首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bone fractures only when loaded beyond its strength. The purpose of this study was to determine the association of femoral strength, as estimated by finite element (FE) analysis of dual‐energy X‐ray absorptiometry (DXA) scans, with incident hip fracture in comparison to hip bone mineral density (BMD), Fracture Risk Assessment Tool (FRAX), and hip structure analysis (HSA) variables. This prospective case‐cohort study included a random sample of 1941 women and 668 incident hip fracture cases (295 in the random sample) during a mean ± SD follow‐up of 12.8 ± 5.7 years from the Study of Osteoporotic Fractures (n = 7860 community‐dwelling women ≥67 years of age). We analyzed the baseline DXA scans (Hologic 1000) of the hip using a validated plane‐stress, linear‐elastic finite element (FE) model of the proximal femur and estimated the femoral strength during a simulated sideways fall. Cox regression accounting for the case‐cohort design assessed the association of estimated femoral strength with hip fracture. The age–body mass index (BMI)‐adjusted hazard ratio (HR) per SD decrease for estimated strength (2.21; 95% CI, 1.95–2.50) was greater than that for total hip (TH) BMD (1.86; 95% CI, 1.67–2.08; p < 0.05), FN BMD (2.04; 95% CI, 1.79–2.32; p > 0.05), FRAX scores (range, 1.32–1.68; p < 0.0005), and many HSA variables (range, 1.13–2.43; p < 0.005), and the association was still significant (p < 0.05) after further adjustment for hip BMD or FRAX scores. The association of estimated strength with incident hip fracture was strong (Harrell's C index 0.770), significantly better than TH BMD (0.759; p < 0.05) and FRAX scores (0.711–0.743; p < 0.0001), but not FN BMD (0.762; p > 0.05). Similar findings were obtained for intracapsular and extracapsular fractures. In conclusion, the estimated femoral strength from FE analysis of DXA scans is an independent predictor and performs at least as well as FN BMD in predicting incident hip fracture in postmenopausal women. © 2014 American Society for Bone and Mineral Research.  相似文献   

2.
Subjects with inflammatory bowel disease (IBD) are at increased risk for hip and other major osteoporotic fractures. However, previous analyses have not fully accounted for differences in bone mineral density (BMD) and other clinical factors that affect the risk of fracture. The World Health Organization Fracture Risk Assessment tool (FRAX) can be used to predict the 10‐year fracture risk from BMD and clinical risk factors. A population‐based database containing clinical information on all IBD subjects in the province of Manitoba, Canada, was linked with the Manitoba Bone Mineral Density Database, which contains results of all dual X‐ray absorptiometry (DXA) scans in the province. FRAX probabilities were calculated for all subjects aged 50 years or more undergoing baseline DXA testing. Subjects were followed for occurrence of major osteoporotic fractures (MOF; hip, clinical spine, wrist, humerus). Cox proportional hazards models were used to determine whether IBD was independently predictive of MOF or hip fracture. After controlling for FRAX fracture probability computed with BMD, IBD was not associated with a significantly increased risk for MOF (hazard ratio [HR] = 1.12, 95% confidence interval [CI], 0.83–1.55) but was associated with an increased risk for hip fracture (HR = 2.14; 95% CI, 1.26–3.65). The addition of femoral neck T‐score to FRAX probability without knowledge of BMD had a negligible effect on the estimated HRs for IBD, suggesting that IBD mediates any effect on fracture risk independently of femoral neck BMD. After controlling for FRAX probability, subjects with IBD are not at an increased risk for overall MOF, but may be at increased risk of hip fracture. © 2013 American Society for Bone and Mineral Research.  相似文献   

3.
We investigated the associations of 3D geometric measures and volumetric bone mineral density (vBMD) of the proximal femur assessed by quantitative computed tomography (QCT) with hip fracture risk among elderly men. This study was a prospective case‐cohort design nested within the Osteoporotic Fractures in Men Study (MrOS) cohort. QCT scans of 230 men (65 with confirmed hip fractures) were evaluated with Mindways' QCTPRO‐BIT software. Measures that are indicative of bone strength for the femoral neck (FN) and for the trochanteric region (TR) were defined. Bending strength measures were estimated by minimum section modulus, buckling strength by buckling ratio, and a local thinning index (LTI). Integral and trabecular vBMD measures were also derived. Areal BMD (aBMD) of the total proximal femur from dual‐energy X‐ray absorptiometry (DXA) is presented for comparison. Associations of skeletal measures with incident hip fracture were estimated with hazard ratios (HR) per standard deviation and their 95% confidence intervals (CI) from Cox proportional hazard regression models with adjustment for age, body mass index (BMI), site, and aBMD. Men with hip fractures were older than men without fracture (77.1 ± 6.0 years versus 73.3 ± 5.7 years, p < 0.01). Age, BMI, and site‐adjusted HRs were significant for all measures except TR_LTI. Total femural BMD by DXA (HR = 4.9, 95% CI 2.5–9.9) and QCT (HR = 5.5, 95% CI 2.5–11.7) showed the strongest association followed by QCT FN integral vBMD (HR = 3.6, 95% CI 1.8–6.9). In models that additionally included aBMD, FN buckling ratio (HR = 1.9, 95% CI 1.1–3.2) and trabecular vBMD of the TR (HR = 2.0, 95% CI 1.2–3.4) remained associated with hip fracture risk, independent of aBMD. QCT‐derived 3D geometric indices of instability of the proximal femur were significantly associated with incident hip fractures, independent of DXA aBMD. Buckling of the FN is a relevant failure mode not entirely captured by DXA. Further research to study these relationships in women is warranted. © 2016 American Society for Bone and Mineral Research.  相似文献   

4.
A FRAX model for Canada was constructed for prediction of osteoporotic and hip fracture risk using national hip fracture data with and without the use of femoral neck bone mineral density (BMD). Performance of this system was assessed independently in a large clinical cohort of 36,730 women and 2873 men from the Manitoba Bone Density Program database that tracks all clinical dual‐energy X‐ray absorptiometry (DXA) test results for the Province of Manitoba, Canada. Linkage with other provincial health databases allowed for the direct comparison of fracture risk estimates from the Canadian FRAX model with observed fracture rates to 10 years (549 individuals with incident hip fractures and 2543 with incident osteoporotic fractures). The 10‐year Kaplan‐Meier estimate for hip fractures in women was 2.7% [95% confidence interval (CI) 2.1–3.4%] with a predicted value of 2.8% for FRAX with BMD, and in men the observed risk was 3.5% (95% CI 0.8–6.2%) with predicted value of 2.9%. The 10‐year estimate of osteoporotic fracture risk for all women was 12.0% (95% CI 10.8–13.4%) with a predicted value of 11.1% for FRAX with BMD, and in men, the observed risk was 10.7% (95% CI 6.6–14.9%) with a predicted value of 8.4%. Discrepancies were observed within some subgroups but generally were small. Fracture discrimination based on receiver operating characteristic curve analysis was comparable with published meta‐analyses with area under the curve for osteoporotic fracture prediction of 0.694 (95% CI 0.684–0.705) for FRAX with BMD and for hip fractures 0.830 (95% CI 0.815–0.846), both of which were better than FRAX without BMD or BMD alone. Individual risk factors considered by FRAX made significant independent contributions to fracture prediction in one or more of the models. In conclusion, a Canadian FRAX tool calibrated on national hip fracture data generates fracture risk predictions that generally are consistent with observed fracture rates across a wide range of risk categories. © 2010 American Society for Bone and Mineral Research.  相似文献   

5.
The validity of the WHO 10‐yr probability of major osteoporotic fracture model (FRAX) for prediction of vertebral fracture has not been tested. We analyzed how well FRAX for major osteoporotic fractures, with and without femoral neck BMD (FN BMD), predicted the risk of vertebral fracture. We also compared the predictive validity of FRAX, FN BMD, and prevalent vertebral fracture detected by radiographs at baseline alone or in combination to predict future vertebral fracture. We analyzed data from the placebo groups of FIT (3.8‐yr follow‐up, n = 3221) with ORs and areas under receiver operating characteristics (ROC) curves (AUC). FRAX with and without FN BMD predicted incident radiographic vertebral fracture. The AUC was significantly greater for FRAX with FN BMD (AUC = 0.71) than FRAX without FN BMD (AUC = 0.68; p = 0.002). Prevalent vertebral fracture plus age and FN BMD (AUC = 0.76) predicted incident radiographic vertebral fracture as well as a combination of prevalent vertebral fracture and FRAX with FN BMD (AUC = 0.75; p = 0.76). However, baseline vertebral fracture status plus age and FN BMD (AUC = 0.76) predicted incident radiographic vertebral fracture significantly better than FRAX with FN BMD (AUC = 0.71; p = 0.0017). FRAX for major osteoporotic fractures (with and without FN BMD) predicts vertebral fracture. However, once FN BMD and age are known, the eight additional risk factors in FRAX do not significantly improve the prediction of vertebral fracture. A combination of baseline radiographic vertebral fracture, FN BMD, and age is the strongest predictor of future vertebral fracture.  相似文献   

6.
Vertebral strength, as estimated by finite element analysis of computed tomography (CT) scans, has not yet been compared against areal bone mineral density (BMD) by dual‐energy X‐ray absorptiometry (DXA) for prospectively assessing the risk of new clinical vertebral fractures. To do so, we conducted a case‐cohort analysis of 306 men aged 65 years and older, which included 63 men who developed new clinically‐identified vertebral fractures and 243 men who did not, all observed over an average of 6.5 years. Nonlinear finite element analysis was performed on the baseline CT scans, blinded to fracture status, to estimate L1 vertebral compressive strength and a load‐to‐strength ratio. Volumetric BMD by quantitative CT and areal BMD by DXA were also evaluated. We found that, for the risk of new clinical vertebral fracture, the age‐adjusted hazard ratio per standard deviation change for areal BMD (3.2; 95% confidence interval [CI], 2.0–5.2) was significantly lower (p < 0.005) than for strength (7.2; 95% CI, 3.6–14.1), numerically lower than for volumetric BMD (5.7; 95% CI, 3.1–10.3), and similar for the load‐to‐strength ratio (3.0; 95% CI, 2.1–4.3). After also adjusting for race, body mass index (BMI), clinical center, and areal BMD, all these hazard ratios remained highly statistically significant, particularly those for strength (8.5; 95% CI, 3.6–20.1) and volumetric BMD (9.4; 95% CI, 4.1–21.6). The area‐under‐the‐curve for areal BMD (AUC = 0.76) was significantly lower than for strength (AUC = 0.83, p = 0.02), volumetric BMD (AUC = 0.82, p = 0.05), and the load‐to‐strength ratio (AUC = 0.82, p = 0.05). We conclude that, compared to areal BMD by DXA, vertebral compressive strength and volumetric BMD consistently improved vertebral fracture risk assessment in this cohort of elderly men. © 2012 American Society for Bone and Mineral Research.  相似文献   

7.
The WHO Fracture Risk Assessment Tool (FRAX; http://www.shef.ac.uk/FRAX ) estimates the 10‐year probability of major osteoporotic fracture. Clodronate and bazedoxifene reduced nonvertebral and clinical fracture more effectively on a relative scale in women with higher FRAX scores. We used data from the Fracture Intervention Trial (FIT) to evaluate the interaction between FRAX score and treatment with alendronate. We combined the Clinical Fracture (CF) arm and Vertebral Fracture (VF) arm of FIT. The CF and VF arm of FIT randomized 4432 and 2027 women, respectively, to placebo or alendronate for 4 and 3 years, respectively. FRAX risk factors were assessed at baseline. FRAX scores were calculated by WHO. We used Poisson regression models to assess the interaction between alendronate and FRAX score on the risk of nonvertebral, clinical, major osteoporotic, and radiographic vertebral fractures. Overall, alendronate significantly reduced the risk of nonvertebral fracture (incidence rate ratio [IRR] 0.86; 95% confidence interval [CI], 0.75–0.99), but the effect was greater for femoral neck (FN) bone mineral density (BMD) T‐score ≤ ?2.5 (IRR 0.76; 95% CI, 0.62–0.93) than for FN T‐score > ?2.5 (IRR 0.96; 95% CI, 0.80–1.16) (p = 0.02, interaction between alendronate and FN BMD). However, there was no evidence of an interaction between alendronate and FRAX score with FN BMD for risk of nonvertebral fracture (interaction p = 0.61). The absolute benefit of alendronate was greatest among women with highest FRAX scores. Results were similar for clinical fractures, major osteoporotic fractures, and radiographic vertebral fractures and whether or not FRAX scores included FN BMD. Among this cohort of women with low bone mass there was no significant interaction between FRAX score and alendronate for nonvertebral, clinical or major osteoporotic fractures, or radiographic vertebral fractures. These results suggest that the effect of alendronate on a relative scale does not vary by FRAX score. A randomized controlled trial testing the effect of antifracture agents among women with high FRAX score but without osteoporosis is warranted. © 2012 American Society for Bone and Mineral Research.  相似文献   

8.
Osteoporosis is often underdiagnosed and undertreated. Screening of post-menopausal women for clinical risk factors and/or low bone mineral density (BMD) has been proposed to overcome this. Digital X-ray radiogrammetry (DXR) estimates hand BMD from standard hand X-ray images and have shown to predict fractures and osteoporosis. Recently, digital radiology and the internet have opened up the possibility of conducting automated opportunistic screening with DXR in post-fracture care or in combination with mammography. This study compared the performance of DXR with FRAX® and DXA in discriminating major osteoporotic fracture (MOF) (hip, clinical spine, forearm or shoulder), hip fracture and femoral neck osteoporosis. This prospective cohort study was conducted on 5278 women 65 years and older in the Study of Osteoporotic Fractures (SOF) cohort. Baseline hand X-ray images were analyzed and fractures were ascertained during 10 years of follow up. Age-adjusted area under receiver operating characteristic curve (AUC) for MOF and hip fracture and for femoral neck osteoporosis (DXA FN BMD T-score ≤− 2.5) was used to compare the methods. Sensitivity to femoral neck osteoporosis at equal selection rates was tabulated for FRAX and DXR. DXR-BMD, FRAX (no BMD) and lumbar spine DXA BMD were all similar in fracture discriminative performance with an AUC around 0.65 for MOF and 0.70 for hip fractures for all three methods. As expected femoral neck DXA provided fracture discrimination superior both to other BMD measurements and to FRAX. AUC for selection of patients with femoral neck osteoporosis was higher with DXR-BMD, 0.76 (0.74–0.77), than with FRAX, 0.69 (0.67–0.71), (p < 0.0001). In conclusion, DXR-BMD discriminates incident fractures to a similar degree as FRAX and predicts femoral neck osteoporosis to a larger degree than FRAX. DXR shows promise as a method to automatically flag individuals who might benefit from an osteoporosis assessment.  相似文献   

9.
Trabecular bone score (TBS) is a gray‐level textural index of bone microarchitecture derived from lumbar spine dual‐energy X‐ray absorptiometry (DXA) images. TBS is a bone mineral density (BMD)‐independent predictor of fracture risk. The objective of this meta‐analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual‐level data from 17,809 men and women in 14 prospective population‐based cohorts. Baseline evaluation included TBS and the FRAX risk variables, and outcomes during follow‐up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities, and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1 SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% confidence interval [CI] 1.35–1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10‐year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR = 1.32, 95% CI 1.24–1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95% CI 1.65–1.87 versus 1.70, 95% CI 1.60–1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical assessment guidelines. © 2015 American Society for Bone and Mineral Research.  相似文献   

10.

Summary

We assessed the ability of the World Health Organization’s fracture risk assessment tool (FRAX), bone mineral density (BMD), and age to discriminate fracture status in adults with pre-dialysis chronic kidney disease (CKD). In adults with CKD, FRAX was able to discriminate fracture status but performed no better than BMD alone.

Introduction

Patients with CKD are at increased risk for fracture but the best method to assess fracture risk is not known.

Methods

We assessed the ability of the World Health Organization’s FRAX, compared with BMD at the femoral neck (FN), and age to discriminate fracture status (prevalent clinical nonspine and/or morphometric vertebral) in men and women, 18 years and older with pre-dialysis CKD. Results are presented as area under receiver operator characteristic curves (AUC) with 95 % confidence intervals (CI).

Results

We enrolled 353 subjects; mean age was 65?±?14 years; weight was 79?±?18 kg, and estimated glomerular filtration rate was 28 ml/min/1.73 m2. About one third of the subjects had a prevalent clinical nonspine and/or morphometric vertebral fracture. FRAX was able to discriminate among those with prevalent clinical nonspine fractures (AUC, 0.72; 95 % CI, 0.65–0.78), morphometric vertebral fractures (AUC, 0.66; 95 % CI, 0.59–0.73), and any fracture (AUC, 0.71; 95 % CI, 0.65–0.77). The discriminative ability of BMD at the FN alone was similar to FRAX for morphometric vertebral and any fractures; FRAX performed better than BMD for prevalent clinical nonspine fractures (AUC for BMD alone, 0.66; 95 % CI, 0.60–0.73). Compared to FRAX, the AUC for age alone was lower for all fracture types.

Conclusions

Among men and women with CKD, FRAX is able to discriminate fracture status but performs no better than BMD alone.  相似文献   

11.
Objective: Finite element analysis (FEA) is a computational method to predict the behavior of materials under applied loading. We developed a software tool that automatically performs FEA on dual-energy X-ray absorptiometry hip scans to generate site-specific fracture risk indices (FRIs) that reflect the likelihood of hip fracture from a sideways fall. This longitudinal study examined associations between FRIs and incident fractures. Methods: Using the Manitoba Bone Mineral Density (BMD) Registry, femoral neck (FN), intertrochanter (IT), and subtrochanter (ST) FRIs were automatically derived from 13,978 anonymized dual-energy X-ray absorptiometry scans (Prodigy, GE Healthcare) in women and men aged 50 yr or older (mean age 65 yr). Baseline covariates and incident fractures were assessed from population-based data. We compared c-statistics for FRIs vs FN BMD alone and fracture risk assessment (FRAX) probability computed with BMD. Cox regression was used to estimate hazard ratios and 95% confidence intervals (95% CIs) for incident hip, major osteoporotic fracture (MOF) and non-hip MOF adjusted for relevant covariates including age, sex, FN BMD, FRAX probability, FRAX risk factors, and hip axis length (HAL). Results: During mean follow-up of 6 yr, there were 268 subjects with incident hip fractures, 1003 with incident MOF, and 787 with incident non-hip MOF. All FRIs gave significant stratification for hip fracture (c-statistics FN-FRI: 0.76, 95% CI 0.73–0.79, IT-FRI 0.74, 0.71–0.77; ST-FRI 0.72, 0.69–0.75). FRIs continued to predict hip fracture risk even after adjustment for age and sex (hazard ratio per standard deviation FN-FRI 1.89, 95% CI 1.66–2.16); age, sex, and BMD (1.26, 1.07–1.48); FRAX probability (1.30, 1.11–1.52); FRAX probability with HAL (1.26, 1.05–1.51); and individual FRAX risk factors (1.32, 1.09–1.59). FRIs also predicted MOF and non-hip MOF, but the prediction was not as strong as for hip fracture. Summary: Automatically-derived FN, IT, and ST FRIs are associated with incident hip fracture independent of multiple covariates, including FN BMD, FRAX probability and risk factors, and HAL.  相似文献   

12.
The structure of the femoral neck contributes to hip strength, but the relationship of specific structural features of the hip to hip fracture risk is unclear. The objective of this study is to determine the contribution of structural features and volumetric density of both trabecular and cortical bone in the proximal femur to the prediction of hip fracture in older men. Baseline QCT scans of the hip were obtained in 3347 men ≥65 yr of age enrolled in the Osteoporotic Fractures in Men Study (MrOS). All men were followed prospectively for an average of 5.5 yr. Areal BMD (aBMD) by DXA was also assessed. We determined the associations between QCT‐derived measures of femoral neck structure, volumetric bone density, and hip fracture risk. Forty‐two men sustained incident hip fractures during follow‐up: an overall rate of 2.3/1000 person‐years. Multivariable analyses showed that, among the QCT‐derived measures, lower percent cortical volume (hazard ratio [HR] per SD decrease: 3.2; 95% CI: 2.2–4.6), smaller minimal cross‐sectional area (HR: 1.6; 95% CI: 1.2–2.1), and lower trabecular BMD (HR: 1.7; 95% CI: 1.2–2.4) were independently related to increased hip fracture risk. Femoral neck areal BMD was also strongly related to hip fracture risk (HR: 4.1; 95% CI: 2.7–6.4). In multivariable models, percent cortical volume and minimum cross‐sectional area remained significant predictors of hip fracture risk after adjustment for areal BMD, but overall prediction was not improved by adding QCT parameters to DXA. Specific structural features of the proximal femur were related to an increased risk of hip fracture. Whereas overall hip fracture prediction was not improved relative to aBMD, by adding QCT parameters, these results yield useful information concerning the causation of hip fracture, the evaluation of hip fracture risk, and potential targets for therapeutic intervention.  相似文献   

13.
Previous fracture increases the risk of subsequent fractures regardless of the site of the initial fracture. Fracture risk assessment tools have been developed to guide clinical management; however, no discrimination is made as to the site of the prior fracture. Our objective was to determine which sites of previous nontraumatic fractures are most strongly associated with a diagnosis of osteoporosis, defined by a bone mineral density (BMD) T‐score of ≤ ?2.5 at the femoral neck, and an incident major osteoporotic fracture. Using administrative health databases, we conducted a retrospective historical cohort study of 39,991women age 45 years and older who had BMD testing with dual‐energy X‐ray absorptiometry (DXA). Logistic regression and Cox proportional multivariate models were used to test the association of previous fracture site with risk of osteoporosis and incident fractures. Clinical fractures at the following sites were strongly and independently associated with higher risk of an osteoporotic femoral neck T‐score after adjustment for age: hip (odds ratio [OR], 3.58; 95% confidence interval [CI], 3.04–4.21), pelvis (OR, 2.23; 95% CI, 1.66–3.0), spine (OR, 2.16; 95% CI, 1.77–2.62), and humerus (OR, 1.74; 95% CI, 1.49–2.02). Cox proportional hazards models, with adjustment for age and femoral neck BMD, showed the greatest increase in risk for a major osteoporotic fracture for women who had sustained previous fractures of the spine (hazard ratio [HR], 2.08; 95% CI, 1.72–2.53), humerus (HR, 1.70; 95% CI, 1.44–2.01), patella (HR, 1.54; 95% CI, 1.10–2.18), and pelvis (HR, 1.45; 95% CI, 1.04–2.02). In summary, our results confirm that nontraumatic fractures in women are associated with osteoporosis at the femoral neck and that the site of previous fracture impacts on future osteoporotic fracture risk, independent of BMD. © 2014 American Society for Bone and Mineral Research.  相似文献   

14.
FRAX was developed to predict 10-year probability of major osteoporotic fracture (MOF) and hip fracture in the general population. Aromatase inhibitors (AI) used in breast cancer induce loss in bone mineral density (BMD) and are reported to increase fracture risk. AI exposure is not a direct input to FRAX but is captured under “secondary osteoporosis”. To inform use of FRAX in women treated with AI, we used a population-based registry for the Province of Manitoba, Canada, to identify women aged ≥40 years initiating AI for breast cancer with at least 12 months’ AI exposure (n = 1775), women with breast cancer not receiving AI (n = 1016), and women from the general population (n = 34,205). Among AI users, fracture probability estimated without BMD (AI use coded as secondary osteoporosis) significantly overestimated risk (10-year observed/predicted ratio 0.56, 95% confidence interval [CI] 0.45–0.68; 10-year hip fracture observed/predicted ratio 0.33, 95% CI 0.18–0.49). However, when BMD was included in the fracture probability, there was no significant difference between observed and predicted fracture risk. In Cox proportional hazards models, FRAX stratified risk of MOF, hip, and any fracture equally well in all subgroups (p-interaction >0.1). When adjusted for FRAX score without BMD, with AI use coded as secondary osteoporosis, AI users were at significantly lower risk for MOF (hazard ratio [HR] = 0.78, 95% CI 0.64–0.95), hip fracture (HR = 0.46, 95% CI 0.29–0.73) and any fracture (HR = 0.75, 95% CI 0.63–0.89). AI use was no longer significantly associated with fractures when AI use was not entered as secondary osteoporosis in FRAX without BMD or when BMD was included in the FRAX calculation. In conclusion, FRAX scores stratify fracture risk equally well in women receiving AI therapy as in non-users, but including secondary osteoporosis as a risk factor for AI users overestimates fracture risk. Our results call this practice into question. © 2019 American Society for Bone and Mineral Research.  相似文献   

15.
Finite element analysis of computed tomography (CT) scans provides noninvasive estimates of bone strength at the spine and hip. To further validate such estimates clinically, we performed a 5‐year case‐control study of 1110 women and men over age 65 years from the AGES‐Reykjavik cohort (case = incident spine or hip fracture; control = no incident spine or hip fracture). From the baseline CT scans, we measured femoral and vertebral strength, as well as bone mineral density (BMD) at the hip (areal BMD only) and lumbar spine (trabecular volumetric BMD only). We found that for incident radiographically confirmed spine fractures (n = 167), the age‐adjusted odds ratio for vertebral strength was significant for women (2.8, 95% confidence interval [CI] 1.8 to 4.3) and men (2.2, 95% CI 1.5 to 3.2) and for men remained significant (p = 0.01) independent of vertebral trabecular volumetric BMD. For incident hip fractures (n = 171), the age‐adjusted odds ratio for femoral strength was significant for women (4.2, 95% CI 2.6 to 6.9) and men (3.5, 95% CI 2.3 to 5.3) and remained significant after adjusting for femoral neck areal BMD in women and for total hip areal BMD in both sexes; fracture classification improved for women by combining femoral strength with femoral neck areal BMD (p = 0.002). For both sexes, the probabilities of spine and hip fractures were similarly high at the BMD‐based interventional thresholds for osteoporosis and at corresponding preestablished thresholds for “fragile bone strength” (spine: women ≤ 4500 N, men ≤ 6500 N; hip: women ≤ 3000 N, men ≤ 3500 N). Because it is well established that individuals over age 65 years who have osteoporosis at the hip or spine by BMD criteria should be considered at high risk of fracture, these results indicate that individuals who have fragile bone strength at the hip or spine should also be considered at high risk of fracture. © 2014 American Society for Bone and Mineral Research.  相似文献   

16.
It is unknown how responsive the Fracture Risk Assessment (FRAX) tool is to osteoporosis treatment (OTX) or whether it can serve as a target for “goal‐directed” treatment. We studied 11,049 untreated women aged ≥50 years undergoing baseline and follow‐up DXA examinations in Manitoba, Canada. We identified clinical risk factors, intervening OTX based on medication possession ratios (MPR), and incident fractures. FRAX scores for major osteoporotic and hip fractures were computed for each scan using the most current (updated) FRAX inputs. Over 4 years, median FRAX scores showed an increase of 1.1% for major fractures and 0.3% for hip fractures, including women highly adherent to OTX (0.6% and 0.1% increases). Few (2.2%) highly adherent women had a decrease in major fracture probability exceeding 4%, whereas 9.0% had a decrease in hip fracture probability exceeding 1%. Compared with untreated women, OTX was associated with a higher dose‐dependent likelihood of attenuating the expected increase in major fracture risk: adjusted odds ratios (aOR) 2.3 (95% confidence interval [CI] 1.8–2.9) for MPR <0.50; 7.3 (95% CI 5.6–9.6) for MPR 0.50–0.79; and 12.0 (95% CI 9.5–15.2) for MPR ≥0.80. In the 4 years after the second DXA scan, 620 (6%) women had major fractures (152 hip fractures). FRAX scores were strongly predictive of incident major fractures (adjusted hazard ratios [aHR] per SD increase in FRAX 1.8, 95% CI 1.7–1.9) and hip fractures (aHR per SD 4.5, 95% CI 3.7–5.7); however, change in FRAX score was not independently associated with major fracture (p = 0.8) or hip fracture (p = 0.3). In conclusion, FRAX scores slowly increased over time, and this increase was attenuated but not prevented by treatment. Few women had meaningful reductions in FRAX scores, and change in FRAX score did not independently predict incident fracture, suggesting that FRAX with BMD is not responsive enough to be used as a target for goal‐directed treatment. © 2014 American Society for Bone and Mineral Research.  相似文献   

17.
Polyunsaturated fatty acids (PUFAs) may influence bone health. The objective of this work was to examine associations between plasma phosphatidylcholine (PC) PUFA concentrations and hip measures: (1) femoral neck bone mineral density (FN‐BMD) (n = 765); (2) 4‐year change in FN‐BMD (n = 556); and (3) hip fracture risk (n = 765) over 17‐year follow‐up among older adults in the Framingham Osteoporosis Study. BMD measures were regressed on quintile of plasma PC PUFAs (docosahexaenoic acid [DHA], linoleic acid [LA], and arachidonic acid [AA]), adjusted for covariates. Hazard ratios (HR) and 95% confidence interval (CI) for hip fracture were estimated by quintile of plasma PC PUFAs, adjusted for covariates. Higher concentrations of PC DHA were associated with loss of FN‐BMD over 4 years in women (p‐trend = 0.04), but was protective in men in the uppermost quintile compared to men grouped in the lower four quintiles, in post hoc analysis (p = 0.01). PC LA concentrations were inversely associated with baseline FN‐BMD in women (p‐trend = 0.02), and increased hip fracture risk in women and men (p‐trend = 0.05), but body mass index (BMI) adjustment attenuated these associations (p‐trend = 0.12 and p‐trend = 0.14, respectively). A trend toward a protective association was observed between PC AA and baseline FN‐BMD in men (p‐trend = 0.06). Women and men with the highest PC AA concentrations had 51% lower hip fracture risk than those with the lowest (HR = 0.49, 95% CI = 0.24–1.00). Opposing effects of PC DHA on FN‐BMD loss observed in women and men need further clarification. Bone loss associated with PC LA may be confounded by BMI. High PC AA concentrations may be associated with reduced hip fracture risk. © 2012 American Society for Bone and Mineral Research.  相似文献   

18.
The World Health Organization (WHO) fracture risk assessment system (FRAX) allows for calibration from country‐specific fracture data. The objective of this study was to evaluate the method for imputation of osteoporotic fracture rates from hip fractures alone. A total of 38,784 women aged 47.5 years or older at the time of baseline femoral neck bone mineral density (BMD) measurement were identified in a database containing all clinical dual energy X‐ray absorptiometry (DXA) results for the Province of Manitoba, Canada. Health service records were assessed for the presence of nontrauma osteoporotic fracture codes after BMD testing (431 hip, 787 forearm, 336 clinical vertebral, and 431 humerus fractures). Ten‐year hip and osteoporotic fracture rates were estimated by the Kaplan‐Meier method. The population was stratified by age (50 to 90 years, 5‐year width strata) and again by femoral neck T‐scores (?4.0 to 0.0, 0.5 SD width strata). Within each stratum, the ratio of hip to osteoporotic fractures was calculated and compared with the predicted ratio from FRAX. Increasing age was associated with greater predicted hip‐to‐osteoporotic ratios (youngest 0.07 versua oldest 0.41) and observed ratios (youngest 0.10 versus oldest 0.48). Lower T‐scores were associated with greater predicted (highest 0.04 versus lowest 0.71) and observed ratios (highest 0.06 versus lowest 0.44). There was a strong positive correlation between predicted and observed ratios (Spearman r = 0.90–0.97, p < .001). For 14 of the 18 strata, the predicted ratio was within the observed 95% confidence interval (CI). Since collection of population‐based hip fracture data is considerably easier than collection of non–hip fracture data, this study supports the current emphasis on using hip fractures as the preferred site for FRAX model calibration. © 2010 American Society for Bone and Mineral Research  相似文献   

19.
DXA is affected by skeletal size, with smaller bones giving lower areal BMD despite equal material density. Whether this size effect confounds the use of BMD as a diagnostic and fracture risk assessment tool is unclear. We identified 16,205 women of white ethnicity ≥50 yr of age undergoing baseline hip assessment with DXA (1998–2002) from a population‐based database that contains all clinical DXA test results for the Province of Manitoba, Canada. Total hip measurements were categorized according to quartile in total hip bone area (Q1 = smallest, Q4 = largest). Longitudinal health service records were assessed for the presence of nontraumatic osteoporotic fracture codes during a mean of 3.2 yr of follow‐up after BMD testing (757 osteoporotic fractures, 186 hip fractures). Total hip bone area strongly affected osteoporosis diagnosis with much higher rates in Q1 (14.4%) than Q4 (8.9%). However, incident fracture rates were constant across all area quartiles, and prevalent fractures were paradoxically fewer in smaller area quartiles (p < 0.001 for trend). Age was a potential confounder that correlated positively with area (r = 0.12, p < 0.0001). When age was not included in a Cox regression model, Q1 seemed to have a lower rate of incident osteoporotic fractures (HR = 0.80, 95% CI = 0.66–0.98, reference Q4) and hip fractures (HR = 0.63, 95% CI = 0.43–0.94) for a given level of BMD. In age‐adjusted regression models, total hip BMD was strongly predictive of incident osteoporotic fractures (HR per SD = 1.83, 95% CI = 1.68–1.99) and hip fractures (HR per SD = 2.80, 95% CI = 2.33–3.35), but there was no independent effect of bone area (categorical or continuous). Nested matched subgroup analysis and ROC analysis confirmed that bone area had no appreciable effect on incident fractures. We conclude that total hip areal BMD categorizes a substantially higher fraction of women with smaller bone area as being osteoporotic despite younger age. Incident fracture rates correlate equally well with BMD across all bone area quartiles when adjusted for age.  相似文献   

20.
Vertebral fractures are the most common osteoporotic fracture. Hip and clinical fractures are less common in black women, but there is little information on vertebral fractures. We studied 7860 white and 472 black women ≥65 yr of age enrolled in the Study of Osteoporotic Fractures. Prevalent vertebral fractures were identified from lateral spine radiographs using vertebral morphometry and defined if any vertebral height ratio was >3 SD below race‐specific means for each vertebral level. Information on risk factors was obtained by questionnaire or examination. Lumbar spine, total hip, and femoral neck BMD and BMC were measured by DXA. The prevalence of vertebral fractures was 10.6% in black and 19.1% in white women. In age‐adjusted logistic regression models, a 1 SD decrease in femoral neck BMD was associated with 47% increased odds of fracture in black women (OR = 1.47; 95% CI, 1.12–1.94) and 80% increased odds in white women (OR = 1.80; 95% CI, 1.68–1.94; interaction p = 0.14). The overall lower odds of fracture among black women compared with white women was independent of femoral neck BMD and other risk factors (OR = 0.51; 95% CI, 0.37–0.72). However, the prevalence of vertebral fractures increased with increasing number of risk factors in both groups. The prevalence of vertebral fractures is lower in black compared with white women but increases with age, low BMD, and number of risk factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号