estrogen, and raloxifene, do not impede endochondral fracture healing but may delay repair due to impaired remodeling. Although bisphosphonates and denosumab delay callus remodeling, they increase callus volume and result in unaltered biomechanical properties. Calcitonin increases cartilage formation and callus maturation, resulting in improved biomechanical properties. Parathyroid hormone, an anabolic agent, has demonstrated promise in animal models, resulting in accelerated healing with increased callus volume and density, more rapid remodeling to mature bone, and improved biomechanical properties. Clinical data with parathyroid hormone have demonstrated enhanced healing in distal radius and pelvic fractures as well as postoperatively following spine surgery. Strontium ranelate, which may have both antiresorptive and anabolic properties, affects fracture healing differently in normal and osteoporotic bone. While there is no effect in normal bone, in osteoporotic bone, strontium ranelate increases callus bone formation, maturity, and mineralization; forms greater and denser trabeculae; and improves biomechanical properties. Further clinical studies with these medications are needed to fully understand their effects on fracture healing in order to simultaneously treat fragility fractures and underlying osteoporosis.  相似文献   

10.
As dominant regulators of osteoclastogenesis and bone resorption, receptor activator of NFkappaB (RANK), receptor activator of NFkappaB ligand, and OPG have been identified as ideal drug targets for the treatment of metabolic bone disease. One concern regarding the therapeutic use of RANK signaling inhibitors is their effect on fracture healing. Therefore we tested if uncoupling and osteoclast depletion via RANK blockade affects callus formation, maturation and matrix remodeling, as well as union rates in a mouse tibia fracture model. Low dose (1 mg/kg i.p.) RANK:Fc therapy had no effect on callus formation, matrix maturation and remodeling, and resulted in 100% bony union by day 28. High dose RANK:Fc treatment (10 mg/kg i.p.) effectively eliminated osteoclasts at the fracture site on day 14, with no significant effects on fracture healing. When therapy was discontinued, normal numbers of osteoclasts were observed at the fracture site by day 28. However, continuous therapy resulted in a large osteopetrotic callus consisting of both mineralized and unmineralized matrix that was void of osteoclasts, but bony union was unaffected at day 28. We also evaluated this process in the complete absence of RANK signaling using RANK -/- mice. These animals exhibited significant radiographic and histologic evidence of callus formation, indicating that RANK signaling is not required for fracture callus formation. However, only 33% of RANK -/- animals formed bony unions compared to 100% of the osteopetrotic control mice. This defect was most likely a result of decreased blood flow, as evidenced by fewer blood vessels in the RANK -/- animals. Together, these data imply that osteoclast depletion via inhibition of RANK signaling is a viable option for the treatment of pathological bone loss since no adverse effects on fracture healing are observed when therapy is discontinued.  相似文献   

11.
Extracorporeal shock waves (ESWs) elicit a dose-dependent effect on the healing of segmental femoral defects in rats. After ESW treatment, the segmental defect underwent progressive mesenchymal aggregation, endochondral ossification, and hard callus formation. Along with the intensive bone formation, there was a persistent increase in TGF-beta1 and BMP-2 expression. Pretreatment with pertussis toxin reduced ESW-promoted callus formation and gap healing, which presumably suggests that Gi proteins mediate osteogenic signaling. INTRODUCTION: Extracorporeal shock waves (ESWs) have previously been used to promote bone repair. In our previous report, we found that ESWs promoted osteogenic differentiation of mesenchymal cells through membrane perturbation and activation of Ras protein. In this report, we show that ESWs elicit a dose-dependent effect on the healing of segmental defects and that Gi proteins play an important role in mediating ESW stimulation. MATERIALS AND METHODS: Rats with segmental femoral defects were subjected to ESW treatment at different energy flux densities (EFD) and impulses. Bone mass (mineral density and calcium content), osteogenic activities (bone alkaline phosphatase activity and osteocalcin content), and immunohistochemistry were assessed. RESULTS: An optimal ESW energy (500 impulses at 0.16 mJ/mm2 EFD) stimulated complete bone healing without complications. ESW-augmented healing was characterized by significant increases (p < 0.01) in callus size, bone mineral density, and bone tissue formation. With exposure to ESW, alkaline phosphatase activity and osteocalcin production in calluses were found to be significantly enhanced (p < 0.05). After ESW treatment, the histological changes we noted included progressive mesenchymal aggregation, endochondral ossification, and hard callus formation. Intensive bone formation was associated with a persistent increase in transforming growth factor-beta 1 (TGF-beta1) and bone morphogenetic protein-2 (BMP-2) expression, suggesting both growth factors were active in ESW-promoted bone formation. We also found that pertussis toxin, an inhibitor of membrane-bound Gi proteins, significantly reduced (p < 0.01) ESW promotion of callus formation and fracture healing. CONCLUSION: ESW treatments enhanced bone formation and the healing of segmental femoral defects in rats. It also seems likely that TGF-beta1 and BMP-2 are important osteogenic factors for ESW promotion of fracture healing, presumably through Gi protein-mediated osteogenic signaling.  相似文献   

12.
Chondromodulin-I (Chm-I) is a glycoprotein that stimulates the growth of chondrocytes and inhibits angiogenesis in vitro. Mice lacking the Chm1 gene show abnormal bone metabolism and pathological angiogenesis in cardiac valves in the mature stage although they develop normally without aberrations in endochondral bone formation during embryogenesis or in cartilage development during growth. These findings indicate that Chm-I is critical under conditions of stress such as bone repair through endochondral ossification of a fracture callus. We carried out the present study to examine the expression and role of Chm-I in bone repair using a stabilized tibial fracture model, and compared fracture healing in Chm1 knockout (Chm1(-/-)) mice with that in wild-type mice. Chm-I mRNA and protein localized in the external cartilaginous callus in the reparative phase of fracture healing. Radiological examination showed a delayed union in Chm1(-/-) mice although the fracture site was covered with both external and internal calluses. Chm1 null mutation reduced external cartilaginous callus formation as judged by marked decrease of type X collagen alpha 1 (Col10a1) expression and the total amount of cartilage matrix. Interestingly, the majority of chondrocytes in the periosteal callus failed to differentiate into mature chondrocytes in Chm1(-/-) mice, while the hypertrophic maturation of chondrocytes between the cortices was not affected. These results suggest that Chm-I is involved in hypertrophic maturation of periosteal chondrocytes. Although a direct effect of Chm-I on bones is still unclear, bony callus formation was increased while external cartilaginous callus decreased in Chm1(-/-) mice. We conclude that in the absence of Chm1, predominant primary bone healing occurs due to an indirect effect induced by reduction of cartilaginous callus rather than to a direct effect on osteogenic function, resulting in a delayed union.  相似文献   

13.
We investigated the effects of inhibitors of bone resorption (estrogen, raloxifene, and alendronate) on the processes of fracture repair in ovariectomized (OVX) rats. One hundred forty female Sprague-Dawley rats at 3 months of age were either OVX or sham-operated and divided into five groups: sham control, OVX control, estrogen (17alpha-ethynyl estradiol [EE2], 0.1 mg/kg), raloxifene (Rlx, 1.0 mg/kg), and alendronate (Aln, 0.01 mg/kg) groups. Treatment began immediately after the surgery. Four weeks postovariectomy, prefracture controls were killed and bilateral osteotomies were performed on the femoral midshafts and fixed with intramedullary wires. Treatment was continued and fracture calluses were excised at 6 weeks and 16 weeks postfracture for evaluation by X-ray radiography, quantitative computed tomography (QCT,) biomechanical testing, and histomorphometry. At 6 weeks postfracture, Aln and OVX had larger calluses than other groups. Sham and OVX had higher ultimate load than EE2 and Rlx, with Aln not different from either control. Aln calluses also contained more mineral (bone mineral content [BMC]) than all other groups. By 16 weeks postfracture, OVX calluses were smaller than at 6 weeks and the dimensions for Aln had not changed. Aln had higher BMC and ultimate load than OVX, EE2, and Rlx. EE2 and Rlx had similar biomechanical properties, which were similar to sham. Interestingly, OVX and Aln animals were heavier than other groups at all time points; therefore, ultimate load was normalized by body weight to show no significant differences in strength of the whole callus between groups at either 6 weeks or 16 weeks postfracture. However, Aln strongly suppressed remodeling of the callus, resulting in the highest content of woven bone, persistent visibility of the original fracture line, and lowest content of lamellar bone, compared with other groups. Therefore, the larger Aln callus appeared to be a remarkable, morphological adaptation to secure the fracture with inferior material. In conclusion, OVX-stimulated bone turnover resulted in the fastest progression of fracture repair that was most delayed with Aln treatment, consistent with marked suppression of bone resorption and formation activity. Estrogen and Rlx had similar effects that were generally similar to sham, indicating that mild suppression of bone turnover with these agents has insignificant effects on the progression of fracture repair.  相似文献   

14.
Bone repair models in animals may be considered relevant to human fracture healing to the extent that the sequence of events in the repair process in the model reflect the human fracture healing sequence. In the present study, the relevance of a recently developed segmental defect model in rat fibula to human fracture healing was investigated by evaluating temporal progression of rigidity of the fibula, mineral content of the repair site, and histological changes. In this model, a surgically created 2-mm-long defect was grafted with a 5-mm-long tubular specimen of demineralized bone matrix (DBM) by inserting it over the cut ends of the fibula. The temporal increase in rigidity of the healing fibula demonstrated a pattern similar to biomechanical healing curves measured in human fracture healing. This pattern was characterized by a short phase of rapidly rising rigidity during weeks 4-7 after surgery, associated with a sharp increase in the mineral content of the repair tissue. This was preceded by a phase of nearly zero rigidity and followed by a phase of slow rate of increase approaching a plateau. Histologically, chondroblastic and osteoblastic blastema originating from extraskeletal and subperiosteal (near fibula-graft junction) regions, infiltrated the DBM graft during the first 2 weeks. The DBM graft assumed the role of a "bridging callus." By weeks 6-8, most of the DBM was converted to new woven and trabecular bone with maximal osteoblastic activity and minimal endochondral ossification. Medullary callus formation started with direct new bone formation adjacent to the cortical and endosteal surfaces in the defect and undifferentiated cells in the center of the defect at 3 weeks. The usual bone repair process in rodents was altered by the presence of the DBM graft to recapitulate the sequential stages of human fracture healing, including the formation of a medullary callus, union with woven and lamellar bone, and recreation of the medullary canal.  相似文献   

15.
Bisphosphonates induce major increases in strength of callus in distraction osteogenesis in the short term. Poor understanding of the underlying mechanism, however, raises concerns about long-term consequences. In this long-term study in 32 rabbits, zoledronic acid transiently increased trabeculae by delayed temporal progression of endochondral bone remodeling but did not prevent radiographic completion of bone repair. INTRODUCTION: We hypothesized that bisphosphonate inhibition of osteoclast-mediated resorption would retain bone during repair, producing a larger callus in the short term. However, if remodeling was not restored, completion of the bone repair process in the long term could be jeopardized. MATERIALS AND METHODS: Juvenile rabbits underwent right tibial osteotomy and 2 weeks of distraction, followed by a period of consolidation. Animals received saline (controls) or zoledronic acid (ZA; 0.1 mg/kg at surgery and again 2 weeks later), and distracted tibias were examined by radiograph, DXA, histology, and histomorphometry at 2, 4, 6, 18, and 44 weeks after surgery. RESULTS: Regenerated bone in ZA-treated animals was denser than controls on radiographs at 6 weeks and had more distinct radiodense trabeculae and retention of original cortices at 18 weeks. By 44 weeks, controls and ZA-treated animals were radiographically healed and indistinguishable. Regenerate BMD and BMC increased between 2 and 4 weeks in all animals, with a greater effect in ZA. At 6 weeks, BMD and BMC in ZA-treated animals were 1.6- and 2-fold greater, respectively, than controls (p < 0.01). From 6 to 44 weeks, the control values gradually increased and approached the ZA-treated values. Regenerate bone volume and trabecular number by histomorphometry were from 1.6- to 2-fold greater in ZA-treated animals at 6 and 18 weeks (p < 0.05). Endochondral cartilaginous matrix volume was up to 2.4-fold greater in ZA-treated animals at 2 and 4 weeks (p < 0.05). TRACP+ cells in ZA-treated animals were larger with more nuclei. Mineral apposition rate and osteoblast number and surface were lower in ZA-treated animals at 6 weeks (p < 0.01) but not at later times. CONCLUSIONS: Disruption of TRACP+ cell function by ZA during bone regeneration seems to lead to an accretion of cancellous bone built on a larger endochondral cartilaginous matrix and increased bone mass, consistent with reported increases in short-term callus strength. This increase in bone mass, caused by a delay in remodeling, provided a transient advantage without preventing radiographic completion of the bone repair process in the long term. Noncontinuous treatment with nitrogen-containing bisphosphonates thus can have short-term beneficial effects without preventing long-term bone repair.  相似文献   

16.
This study evaluated the effects of deficient IGF-I expression in osteocytes on fracture healing. Transgenic mice with conditional knockout (cKO) of Igf1 in osteocytes were generated by crossing Dmp1-Cre mice with Igf1 flox mice. Fractures were created on the mid-shaft of tibia of 12-week-old male cKO mice and wild-type (WT) littermates by three-point bending. At 21 and 28 days post-fracture healing, the increases in cortical bone mineral density, mineral content, bone area, and thickness, as well as sub-cortical bone mineral content at the fracture site were each greater in cKO calluses than in WT calluses. There were 85% decrease in the cartilage area and > 2-fold increase in the number of osteoclasts in cKO calluses at 14 days post-fracture, suggesting a more rapid remodeling of endochondral bone. The upregulation of mRNA levels of osteoblast marker genes (cbfa1, alp, Opn, and Ocn) was greater in cKO calluses than in WT calluses. μ-CT analysis suggested an accelerated bony union of the fracture gap in cKO mice. The Sost mRNA level was reduced by 50% and the Bmp2 mRNA level was increased 3-fold in cKO fractures at 14 days post-fracture, but the levels of these two mRNAs in WT fractures were unchanged, suggesting that the accelerated fracture repair may in part act through the Wnt and/or BMP signaling. In conclusion, conditional deletion of Igf1 in osteocytes not only did not impair, but unexpectedly enhanced, bony union of the fracture gap. The accelerated bony union was due in part to upregulation of the Wnt and BMP2 signaling in response to deficient osteocyte-derived IGF-I expression, which in turn favors intramembranous over endochondral bone repair.  相似文献   

17.
OBJECTIVE: To evaluate the influence of osteoporosis on the middle and late periods of fracture healing process through observing the histomorphological changes, bone mineral density and biomechanical properties in ovariectomized rats. METHODS: Eighty-four female SD rats of 4 months old were randomly divided into osteoporosis group and sham operation group, 42 in each. Rats in osteoporosis group were performed ovariectomy operation while those in sham operation group were given sham operation. A midshaft tibia fracture model was established 10 weeks after ovariectomy. Tibias were harvested 2, 4, 6, 12, 18 weeks after fracture for bone mineral density, histomorphological and biomechanical evaluation. RESULTS: Compared with the sham operation group, callus bone mineral density was 12.8%, 18.0%, 17.0% lower in osteoporosis group 6, 12, 18 weeks after fracture, respectively (P<0.05); callus failure load was 24.3%, 31.5%, 26.6%, 28.8% lower in osteoporosis group, and callus failure stress was 23.9%, 33.6%, 19.1%, 24.9% lower in osteoporosis group 4, 6, 12, 18 weeks after fracture, respectively (P<0.05). In osteoporosis group, endochondral bone formation was delayed, more osteoclast cells could be seen around the trabecula, and the new bone trabecula arranged loosely and irregularly. CONCLUSIONS: Osteoporosis influences the middle and late periods of fracture healing in the rat osteoporotic model. The impairment is considered to be the result of combined effects of prolonged endochondral calcification, high activated osteoclast cell and the deceleration of the increase in bone mineral density.  相似文献   

18.
There is strong evidence in the clinical literature to suggest that elevated lead (Pb) exposure impairs fracture healing. Since Pb has been demonstrated to inhibit bone formation, and Wnt signaling is an important anabolic pathway in chondrocyte maturation and endochondral ossification, we investigated the impact of Wnt therapy on Pb‐exposed mice undergoing bone repair in a mouse tibial fracture model. We established that tibial fracture calluses from Pb‐treated mice were smaller and contained less mineralized tissue than vehicle controls. This resulted in the persistence of immature cartilage in the callus and decreased β‐catenin levels. Reduction of β‐catenin protein was concurrent with systemic elevation of LRP5/6 antagonists DKK1 and sclerostin in Pb‐exposed mice throughout fracture healing. β‐catenin stimulation by the GSK3 inhibitor BIO reversed these molecular changes and restored the amount of mineralized callus. Overall, Pb is identified as a potent inhibitor of endochondral ossification in vivo with correlated effects on bone healing with noted deficits in β‐catenin signaling, suggesting the Wnt/β‐catenin as a pivotal pathway in the influence of Pb on fracture repair. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:1397–1405, 2014.  相似文献   

19.
Osteoporosisischaracterizedbydecreasedbonemass, increasedbonefragilityinducedbydemolitionofbonemicrostructureandincreasedsusceptibilitytofracture. Currentstudiesmainlyfocusonthepreventionoffracture. However, theinfluenceofosteoporosisonthefracturehealingremainspoorlyunderstoodandcontroversial.Inourpreviousstudy, wehaveevaluatedtheeffectofosteoporosisontheearlyperiodoffracturehealing, andfoundthatosteoporosisinfluencesthequantityandqualityofcallusduringtheearlyperiodofracturehealing.1 Incurrent…  相似文献   

20.
Human fracture healing is a complex interaction of several cytokines that regulate osteoblast and osteoclast activity. By monitoring OPG (osteoprotegerin) and sRANKL we aimed to possibly predict normal or impaired fracture healing. In 64 patients with a fracture of a long bone serum level of sRANKL and OPG were evaluated with respect to bony union (n = 57) or pseudarthrosis (n = 7). Measurements were carried out at admission and at 1, 2, 4, 6, 8, 12, 24, and 48 weeks after the injury. Patients' serum levels were compared to 33 healthy controls. Fracture hematoma contained significantly higher sRANKL and OPG concentrations compared to patients serum (p = 0.005, p = 0.028). OPG level in fracture hematoma was higher compared to the unions serum level (p = 0.028). sRANKL was decreased in unions during the observation period. In non‐unions sRANKL and OPG levels showed a variable course, with no statistical significance. This is the first study to document the course of OPG and sRANKL in normal and delayed human fracture healing emphasizing its local and systemic involvement. We provide evidence of strongly enhanced OPG levels in patients with a long bone fracture compared to healthy controls. Further, levels of free sRANKL were decreased during regular fracture repair. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:1557–1561, 2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号