首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteogenesis imperfecta (OI) is typically caused by mutations in type 1 collagen genes, but in recent years new recessive and dominant forms caused by mutations in a plethora of different genes have been characterized. OI type V is a dominant form caused by the recurrent (c.‐14C > T) mutation in the 5'UTR of the IFITM5 gene. The mutation adds five residues to the N‐terminus of the IFITM5, but the pathophysiology of the disease remains to be elucidated. Typical clinical features present in the majority of OI type V patients include interosseous membrane calcification between the radius and ulna and between the tibia and fibula, radial head dislocation, and significant hyperplastic callus formation at the site of fractures. We report a 5‐year‐old child with clinical features of OI type III or severe OI type IV (characteristic facies, gray sclerae, typical fractures) and absence of classical features of OI type V with a de novo recurrent IFITM5 mutation (c.‐14C > T), now typical of OI type V. This highlights the variability of OI caused by IFITM5 mutations and suggests screening for mutations in this gene in most cases of OI where type 1 collagen mutations are absent. © 2013 American Society for Bone and Mineral Research.  相似文献   

2.
Osteogenesis imperfecta (OI) type V is characterized by increased bone fragility, long bone deformities, hyperplastic callus formation, and calcification of interosseous membranes. It is caused by a recurrent mutation in the 5' UTR of the IFITM5 gene (c.‐14C > T). This mutation introduces an alternative start codon, adding 5 amino acid residues to the N‐terminus of the protein. The mechanism whereby this novel IFITM5 protein causes OI type V is yet to be defined. To address this, we created transgenic mice expressing either the wild‐type or the OI type V mutant IFITM5 under the control of an osteoblast‐specific Col1a1 2.3‐kb promoter. These mutant IFITM5 transgenic mice exhibited perinatal lethality, whereas wild‐type IFITM5 transgenic mice showed normal growth and development. Skeletal preparations and radiographs performed on E15.5 and E18.5 OI type V transgenic embryos revealed delayed/abnormal mineralization and skeletal defects, including abnormal rib cage formation, long bone deformities, and fractures. Primary osteoblast cultures, derived from mutant mice calvaria at E18.5, showed decreased mineralization by Alizarin red staining, and RNA isolated from calvaria showed reduced expression of osteoblast differentiation markers such as Osteocalcin, compared with nontransgenic littermates and wild‐type mice calvaria, consistent with the in vivo phenotype. Importantly, overexpression of wild‐type Ifitm5 did not manifest a significant bone phenotype. Collectively, our results suggest that expression of mutant IFITM5 causes abnormal skeletal development, low bone mass, and abnormal osteoblast differentiation. Given that neither overexpression of the wild‐type Ifitm5, as shown in our model, nor knock‐out of Ifitm5, as previously published, showed significant bone abnormalities, we conclude that the IFITM5 mutation in OI type V acts in a neomorphic fashion. © 2014 American Society for Bone and Mineral Research.  相似文献   

3.
Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder characterized by a wide range of skeletal symptoms. Most patients have dominantly inherited or de novo mutations in COL1A1 or COL1A2. Up to 5% of patients have OI type V, characterized by hyperplastic callus formation after fractures, calcification of the interosseous membrane of the forearm, and a mesh‐like lamellation pattern observed in bone histology. Recently, a heterozygous mutation in the 5′‐untranslated region (UTR) of IFITM5 (c.–14C > T) was identified as the underlying cause of OI type V, and only this specific mutation was subsequently identified in all patient cohorts with this OI subtype. We now present a case of a heterozygous mutation within the coding region of IFITM5 (c.119C > T; p.S40L). The mutation occurred de novo in the patient and resulted in severe OI with prenatal onset and extreme short stature. At the age of 19 months, the typical clinical hallmarks of OI type V were not present. Our finding has important consequences for the genetic “work‐up” of patients suspected to have OI, both in prenatal and in postnatal settings: The entire gene—not only the 5′‐UTR harboring the “classical” OI type V mutation—has to be analyzed to exclude a causal role of IFITM5. We propose that this should be part of the initial diagnostic steps for genetic laboratories performing SANGER sequencing in OI patients. © 2014 American Society for Bone and Mineral Research.  相似文献   

4.
In contrast to “classical” forms of osteogenesis imperfecta (OI) types I to IV, caused by a mutation in COL1A1/A2, OI type V is due to a gain‐of‐function mutation in the IFITM5 gene, encoding the interferon‐induced transmembrane protein 5, or bone‐restricted interferon‐inducible transmembrane (IFITM)‐like protein (BRIL). Its phenotype distinctly differs from OI types I to IV by absence of blue sclerae and dentinogenesis imperfecta, by the occurrence of ossification disorders such as hyperplastic callus and forearm interosseous membrane ossification. Little is known about the impact of the mutation on bone tissue/material level in untreated and bisphosphonate‐treated patients. Therefore, investigations of transiliac bone biopsy samples from a cohort of OI type V children (n = 15, 8.7 ± 4 years old) untreated at baseline and a subset (n = 8) after pamidronate treatment (2.6 years in average) were performed. Quantitative backscattered electron imaging (qBEI) was used to determine bone mineralization density distribution (BMDD) as well as osteocyte lacunar density. The BMDD of type V OI bone was distinctly shifted toward a higher degree of mineralization. The most frequently occurring calcium concentration (CaPeak) in cortical (Ct) and cancellous (Cn) bone was markedly increased (+11.5%, +10.4%, respectively, p < 0.0001) compared to healthy reference values. Treatment with pamidronate resulted in only a slight enhancement of mineralization. The osteocyte lacunar density derived from sectioned bone area was elevated in OI type V Ct and Cn bone (+171%, p < 0.0001; +183.3%, p < 0.01; respectively) versus controls. The high osteocyte density was associated with an overall immature primary bone structure (“mesh‐like”) as visualized by polarized light microscopy. In summary, the bone material from OI type V patients is hypermineralized, similar to other forms of OI. The elevated osteocyte lacunar density in connection with lack of regular bone lamellation points to an exuberant primary bone formation and an alteration of the bone remodeling process in OI type V. © 2017 American Society for Bone and Mineral Research.  相似文献   

5.
Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that has been shown to be a positive regulatory factor for mineralization in vitro. However, Ifitm5 knockout mice do not exhibit serious bone abnormalities, and thus the function of IFITM5 in vivo remains unclear. Recently, a single point mutation (c.-14C>T) in the 5′ untranslated region of IFITM5 was identified in patients with osteogenesis imperfecta type V (OI-V). Furthermore, a single point mutation (c.119C>T) in the coding region of IFITM5 was identified in OI patients with more severe symptoms than patients with OI-V. Although IFITM5 is not directly involved in the formation of bone in vivo, the reason why IFITM5 mutations cause OI remains a major mystery. In this review, the current state of knowledge of OI pathological mechanisms due to IFITM5 mutations will be reviewed.  相似文献   

6.
Osteogenesis imperfecta (OI) types V and VI are caused, respectively, by a unique dominant mutation in IFITM5, encoding BRIL, a transmembrane ifitm‐like protein most strongly expressed in the skeletal system, and recessive null mutations in SERPINF1, encoding pigment epithelium‐derived factor (PEDF). We identified a 25‐year‐old woman with severe OI whose dermal fibroblasts and cultured osteoblasts displayed minimal secretion of PEDF, but whose serum PEDF level was in the normal range. SERPINF1 sequences were normal despite bone histomorphometry consistent with type VI OI and elevated childhood serum alkaline phosphatase. We performed exome sequencing on the proband, both parents, and an unaffected sibling. IFITM5 emerged as the candidate gene from bioinformatics analysis, and was corroborated by membership in a murine bone co‐expression network module containing all currently known OI genes. The de novo IFITM5 mutation was confirmed in one allele of the proband, resulting in a p.S40L substitution in the intracellular domain of BRIL but was absent in unaffected family members. IFITM5 expression was normal in proband fibroblasts and osteoblasts, and BRIL protein level was similar to control in differentiated proband osteoblasts on Western blot and in permeabilized mutant osteoblasts by microscopy. In contrast, SERPINF1 expression was decreased in proband osteoblasts; PEDF was barely detectable in conditioned media of proband cells. Expression and secretion of type I collagen was similarly decreased in proband osteoblasts; the expression pattern of several osteoblast markers largely overlapped reported values from cells with a primary PEDF defect. In contrast, osteoblasts from a typical case of type V OI, with an activating mutation at the 5'‐terminus of BRIL, have increased SERPINF1 expression and PEDF secretion during osteoblast differentiation. Together, these data suggest that BRIL and PEDF have a relationship that connects the genes for types V and VI OI and their roles in bone mineralization. © 2014 American Society for Bone and Mineral Research.  相似文献   

7.
Type V osteogenesis imperfecta: a new form of brittle bone disease.   总被引:11,自引:0,他引:11  
Osteogenesis imperfecta (OI) is commonly subdivided into four clinical types. Among these, OI type IV clearly represents a heterogeneous group of disorders. Here we describe 7 OI patients (3 girls), who would typically be classified as having OI type IV but who can be distinguished from other type IV patients. We propose to call this disease entity OI type V. These children had a history of moderate to severe increased fragility of long bones and vertebral bodies. Four patients had experienced at least one episode of hyperplastic callus formation. The family history was positive for OI in 3 patients, with an autosomal dominant pattern of inheritance. All type V patients had limitations in the range of pronation/supination in one or both forearms, associated with a radiologically apparent calcification of the interosseous membrane. Three patients had anterior dislocation of the radial head. A radiodense metaphyseal band immediately adjacent to the growth plate was a constant feature in growing patients. Lumbar spine bone mineral density was low and similar to age-matched patients with OI type IV. None of the type V patients presented blue sclerae or dentinogenesis imperfecta, but ligamentous laxity was similar to that in patients with OI type IV. Levels of biochemical markers of bone metabolism generally were within the reference range, but serum alkaline phosphatase and urinary collagen type I N-telopeptide excretion increased markedly during periods of active hyperplastic callus formation. Qualitative histology of iliac biopsy specimens showed that lamellae were arranged in an irregular fashion or had a meshlike appearance. Quantitative histomorphometry revealed decreased amounts of cortical and cancellous bone, like in OI type IV. However, in contrast to OI type IV, parameters that reflect remodeling activation on cancellous bone were mostly normal in OI type V, while parameters reflecting bone formation processes in individual remodeling sites were clearly decreased. Mutation screening of the coding regions and exon/intron boundaries of both collagen type I genes did not reveal any mutations affecting glycine codons or splice sites. In conclusion, OI type V is a new form of autosomal dominant OI, which does not appear to be associated with collagen type I mutations. The genetic defect underlying this disease remains to be elucidated.  相似文献   

8.
Osteogenesis imperfecta (OI) is a heritable form of bone fragility typically associated with a dominant COL1A1 or COL1A2 mutation. Variable phenotype for OI patients with identical collagen mutations is well established, but phenotype variability is described using the qualitative Sillence classification. Patterning a new OI mouse model on a specific collagen mutation therefore has been hindered by the absence of an appropriate kindred with extensive quantitative phenotype data. We benefited from the large sibships of the Old Order Amish (OOA) to define a wide range of OI phenotypes in 64 individuals with the identical COL1A2 mutation. Stratification of carrier spine (L1–4) areal bone mineral density (aBMD) Z‐scores demonstrated that 73% had moderate to severe disease (less than ?2), 23% had mild disease (?1 to ?2), and 4% were in the unaffected range (greater than ?1). A line of knock‐in mice was patterned on the OOA mutation. Bone phenotype was evaluated in four F1 lines of knock‐in mice that each shared approximately 50% of their genetic background. Consistent with the human pedigree, these mice had reduced body mass, aBMD, and bone strength. Whole‐bone fracture susceptibility was influenced by individual genomic factors that were reflected in size, shape, and possibly bone metabolic regulation. The results indicate that the G610C OI (Amish) knock‐in mouse is a novel translational model to identify modifying genes that influence phenotype and for testing potential therapies for OI. © 2010 American Society for Bone and Mineral Research  相似文献   

9.
Interferon-induced transmembrane protein 5 or bone-restricted ifitm-like gene (Bril) was first identified as a bone gene in 2008, although no in vivo role was identified at that time. A role in human bone has now been demonstrated with a number of recent studies identifying a single point mutation in Bril as the causative mutation in osteogenesis imperfecta type V (OI type V). Such a discovery suggests a key role for Bril in skeletal regulation, and the completely novel nature of the gene raises the possibility of a new regulatory pathway in bone. Furthermore, the phenotype of OI type V has unique and quite divergent features compared with other forms of OI involving defects in collagen biology. Currently it appears that the underlying genetic defect in OI type V may be unrelated to collagen regulation, which also raises interesting questions about the classification of this form of OI. This review will discuss current knowledge of OI type V, the function of Bril, and the implications of this recent discovery.  相似文献   

10.
11.
Hyperplastic callus formation was assessed in 23 patients with osteogenesis imperfecta type V. Hyperplastic callus mostly affected long bones in the lower extremities and occurred predominantly during phases of rapid growth. INTRODUCTION: Hyperplastic callus (HPC) formation is one of the most conspicuous features of osteogenesis imperfecta (OI) type V, but the natural history of HPC has not been well characterized. MATERIALS AND METHODS: In this retrospective single-center study, we assessed HPC in 23 OI type V patients (9 females and 14 males). RESULTS: Fifteen patients (65%) had HPC at 48 skeletal sites, 30 of which affected the lower limbs. The number of HPC sites per patient ranged from 0 to 7, with an average of 2.6 for men and 1.1 for women (p = 0.047 for this sex difference; t-test). New HPC formation was observed both after fractures and outside of the context of fractures. Only a minority of lower limb fractures (26%) precipitated HPC formation. After an initial enlargement phase, HPC lesions usually stabilized, but could also resolve completely (n = 2) or progress and lead to bone deformation. The most common complication of HPC was a fracture through the lesion (n = 7). Neither pamidronate nor indomethacin seemed to influence the course of HPC. CONCLUSIONS: HPC is a potentially serious complication of OI type V. Given the rarity of the disorder, treatment studies will require multicenter collaborations.  相似文献   

12.

Open image in new window Purpose

The objective of this article is to report a case of type V osteogenesis imperfecta (OI) undergoing posterior instrumented fusion for scoliosis. Type V OI is a moderately severe dysplasia causing primary defects in endochondral bone ossification or mineralisation. It is characterised by hyperplastic callus (HPC) formation, interosseous membrane calcifications, poor bone quality and spinal deformities including scoliosis. Data on the surgical management of spinal deformities in this patient group are lacking.

Case report

A 16-year-old patient with a confirmed diagnosis of type V OI presented with a progressive scoliosis. The patient underwent a T3–L4 posterior instrumented correction and fusion utilising pedicle screws, pedicle hooks and sub-laminar wiring. At 4 months after surgery, the pedicle hooks pulled out and required partial metalwork removal after CT scanning confirmed bony union and no evidence of HPC formation. The patient was successfully discharged with satisfactory correction, confirmed bony union, no neurologic complication and absence of any hyperplastic callus formation.

Conclusion

Type V OI patients requiring surgical intervention for scoliosis correction can safely undergo posterior instrumented fusion using sublaminar wiring and pedicle hook/screw constructs without apparent risk of HPC formation around neural elements. Surgery in this patient group remains challenging due to the associated poor bone quality.

Level of evidence

V.
  相似文献   

13.
The cell surface receptor low‐density lipoprotein receptor‐related protein 5 (LRP5) is a key regulator of bone mass and bone strength. Heterozygous missense mutations in LRP5 cause autosomal dominant high bone mass (HBM) in humans by reducing binding to LRP5 by endogenous inhibitors, such as sclerostin (SOST). Mice heterozygous for a knockin allele (Lrp5p.A214V) that is orthologous to a human HBM‐causing mutation have increased bone mass and strength. Osteogenesis imperfecta (OI) is a skeletal fragility disorder predominantly caused by mutations that affect type I collagen. We tested whether the LRP5 pathway can be used to improve bone properties in animal models of OI. First, we mated Lrp5+/p.A214V mice to Col1a2+/p.G610C mice, which model human type IV OI. We found that Col1a2+/p.G610C;Lrp5+/p.A214V offspring had significantly increased bone mass and strength compared to Col1a2+/p.G610C;Lrp5+/+ littermates. The improved bone properties were not a result of altered mRNA expression of type I collagen or its chaperones, nor were they due to changes in mutant type I collagen secretion. Second, we treated Col1a2+/p.G610C mice with a monoclonal antibody that inhibits sclerostin activity (Scl‐Ab). We found that antibody‐treated mice had significantly increased bone mass and strength compared to vehicle‐treated littermates. These findings indicate increasing bone formation, even without altering bone collagen composition, may benefit patients with OI. © 2014 American Society for Bone and Mineral Research.  相似文献   

14.
《Injury》2019,50(12):2215-2219
BackgroundOsteogenesis imperfecta (OI) is a rare genetic bone disease associated with brittle bones and fractures. Among all known types, OI type I is the most common type and characterized by increased bone fragility, low bone mass, distinctly blue-gray sclera, and susceptibility to conductive hearing loss beginning in adolescence. Mutations in genes encoding type I collagen (COL1A1 and COL1A2) contribute to the main pathogenic mechanism of OI.MethodsSubtle mutation of the COL1A1 gene in the proband was detected by targeted next-generation sequencing (NGS) and confirmed by Sanger sequencing. We then assessed the effect of the mutation on the splicing of the COL1A1 gene by bioinformatics prediction and hybrid minigene splicing assay (HMSA).ResultsA novel splice site mutation c.1821+1 G>C was discovered in the proband by NGS and further confirmed by Sanger sequencing, which was also simultaneously identified from the proband's mother and elder sister. Bioinformatics predicted that this mutation would result in a disappearance of the 5′ donor splice site in intron 26, thereby leading to abnormal splicing and generation of premature stop codon. The follow-up experimental data generated by HMSA was consistent with this prediction.ConclusionOur study identified a novel splice site mutation that caused OI type I in the proband by abnormal splicing and demonstrated that combined applications of NGS, bioinformatics and HMSA are comprehensive and effective methods for diagnosis and aberrant splicing study of OI.  相似文献   

15.
Multiple genes are known to be associated with osteogenesis imperfecta (OI), a phenotypically and genetically heterogenous bone disorder, marked predominantly by low bone mineral density and increased risk of fractures. Recently, mutations affecting MESD, which encodes for a chaperone required for trafficking of the low-density lipoprotein receptors LRP5 and LRP6 in the endoplasmic reticulum, were described to cause autosomal-recessive OI XX in homozygous children. In the present study, whole-exome sequencing of three stillbirths in one family was performed to evaluate the presence of a hereditary disorder. To further characterize the skeletal phenotype, fetal autopsy, bone histology, and quantitative backscattered electron imaging (qBEI) were performed, and the results were compared with those from an age-matched control with regular skeletal phenotype. In each of the affected individuals, compound heterozygous mutations in MESD exon 2 and exon 3 were detected. Based on the skeletal phenotype, which was characterized by multiple intrauterine fractures and severe skeletal deformity, OI XX was diagnosed in these individuals. Histological evaluation of MESD specimens revealed an impaired osseous development with an altered osteocyte morphology and reduced canalicular connectivity. Moreover, analysis of bone mineral density distribution by qBEI indicated an impaired and more heterogeneous matrix mineralization in individuals with MESD mutations than in controls. In contrast to the previously reported phenotypes of individuals with OI XX, the more severe phenotype in the present study is likely explained by a mutation in exon 2, located within the chaperone domain of MESD, that leads to a complete loss of function, which indicates the relevance of MESD in early skeletal development. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..  相似文献   

16.
Osteogenesis imperfecta type VI (OI type VI) has recently be linked to a mutation in the SERPINF1 gene, which encodes pigment epithelium‐derived factor (PEDF), a ubiquitously expressed protein originally described for its neurotrophic and antiangiogenic properties. In this study, we characterized the skeletal phenotype of a mouse with targeted disruption of Pedf. In normal mouse bone, Pedf was localized to osteoblasts and osteocytes. Micro–computed tomography (µCT) and quantitative bone histomorphometry in femurs of mature Pedf null mutants revealed reduced trabecular bone volume and the accumulation of unmineralized bone matrix. Fourier transform infrared microscopy (FTIR) indicated an increased mineral:matrix ratio in mutant bones, which were more brittle than controls. In vitro, osteoblasts from Pedf null mice exhibited enhanced mineral deposition as assessed by Alizarin Red staining and an increased mineral:matrix determined by FTIR analysis of calcified nodules. The findings in this mouse model mimic the principal structural and biochemical features of bone observed in humans with OI type VI and consequently provide a useful model with which to further investigate the role of PEDF in this bone disorder.  相似文献   

17.
Osteogenesis imperfecta (OI) is a primary bone fragility disorder with an estimated prevalence of 1 in 15,000 births. The majority of OI cases are inherited in an autosomal-dominant manner, while 5% to 10% have recessive or X-linked inheritance. Up to now, approximately 5% of OI cases remain without mutation demonstrated, supporting the involvement of other genes in the disease spectrum. By whole-exome sequencing, we identified a homozygous variant (c.2T>C) in CCDC134 gene in three patients from two unrelated families with severe bone fragility that did not respond to bisphosphonate treatment, short stature, and gracile long bones with pseudarthroses but no dentinogenesis imperfecta. CCDC134 encodes a secreted protein widely expressed and implicated in the regulation of some mitogen-activated protein kinases (MAPK) signaling pathway. Western blot and immunofluorescence analyses confirmed the absence of CCDC134 protein in patient cells compared with controls. Furthermore, we demonstrated that CCDC134 mutations are associated with increased Erk1/2 phosphorylation, decreased OPN mRNA and COL1A1 expression and reduced mineralization in patient osteoblasts compared with controls. These data support that CCDC134 is a new gene involved in severe progressive deforming recessive osteogenesis imperfecta (type III). © 2020 American Society for Bone and Mineral Research.  相似文献   

18.
Osteogenesis imperfecta (OI) is a heritable disease of bone in which the hallmark is bone fragility. Usually, the disorder is divided into four groups on clinical grounds. We previously described a group of patients initially classified with OI type IV who had a discrete phenotype including hyperplastic callus formation without evidence of mutations in type I collagen. We called that disease entity OI type V. In this study, we describe another group of 8 patients initially diagnosed with OI type IV who share unique, common characteristics. We propose to name this disorder "OI type VI." Fractures were first documented between 4 and 18 months of age. Patients with OI type VI sustained more frequent fractures than patients with OI type IV. Sclerae were white or faintly blue and dentinogenesis imperfecta was uniformly absent. All patients had vertebral compression fractures. No patients showed radiological signs of rickets. Lumbar spine areal bone mineral density (aBMD) was low and similar to age-matched patients with OI type IV. Serum alkaline phosphatase levels were elevated compared with age-matched patients with type IV OI (409 +/- 145 U/liter vs. 295 +/- 95 U/liter; p < 0.03 by t-test). Other biochemical parameters of bone and mineral metabolism were within the reference range. Mutation screening of the coding regions and exon/intron boundaries of both collagen type I genes did not reveal any mutations, and type I collagen protein analyses were normal. Qualitative histology of iliac crest bone biopsy specimens showed an absence of the birefringent pattern of normal lamellar bone under polarized light, often with a "fish-scale" pattern. Quantitative histomorphometry revealed thin cortices, hyperosteoidosis, and a prolonged mineralization lag time in the presence of a decreased mineral apposition rate. We conclude that type VI OI is a moderate to severe form of brittle bone disease with accumulation of osteoid due to a mineralization defect, in the absence of a disturbance of mineral metabolism. The underlying genetic defect remains to be elucidated.  相似文献   

19.
20.
Whereas the vast majority of osteogenesis imperfecta (OI) is caused by autosomal dominant defects in the genes encoding type I procollagen, mutations in a myriad of genes affecting type I procollagen biosynthesis or bone formation and homeostasis have now been associated with rare autosomal recessive OI forms. Recently, homozygous or compound heterozygous mutations in BMP1, encoding the metalloproteases bone morphogenetic protein‐1 (BMP1) and its longer isoform mammalian Tolloid (mTLD), were identified in 5 children with a severe autosomal recessive form of OI and in 4 individuals with mild to moderate bone fragility. BMP1/mTLD functions as the procollagen carboxy‐(C)‐proteinase for types I to III procollagen but was also suggested to participate in amino‐(N)‐propeptide cleavage of types V and XI procollagens and in proteolytic trimming of other extracellular matrix (ECM) substrates. We report the phenotypic characteristics and natural history of 4 adults with severe, progressive OI characterized by numerous fractures, short stature with rhizomelic shortening, and deformity of the limbs and variable kyphoscoliosis, in whom we identified novel biallelic missense and frameshift mutations in BMP1. We show that BMP1/mTLD‐deficiency in humans not only results in delayed cleavage of the type I procollagen C‐propeptide but also hampers the processing of the small leucine‐rich proteoglycan prodecorin, a regulator of collagen fibrillogenesis. Immunofluorescent staining of types I and V collagen and transmission electron microscopy of the dermis show impaired assembly of heterotypic type I/V collagen fibrils in the ECM. Our study thus highlights the severe and progressive nature of BMP1‐associated OI in adults and broadens insights into the functional consequences of BMP1/mTLD‐deficiency on ECM organization. © 2015 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号