首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Osterix (Osx) is essential for osteoblast differentiation and bone formation, because mice lacking Osx die within 1 h of birth with a complete absence of intramembranous and endochondral bone formation. Perinatal lethality caused by the disruption of the Osx gene prevents studies of the role of Osx in bones that are growing or already formed. Here, the function of Osx was examined in adult bones using the time‐ and site‐specific Cre/loxP system. Osx was inactivated in all osteoblasts by Col1a1‐Cre with the activity of Cre recombinase under the control of the 2.3‐kb collagen promoter. Even though no bone defects were observed in newborn mice, Osx inactivation with 2.3‐kb Col1a1‐Cre exhibited osteopenia phenotypes in growing mice. BMD and bone‐forming rate were decreased in lumbar vertebra, and the cortical bone of the long bones was thinner and more porous with reduced bone length. The trabecular bones were increased, but they were immature or premature. The expression of early marker genes for osteoblast differentiation such as Runx2, osteopontin, and alkaline phosphatase was markedly increased, but the late marker gene, osteocalcin, was decreased. However, no functional defects were found in osteoclasts. In summary, Osx inactivation in growing bones delayed osteoblast maturation, causing an accumulation of immature osteoblasts and reducing osteoblast function for bone formation, without apparent defects in bone resorption. These findings suggest a significant role of Osx in positively regulating osteoblast differentiation and bone formation in adult bone.  相似文献   

3.
4.
Runx family proteins, Runx1, Runx2, and Runx3, play important roles in skeletal development. Runx2 is required for osteoblast differentiation and chondrocyte maturation, and haplodeficiency of RUNX2 causes cleidocranial dysplasia, which is characterized by open fontanelles and sutures and hypoplastic clavicles. Cbfb forms a heterodimer with Runx family proteins and enhances their DNA‐binding capacity. Cbfb‐deficient (Cbfb?/?) mice die at midgestation because of the lack of fetal liver hematopoiesis. We previously reported that the partial rescue of hematopoiesis in Cbfb?/? mice revealed the requirement of Cbfb in skeletal development. However, the precise functions of Cbfb in skeletal development still remain to be clarified. We deleted Cbfb in mesenchymal cells giving rise to both chondrocyte and osteoblast lineages by mating Cbfbfl/fl mice with Dermo1 Cre knock‐in mice. Cbfbfl/fl/Cre mice showed dwarfism, both intramembranous and endochondral ossifications were retarded, and chondrocyte maturation and proliferation and osteoblast differentiation were inhibited. The differentiation of chondrocytes and osteoblasts were severely inhibited in vitro, and the reporter activities of Ihh, Col10a1, and Bglap2 promoter constructs were reduced in Cbfbfl/fl/Cre chondrocytes or osteoblasts. The proteins of Runx1, Runx2, and Runx3 were reduced in the cartilaginous limb skeletons and calvariae of Cbfbfl/fl/Cre embryos compared with the respective protein in the respective tissue of Cbfbfl/fl embryos at E15.5, although the reduction of Runx2 protein in calvariae was much milder than that in cartilaginous limb skeletons. All of the Runx family proteins were severely reduced in Cbfbfl/fl/Cre primary osteoblasts, and Runx2 protein was less stable in Cbfbfl/fl/Cre osteoblasts than Cbfbfl/fl osteoblasts. These findings indicate that Cbfb is required for skeletal development by regulating chondrocyte differentiation and proliferation and osteoblast differentiation; that Cbfb plays an important role in the stabilization of Runx family proteins; and that Runx2 protein stability is less dependent on Cbfb in calvariae than in cartilaginous limb skeletons. © 2014 American Society for Bone and Mineral Research.  相似文献   

5.
6.
Synthesis of cartilage by chondrocytes is an obligatory step for endochondral ossification. Global deletion of the Runx2 gene results in complete failure of the ossification process, but the underlying cellular and molecular mechanisms are not fully known. Here, we elucidated Runx2 regulatory control distinctive to chondrocyte and cartilage tissue by generating Runx2 exon 8 floxed mice. Deletion of Runx2 gene in chondrocytes caused failure of endochondral ossification and lethality at birth. The limbs of Runx2ΔE8/ΔE8 mice were devoid of mature chondrocytes, vasculature, and marrow. We demonstrate that the C‐terminus of Runx2 drives its biological activity. Importantly, nuclear import and DNA binding functions of Runx2 are insufficient for chondrogenesis. Molecular studies revealed that despite normal levels of Sox9 and PTHrP, chondrocyte differentiation and cartilage growth are disrupted in Runx2ΔE8/ΔE8 mice. Loss of Runx2 in chondrocytes also impaired osteoprotegerin‐receptor activator of NF‐κB ligand (OPG‐RANKL) signaling and chondroclast development. Dwarfism observed in Runx2 mutants was associated with the near absence of proliferative zone in the growth plates. Finally, we show Runx2 directly regulates a unique set of cell cycle genes, Gpr132, Sfn, c‐Myb, and Cyclin A1, to control proliferative capacity of chondrocyte. Thus, Runx2 is obligatory for both proliferation and differentiation of chondrocytes. © 2014 American Society for Bone and Mineral Research.  相似文献   

7.
Transforming growth factor (TGF)‐β signaling plays critical roles during skeletal development and its excessive signaling causes genetic diseases of connective tissues including Marfan syndrome and acromelic dysplasia. However, the mechanisms underlying prevention of excessive TGF‐β signaling in skeletogenesis remain unclear. We previously reported that Dullard/Ctdnep1 encoding a small phosphatase is required for nephron maintenance after birth through suppression of bone morphogenetic protein (BMP) signaling. Unexpectedly, we found that Dullard is involved in suppression of TGF‐β signaling during endochondral ossification. Conditional Dullard‐deficient mice in the limb and sternum mesenchyme by Prx1‐Cre displayed the impaired growth and ossification of skeletal elements leading to postnatal lethality. Dullard was expressed in early cartilage condensations and later in growth plate chondrocytes. The tibia growth plate of newborn Dullard mutant mice showed reduction of the proliferative and hypertrophic chondrocyte layers. The sternum showed deformity of cartilage primordia and delayed hypertrophy. Micromass culture experiments revealed that Dullard deficiency enhanced early cartilage condensation and differentiation, but suppressed mineralized hypertrophic chondrocyte differentiation, which was reversed by treatment with TGF‐β type I receptor kinase blocker LY‐364947. Dullard deficiency induced upregulation of protein levels of both phospho‐Smad2/3 and total Smad2/3 in micromass cultures without increase of Smad2/3 mRNA levels, suggesting that Dullard may affect Smad2/3 protein stability. The phospho‐Smad2/3 level was also upregulated in perichondrium and hypertrophic chondrocytes in Dullard‐deficient embryos. Response to TGF‐β signaling was enhanced in Dullard‐deficient primary chondrocyte cultures at late, but not early, time point. Moreover, perinatal administration of LY‐364947 ameliorated the sternum deformity in vivo. Thus, we identified Dullard as a new negative regulator of TGF‐β signaling in endochondral ossification. © 2014 American Society for Bone and Mineral Research.  相似文献   

8.
Connexin43 (Cx43) plays an important role in osteoblastic differentiation in vitro, and bone formation in vivo. Mice with osteoblast/osteocyte‐specific loss of Cx43 display decreased gap junctional intercellular communication (GJIC), bone density, and cortical thickness. To determine the role of Cx43 in fracture healing, a closed femur fracture was induced in Osteocalcin‐Cre+; Cx43flox/flox (Cx43cKO) and Cre‐; Cx43flox/flox (WT) mice. We tested the hypothesis that loss of Cx43 results in decreased bone formation and impaired healing following fracture. Here, we show that osteoblast and osteocyte‐specific deletion of Cx43 results in decreased bone formation, bone remodeling, and mechanical properties during fracture healing. Cx43cKO mice display decreased bone volume, total volume, and fewer TRAP+ osteoclasts. Furthermore, loss of Cx43 in mature osteoblasts and osteocytes results in a significant decrease in torsional rigidity between 21 and 35 days post‐fracture, compared to WT mice. These studies identify a novel role for the gap junction protein Cx43 during fracture healing, suggesting that loss of Cx43 can result in both decreased bone formation and bone resorption. Therefore, enhancing Cx43 expression or GJIC may provide a novel means to enhance bone formation during fracture healing. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31:147–154, 2012  相似文献   

9.
Neurofibromatosis type 1 (NF1) is a common genetic condition caused by mutations in the NF1 gene. Patients often suffer from tissue‐specific lesions associated with local double‐inactivation of NF1. In this study, we generated a novel fracture model to investigate the mechanism underlying congenital pseudarthrosis of the tibia (CPT) associated with NF1. We used a Cre‐expressing adenovirus (AdCre) to inactivate Nf1 in vitro in cultured osteoprogenitors and osteoblasts, and in vivo in the fracture callus of Nf1flox/flox and Nf1flox/? mice. The effects of the presence of Nf1null cells were extensively examined. Cultured Nf1null‐committed osteoprogenitors from neonatal calvaria failed to differentiate and express mature osteoblastic markers, even with recombinant bone morphogenetic protein‐2 (rhBMP‐2) treatment. Similarly, Nf1null‐inducible osteoprogenitors obtained from Nf1 mouse muscle were also unresponsive to rhBMP‐2. In both closed and open fracture models in Nf1flox/flox and Nf1flox/? mice, local AdCre injection significantly impaired bone healing, with fracture union being <50% that of wild type controls. No significant difference was seen between Nf1flox/flox and Nf1flox/? mice. Histological analyses showed invasion of the Nf1null fractures by fibrous and highly proliferative tissue. Mean amounts of fibrous tissue were increased upward of 10‐fold in Nf1null fractures and bromodeoxyuridine (BrdU) staining in closed fractures showed increased numbers of proliferating cells. In Nf1null fractures, tartrate‐resistant acid phosphatase–positive (TRAP+) cells were frequently observed within the fibrous tissue, not lining a bone surface. In summary, we report that local Nf1 deletion in a fracture callus is sufficient to impair bony union and recapitulate histological features of clinical CPT. Cell culture findings support the concept that Nf1 double inactivation impairs early osteoblastic differentiation. This model provides valuable insight into the pathobiology of the disease, and will be helpful for trialing therapeutic compounds. © 2012 American Society for Bone and Mineral Research  相似文献   

10.
11.
Dysregulated transforming growth factor beta (TGF‐β) signaling is associated with a spectrum of osseous defects as seen in Loeys‐Dietz syndrome, Marfan syndrome, and Camurati‐Engelmann disease. Intriguingly, neurofibromatosis type 1 (NF1) patients exhibit many of these characteristic skeletal features, including kyphoscoliosis, osteoporosis, tibial dysplasia, and pseudarthrosis; however, the molecular mechanisms mediating these phenotypes remain unclear. Here, we provide genetic and pharmacologic evidence that hyperactive TGF‐β1 signaling pivotally underpins osseous defects in Nf1flox/?;Col2.3Cre mice, a model which closely recapitulates the skeletal abnormalities found in the human disease. Compared to controls, we show that serum TGF‐β1 levels are fivefold to sixfold increased both in Nf1flox/?;Col2.3Cre mice and in a cohort of NF1 patients. Nf1‐deficient osteoblasts, the principal source of TGF‐β1 in bone, overexpress TGF‐β1 in a gene dosage–dependent fashion. Moreover, Nf1‐deficient osteoblasts and osteoclasts are hyperresponsive to TGF‐β1 stimulation, potentiating osteoclast bone resorptive activity while inhibiting osteoblast differentiation. These cellular phenotypes are further accompanied by p21‐Ras–dependent hyperactivation of the canonical TGF‐β1–Smad pathway. Reexpression of the human, full‐length neurofibromin guanosine triphosphatase (GTPase)‐activating protein (GAP)‐related domain (NF1 GRD) in primary Nf1‐deficient osteoblast progenitors, attenuated TGF‐β1 expression levels and reduced Smad phosphorylation in response to TGF‐β1 stimulation. As an in vivo proof of principle, we demonstrate that administration of the TGF‐β receptor 1 (TβRI) kinase inhibitor, SD‐208, can rescue bone mass deficits and prevent tibial fracture nonunion in Nf1flox/?;Col2.3Cre mice. In sum, these data demonstrate a pivotal role for hyperactive TGF‐β1 signaling in the pathogenesis of NF1‐associated osteoporosis and pseudarthrosis, thus implicating the TGF‐β signaling pathway as a potential therapeutic target in the treatment of NF1 osseous defects that are refractory to current therapies. © 2013 American Society for Bone and Mineral Research.  相似文献   

12.
Parathyroid hormone–related protein (PTHrP, gene name Pthlh) is a pleiotropic regulator of tissue homeostasis. In bone, Dmp1Cre-targeted PTHrP deletion in osteocytes causes osteopenia and impaired cortical strength. We report here that this outcome depends on parental genotype. In contrast to our previous report using mice bred from heterozygous (flox/wild type) Dmp1Cre.Pthlhf/w parents, adult (16-week-old and 26-week-old) flox/flox (f/f) Dmp1Cre.Pthlhf/f mice from homozygous parents (Dmp1Cre.Pthlhf/f(hom)) have stronger bones, with 40% more trabecular bone mass and 30% greater femoral width than controls. This greater bone size was observed in Dmp1Cre.Pthlhf/f(hom) mice as early as 12 days of age, when greater bone width was also found in male and female Dmp1Cre.Pthlhf/f(hom) mice compared to controls, but not in gene-matched mice from heterozygous parents. This suggested a maternal influence on skeletal size prior to weaning. Although Dmp1Cre has previously been reported to cause gene recombination in mammary gland, milk PTHrP protein levels were normal. The wide-bone phenotype was also noted in utero: Dmp1Cre.Pthlhf/f(hom) embryonic femurs were more mineralized and wider than controls. Closer examination revealed that Dmp1Cre caused PTHrP recombination in placenta, and in the maternal-derived decidual layer that resides between the placenta and the uterus. Decidua from mothers of Dmp1Cre.Pthlhf/f(hom) mice also exhibited lower PTHrP levels by immunohistochemistry and were smaller than controls. We conclude that Dmp1Cre leads to gene recombination in decidua, and that decidual PTHrP might, through an influence on decidual cells, limit embryonic bone radial growth. This suggests a maternal-derived developmental origin of adult bone strength. © 2021 American Society for Bone and Mineral Research (ASBMR).  相似文献   

13.
In men, androgens are critical for the acquisition and maintenance of bone mass in both the cortical and cancellous bone compartment. Male mice with targeted deletion of the androgen receptor (AR) in mature osteoblasts or osteocytes have lower cancellous bone mass, but no cortical bone phenotype. We have investigated the possibility that the effects of androgens on the cortical compartment result from AR signaling in osteoprogenitors or cells of the osteoclast lineage; or via estrogen receptor alpha (ERα) signaling in either or both of these two cell types upon conversion of testosterone to estradiol. To this end, we generated mice with targeted deletion of an AR or an ERα allele in the mesenchymal (ARf/y;Prx1‐Cre or ERαf/f;Osx1‐Cre) or myeloid cell lineage (ARf/y;LysM‐Cre or ERαf/f;LysM‐Cre) and their descendants. Male ARf/y;Prx1‐Cre mice exhibited decreased bone volume and trabecular number, and increased osteoclast number in the cancellous compartment. Moreover, they did not undergo the loss of cancellous bone volume and trabecular number caused by orchidectomy (ORX) in their littermate controls. In contrast, ARf/y;LysM‐Cre, ERαf/f;Osx1‐Cre, or ERαf/f;LysM‐Cre mice had no cancellous bone phenotype at baseline and lost the same amount of cancellous bone as their controls following ORX. Most unexpectedly, adult males of all four models had no discernible cortical bone phenotype at baseline, and lost the same amount of cortical bone as their littermate controls after ORX. Recapitulation of the effects of ORX by AR deletion only in the ARf/y;Prx1‐Cre mice indicates that the effects of androgens on cancellous bone result from AR signaling in osteoblasts—not on osteoclasts or via aromatization. The effects of androgens on cortical bone mass, on the other hand, do not require AR or ERα signaling in any cell type across the osteoblast or osteoclast differentiation lineage. Therefore, androgens must exert their effects indirectly by actions on some other cell type(s) or tissue(s). © 2015 American Society for Bone and Mineral Research.  相似文献   

14.
To study the role of the Pten tumor suppressor in skeletogenesis, we generated mice lacking this key phosphatidylinositol 3'-kinase pathway regulator in their osteo-chondroprogenitors. A phenotype of growth plate dysfunction and skeletal overgrowth was observed. INTRODUCTION: Skeletogenesis is a complex process relying on a variety of ligands that activate a range of intracellular signal transduction pathways. Although many of these stimuli are known to activate phosphatidylinositol 3'-kinase (PI3K), the function of this pathway during cartilage development remains nebulous. To study the role of PI3K during skeletogenesis, we used mice deficient in a negative regulator of PI3K signaling, the tumor suppressor, Pten. MATERIALS AND METHODS: Pten gene deletion in osteo-chondrodroprogenitors was obtained by interbreeding mice with loxP-flanked Pten exons with mice expressing the Cre recombinase under the control of the type II collagen gene promoter (Pten(flox/flox):Col2a1Cre mice). Phenotypic analyses included microcomputed tomography and immunohistochemistry techniques. RESULTS: MicroCT revealed that Pten(flox/flox):Col2a1Cre mice exhibited both increased skeletal size, particularly of vertebrae, and massive trabeculation accompanied by increased cortical thickness. Primary spongiosa development and perichondrial bone collar formation were prominent in Pten(flox/flox):Col2a1Cre mice, and long bone growth plates were disorganized and showed both matrix overproduction and evidence of accelerated hypertrophic differentiation (indicated by an altered pattern of type X collagen and alkaline phosphatase expression). Consistent with increased PI3K signaling, Pten-deficient chondrocytes showed increased phospho-PKB/Akt and phospho-S6 immunostaining, reflective of increased mTOR and PDK1 activity. Interestingly, no significant change in growth plate proliferation was seen in Pten-deficient mice, and growth plate fusion was found at 6 months. CONCLUSIONS: By virtue of its ability to modulate a key signal transduction pathway responsible for integrating multiple stimuli, Pten represents an important regulator of both skeletal size and bone architecture.  相似文献   

15.
16.
Mice lose 20% to 25% of trabecular bone mineral content (BMC) during lactation and restore it after weaning through unknown mechanisms. We found that tibial Pthrp mRNA expression was upregulated fivefold by 7 days after weaning versus end of lactation in wild‐type (WT) mice. To determine whether parathyroid hormone–related protein (PTHrP) stimulates bone formation after weaning, we studied a conditional knockout in which PTHrP is deleted from preosteoblasts and osteoblasts by collagen I promoter–driven Cre (CreColI). These mice are osteopenic as adults but have normal serum calcium, calcitriol, and parathyroid hormone (PTH). Pairs of Pthrpflox/flox;CreColI (null) and WT;CreColI (WT) females were mated and studied through pregnancy, lactation, and 3 weeks of postweaning recovery. By end of lactation, both genotypes lost lumbar spine BMC: WT declined by 20.6% ± 3.3%, and null decreased by 22.5% ± 3.5% (p < .0001 versus baseline; p = NS between genotypes). During postweaning recovery, both restored BMC to baseline: WT to –3.6% ± 3.7% and null to 0.3% ± 3.7% (p = NS versus baseline or between genotypes). Similar loss and full recovery of BMC were seen at the whole body and hind limb. Histomorphometry confirmed that nulls had lower bone mass at baseline and that this was equal to the value achieved after weaning. Osteocalcin, propeptide of type 1 collagen (P1NP), and deoxypyridinoline increased equally during recovery in WT and null mice; PTH decreased and calcitriol increased equally; serum calcium was unchanged. Urine calcium increased during recovery but remained no different between genotypes. Although osteoblast‐derived PTHrP is required to maintain adult bone mass and Pthrp mRNA upregulates in bone after weaning, it is not required for recovery of bone mass after lactation. The factors that stimulate postweaning bone formation remain unknown. © 2011 American Society for Bone and Mineral Research.  相似文献   

17.
18.
CXC chemokine receptor 4 (CXCR4) is a specific receptor for stromal‐derived‐factor 1 (SDF‐1). SDF‐1/CXCR4 interaction is reported to play an important role in vascular development. On the other hand, the therapeutic potential of endothelial progenitor cells (EPCs) in fracture healing has been demonstrated with mechanistic insight of vasculogenesis/angiogenesis and osteogenesis enhancement at sites of fracture. The purpose of this study was to investigate the influence of the SDF‐1/CXCR4 pathway in Tie2‐lineage cells (including EPCs) in bone formation. We created CXCR4 gene conditional knockout mice using the Cre/loxP system and set two groups of mice: Tie2‐CreER CXCR4 knockout mice (CXCR4?/?) and wild‐type mice (WT). We report here that in vitro, EPCs derived from of CXCR4?/? mouse bone marrow demonstrated severe reduction of migration activity and EPC colony‐forming activity when compared with those derived from WT mouse bone marrow. In vivo, radiological and morphological examinations showed fracture healing delayed in the CXCR4?/? group and the relative callus area at weeks 2 and 3 was significantly smaller in CXCR4?/? group mice. Quantitative analysis of capillary density at perifracture sites also showed a significant decrease in the CXCR4?/? group. Especially, CXCR4?/?group mice demonstrated significant early reduction of blood flow recovery at fracture sites compared with the WT group in laser Doppler perfusion imaging analysis. Real‐time RT‐PCR analysis showed that the gene expressions of angiogenic markers (CD31, VE‐cadherin, vascular endothelial growth factor [VEGF]) and osteogenic markers (osteocalcin, collagen 1A1, bone morphogenetic protein 2 [BMP2]) were lower in the CXCR4?/? group. In the gain‐of‐function study, the fracture in the SDF‐1 intraperitoneally injected WT group healed significantly faster with enough callus formation compared with the SDF‐1 injected CXCR4?/? group. We demonstrated that an EPC SDF‐1/CXCR4 axis plays an important role in bone fracture healing using Tie2‐CreER CXCR4 conditional knockout mice. © 2014 American Society for Bone and Mineral Research.  相似文献   

19.
20.
Ectopic expression of Smurf2 in chondrocytes and perichondrial cells accelerated endochondral ossification by stimulating chondrocyte maturation and osteoblast development through upregulation of β‐catenin in Col2a1‐Smurf2 embryos. The mechanism underlying Smurf2‐mediated morphological changes during embryonic development may provide new mechanistic insights and potential targets for prevention and treatment of human osteoarthritis. Introduction : Our recent finding that adult Col2a1‐Smurf2 mice have an osteoarthritis‐like phenotype in knee joints prompted us to examine the role of Smurf2 in the regulation of chondrocyte maturation and osteoblast differentiation during embryonic endochondral ossification. Materials and Methods : We analyzed gene expression and morphological changes in developing limbs by immunofluorescence, immunohistochemistry, Western blot, skeletal preparation, and histology. A series of markers for chondrocyte maturation and osteoblast differentiation in developing limbs were examined by in situ hybridization. Results : Ectopic overexpression of Smurf2 driven by the Col2a1 promoter was detected in chondrocytes and in the perichondrium/periosteum of 16.5 dpc transgenic limbs. Ectopic Smurf2 expression in cells of the chondrogenic lineage inhibited chondrocyte differentiation and stimulated maturation; ectopic Smurf2 in cells of the osteoblastic lineage stimulated osteoblast differentiation. Mechanistically, this could be caused by a dramatic increase in the expression of β‐catenin protein levels in the chondrocytes and perichondrial/periosteal cells of the Col2a1‐Smurf2 limbs. Conclusions : Ectopic expression of Smurf2 driven by the Col2a1 promoter accelerated the process of endochondral ossification including chondrocyte maturation and osteoblast differentiation through upregulation of β‐catenin, suggesting a possible mechanism for development of osteoarthritis seen in these mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号