首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Auditory verbal hallucinations (AVH) is a common and stressful symptom of schizophrenia. Disrupted connectivity between frontal and temporo-parietal language areas, giving rise to the misattribution of inner speech, is speculated to underlie this phenomenon. Disrupted connectivity should be reflected in the microstructure of the arcuate fasciculi (AF); the main connection between frontal and temporo-parietal language areas. In this study we compared microstructural properties of the AF and three other fiber tracts (cortical spinal tract, cingulum and uncinate fasciculus), between 44 schizophrenia patients with chronic severe hallucinations and 42 control subjects using diffusion tensor imaging (DTI) and magnetic transfer imaging (MTI). The DTI scans were used to compute fractional anisotropy (FA) and to reconstruct the fiber bundles of interest, while the MTI scans were used to compute magnetic transfer ratio (MTR) values. The patient group showed a general decrease in FA for all bundles. In the arcuate fasciculus this decreased FA was coupled to a significant increase in MTR values. A correlation was found between mean MTR values in both arcuate fasciculi and the severity of positive symptoms. The combination of decreased FA and increased MTR values observed in the arcuate fasciculi in patients suggests increased free water concentrations, probably caused by degraded integrity of the axons or the supportive glia cells. This suggests that disintegrated fiber integrity in the connection between frontal and temporo-parietal language areas in the schizophrenia patients is associated with their liability for auditory verbal hallucinations.  相似文献   

2.
Numerous diffusion tensor imaging (DTI) studies have implicated white matter brain tissue abnormalities in schizophrenia. However, the vast majority of these studies included patient populations that use antipsychotic medication. Previous research showed that medication intake can affect brain morphology and the question therefore arises to what extent the reported white matter aberrations can be attributed to the disease rather than to the use of medication. In this study we included 16 medication‐naïve patients with schizophrenia and compared them to 23 healthy controls to exclude antipsychotic medication use as a confounding factor. For each subject DTI scans and magnetization transfer imaging (MTI) scans were acquired. A new tract‐based analysis was used that combines fractional anisoptropy (FA), mean diffusivity (MD) and magnetization transfer ratio (MTR) to examine group differences in 12 major white matter fiber bundles. Significant group differences in combined FA, MD, MTR values were found for the right uncinate fasciculus and the left arcuate fasciculus. Additional analysis revealed that the largest part of both tracts showed an increase in MTR in combination with an increase in MD for patients with schizophrenia. We interpret these group‐related differences as disease‐related axonal or glial aberrations that cannot be attributed to antipsychotic medication use. Hum Brain Mapp 34:2353–2365, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
This study aims to investigate the relationship between regional connectivity in the brain white matter and the presence of psychotic personality traits, in healthy subjects with psychotic traits. Thirteen healthy controls were administered the MMPI-2, to assess psychotic traits and, according to MMPI results, a dichotomization into a group of "high-psychotic" and "low-psychotic" was performed. Diffusion tensor imaging (DTI) was used as a non-invasive measure, in order to obtain information about the fractional anisotropy (FA), an intravoxel index of local connectivity and, by means of a voxelwise approach, the between-group differences of the FA values were calculated. The "high-psychotic" group showed higher FA in the left arcuate fasciculus. Subjects with low scores for psychotic traits had significantly higher FA in the corpus callosum, right arcuate fasciculus, and fronto-parietal fibers. In line with previous brain imaging studies of schizophrenia spectrum disorders, our results suggest that psychotic personality traits are related to altered connectivity and brain asymmetry.  相似文献   

4.
Structural brain changes in schizophrenia are well documented in the neuroimaging literature. The classical morphometric analyses of magnetic resonance imaging (MRI) data have recently been supplemented by diffusion tensor imaging (DTI), which mainly assesses changes in white matter (WM). DTI increasingly provides evidence for abnormal anatomical connectivity in schizophrenia, most often using fractional anisotropy (FA) as an indicator of the integrity of WM tracts. To better understand the clinical significance of such anatomical changes, we studied FA values in a whole-brain analysis comparing paranoid schizophrenic patients with a history of auditory hallucinations and matched healthy controls. The relationship of WM changes to psychopathology was assessed by correlating FA values with PANSS scores (positive symptoms and severity of auditory hallucinations) and with illness duration. Schizophrenic patients showed FA reductions indicating WM integrity disturbance in the prefrontal regions, external capsule, pyramidal tract, occipitofrontal fasciculus, superior and inferior longitudinal fasciculi, and corpus callosum. The arcuate fasciculus was the only tract which showed increased FA values in patients. Increased FA values in this region correlated with increased severity of auditory hallucinations and length of illness. Our results suggest that local changes in anatomical integrity of WM tracts in schizophrenia may be related to patients' clinical presentation.  相似文献   

5.
Background: In the pathophysiology of schizophrenia, aberrant connectivity between brain regions may be a central feature. Diffusion tensor imaging (DTI) studies have shown altered fractional anisotropy (FA) in white brain matter in schizophrenia. Focal reductions in myelin have been suggested in patients using magnetization transfer ratio (MTR) imaging but to what extent schizophrenia may be related to changes in MTR measured along entire fiber bundles is still unknown. Methods: DTI and MTR images were acquired with a 1.5-T scanner in 40 schizophrenia patients and compared with those of 40 healthy participants. The mean FA and mean MTR were measured along the genu of the corpus callosum and the left and right uncinate fasciculus. Results: A higher mean MTR of 1% was found in the right uncinate fasciculus in patients compared with healthy participants. A significant negative correlation between age and mean FA in the left uncinate fasciculus was found in schizophrenia patients but not in healthy participants. Conclusions: Decreased FA in the left uncinate fasciculus may be more prominent in patients with longer illness duration. The increased mean MTR in the right uncinate fasciculus could reflect a compensatory role for myelin in these fibers or possibly represent aberrant frontotemporal connectivity.  相似文献   

6.
Angelman syndrome is a genetic disorder characterized by pervasive developmental disability with failure to develop speech. We examined the basis for severe language delay in patients with Angelman syndrome by diffusion tensor imaging. Magnetic resonance imaging/diffusion tensor imaging was performed in 7 children with genetically confirmed Angelman syndrome (age 70 ± 26 months, 5 boys) and 4 age-matched control children to investigate the microstructural integrity of arcuate fasciculus and other major association tracts. Six of 7 children with Angelman syndrome had unidentifiable left arcuate fasciculus, while all control children had identifiable arcuate fasciculus. The right arcuate fasciculus was absent in 6 of 7 children with Angelman syndrome and 1 of 4 control children. Diffusion tensor imaging color mapping suggested aberrant morphology of the arcuate fasciculus region. Other association tracts, including uncinate fasciculus, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, and corticospinal tract, were identifiable but manifested decreased fractional anisotropy in children with Angelman syndrome. Increased apparent diffusion coefficient was seen in all tracts except uncinate fasciculus when compared to control children. Patients with Angelman syndrome have global impairment of white matter integrity in association tracts, particularly the arcuate fasciculus, which reveals severe morphologic changes. This finding could be the result of a potential problem with axon guidance during brain development, possibly due to loss of UBE3A gene expression.  相似文献   

7.
We combined tract‐based spatial statistics (TBSS) and magnetization transfer (MT) imaging to assess white matter (WM) tract‐specific short‐term changes in early primary‐progressive multiple sclerosis (PPMS) and their relationships with clinical progression. Twenty‐one PPMS patients within 5 years from onset underwent MT and diffusion tensor imaging (DTI) at baseline and after 12 months. Patients' disability was assessed. DTI data were processed to compute fractional anisotropy (FA) and to generate a common WM “skeleton,” which represents the tracts that are “common” to all subjects using TBSS. The MT ratio (MTR) was computed from MT data and co‐registered with the DTI. The skeletonization procedure derived for FA was applied to each subject's MTR image to obtain a “skeletonised” MTR map for every subject. Permutation tests were used to assess (i) changes in FA, principal diffusivities, and MTR over the follow‐up, and (ii) associations between changes in imaging parameters and changes in disability. Patients showed significant decreases in MTR over one year in the corpus callosum (CC), bilateral corticospinal tract (CST), thalamic radiations, and superior and inferior longitudinal fasciculi. These changes were located both within lesions and the normal‐appearing WM. No significant longitudinal change in skeletonised FA was found, but radial diffusivity (RD) significantly increased in several regions, including the CST bilaterally and the right inferior longitudinal fasciculus. MTR decreases, RD increases, and axial diffusivity decreases in the CC and CST correlated with a deterioration in the upper limb function. We detected tract‐specific multimodal imaging changes that reflect the accrual of microstructural damage and possibly contribute to clinical impairment in PPMS. We propose a novel methodology that can be extended to other diseases to map cross‐subject and tract‐specific changes in MTR. Hum Brain Mapp 35:723–733, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Auditory verbal hallucinations (AVH) have been proposed to result from altered connectivity between frontal speech production regions and temporal speech perception regions. Whilst the dorsal language pathway, serviced by the arcuate fasciculus, has been extensively studied in relation to AVH, the ventral language pathway, serviced by the inferior occipito-frontal fasciculus (IOFF) has been rarely studied in relation to AVH. This study examined whether structural changes in anatomically defined subregions of the IOFF were associated with AVH in patients with schizophrenia. Diffusion tensor imaging scans and clinical data were obtained from the Australian Schizophrenia Research Bank for 113 schizophrenia patients, of whom 39 had lifetime experience of AVH (18 had current AVH, 21 had remitted AVH), 74 had no lifetime experience of AVH, and 40 healthy controls. Schizophrenia patients with a lifetime experience of AVH exhibited reduced fractional anisotropy (FA) in the fronto-temporal fibers of the left IOFF compared to both healthy controls and schizophrenia patients without AVH. In contrast, structural abnormalities in the temporal and occipital regions of the IOFF were observed bilaterally in both patient groups, relative to the healthy controls. These results suggest that while changes in the structural integrity of the bilateral IOFF are associated with schizophrenia per se, integrity reductions in the fronto-temporal fibers of the left IOFF may be specifically associated with AVH.  相似文献   

9.
Trait markers of schizophrenia aid the dissection of the heterogeneous phenotypes into distinct subtypes and facilitate the genetic underpinning of the disease. The microstructural integrity of the white matter tracts could serve as a trait marker of schizophrenia, and tractography‐based analysis (TBA) is the current method of choice. Manual tractography is time‐consuming and limits the analysis to preselected fiber tracts. Here, we sought to identify a trait marker of schizophrenia from among 74 fiber tracts across the whole brain using a novel automatic TBA method. Thirty‐one patients with schizophrenia, 31 unaffected siblings and 31 healthy controls were recruited to undergo diffusion spectrum magnetic resonance imaging at 3T. Generalized fractional anisotropy (GFA), an index reflecting tract integrity, was computed for each tract and compared among the three groups. Ten tracts were found to exhibit significant differences between the groups with a linear, stepwise order from controls to siblings to patients; they included the right arcuate fasciculus, bilateral fornices, bilateral auditory tracts, left optic radiation, the genu of the corpus callosum, and the corpus callosum to the bilateral dorsolateral prefrontal cortices, bilateral temporal poles, and bilateral hippocampi. Posthoc between‐group analyses revealed that the GFA of the right arcuate fasciculus was significantly decreased in both the patients and unaffected siblings compared to the controls. Furthermore, the GFA of the right arcuate fasciculus exhibited a trend toward positive symptom scores. In conclusion, the right arcuate fasciculus may be a candidate trait marker and deserves further study to verify any genetic association. Hum Brain Mapp 36:1065–1076, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
The goals of this study were to first determine whether the fractional anisotropy (FA) and mean diffusivity (MD) of major white matter pathways associate with schizophrenia, and secondly to characterize the extent to which differences in these metrics might reflect a genetic predisposition to schizophrenia. Differences in FA and MD were identified using a comprehensive atlas-based tract mapping approach using diffusion tensor imaging and high-resolution structural data from 35 patients, 28 unaffected first-degree relatives of patients, 29 community controls, and 14 first-degree relatives of controls. Schizophrenia patients had significantly higher MD in the following tracts compared to controls: the right anterior thalamic radiations, the forceps minor, the bilateral inferior fronto-occipital fasciculus (IFO), the temporal component of the left superior longitudinal fasciculus (tSLF), and the bilateral uncinate. FA showed schizophrenia effects and a linear relationship to genetic liability (represented by schizophrenia patients, first-degree relatives, and controls) for the bilateral IFO, the left inferior longitudinal fasciculus (ILF), and the left tSLF. Diffusion tensor imaging studies have previously identified white matter abnormalities in all three of these tracts in schizophrenia; however, this study is the first to identify a significant genetic liability. Thus, FA of these three tracts may serve as biomarkers for studies seeking to identify how genes influence brain structure predisposing to schizophrenia. However, differences in FA and MD in frontal and temporal white matter pathways may be additionally driven by state variables that involve processes associated with the disease.  相似文献   

11.
White matter (WM) abnormalities in schizophrenia may offer important clues to a better understanding of the disconnectivity associated with the disorder. The aim of this study was to elucidate a WM basis of auditory hallucinations in schizophrenia through the simultaneous investigation of WM tract integrity and WM density. Diffusion tensor images (DTIs) and structural T1 magnetic resonance images (MRIs) were taken from 15 hallucinating schizophrenic patients, 15 non-hallucinating schizophrenic patients and 22 normal controls. Voxel-based analyses and post-hoc region of interest analyses were obtained to compare the three groups on fractional anisotropy (FA) derived from DTI as well as WM density derived from structural MRIs. In both the hallucinating and non-hallucinating groups, FA of the WM regions was significantly decreased in the left superior longitudinal fasciculus (SLF), whereas WM density was significantly increased in the left inferior longitudinal fasciculus (ILF). The mean FA value of the left frontal part of the SLF was positively correlated with the severity score of auditory hallucinations in the hallucinating patient group. Our findings show that WM changes were mainly observed in the frontal and temporal areas, suggesting that disconnectivity in the left fronto-temporal area may contribute to the pathophysiology of schizophrenia. In addition, pathologic WM changes in this region may be an important step in the development of auditory hallucinations in schizophrenia.  相似文献   

12.
Abstract

Objectives. Auditory verbal hallucinations (AVH) are among the most common symptoms in schizophrenia. Earlier studies suggest changes in the structural connectivity of auditory areas involved in the pathophysiology of auditory hallucinations. Combining diffusion tensor imaging (DTI) and fibre tractography provides a unique opportunity to visualize and quantify entire fibre bundles. Methods. Fibre tracts connecting homotopic auditory areas via the corpus callosum were identified with DTI in ten first episode paranoid schizophrenia patients and ten healthy controls. Regions of interest were drawn manually, to guide tractography, and fractional anisotropy (FA) – a measure of fibre integrity – was calculated and averaged over the entire tract for each subject. Results. There was no difference in the FA of the interhemispheric auditory fibres between schizophrenic patients and healthy controls. However, the subgroup of patients hearing conversing voices showed increased FA relative to patients without these symptoms (P = 0.047) and trendwise increased FA relative to healthy controls (P = 0.066). In addition, a trendwise correlation between FA values and AVH symptoms (P = 0.089) was found. Conclusions. Our findings suggest that in addition to local deficits in the left auditory cortex and disturbed fronto-temporal connectivity, the interhemispheric auditory pathway might be involved in the pathogenesis of AVH.  相似文献   

13.
Post‐traumatic stress disorder (PTSD) is a debilitating condition which can develop after exposure to traumatic stressors. Seventy‐five adults were recruited from the community, 25 diagnosed with PTSD along with 25 healthy and 25 trauma‐exposed age‐ and gender‐matched controls. Participants underwent clinical assessment and magnetic resonance imaging. A previous voxel based morphometry (VBM) study using the same subject cohort identified decreased grey matter (GM) volumes within frontal/subcortical brain regions including the hippocampus, amygdala, and anterior cingulate cortex (ACC). This study examines the microstructural integrity of white matter (WM) tracts connecting the aforementioned regions/structures. Using diffusion tensor imaging, we investigated the integrity of frontal/subcortical WM tracts between all three subject groups. Trauma exposed subjects with and without PTSD diagnosis were identified to have significant disruption in WM integrity as indexed by decreased fractional anisotropy (FA) in the uncinate fasciculus (UF), cingulum cingulate gyrus (CCG), and corpus callosum (CC), when compared with healthy non‐trauma‐exposed controls. Significant negative correlations were found between total Clinician Administered PTSD scale (CAPS) lifetime clinical subscores and FA values of PTSD subjects in the right UF, CCG, CC body, and right superior longitudinal fasciculus (SLF). An analysis between UF and SLF FA values and VBM determined rostral ACC GM values found a negative correlation in PTSD subjects. Findings suggest that compromised WM integrity in important tracts connecting limbic structures such as the amygdala to frontal regions including the ACC (i.e., the UF and CCG) may contribute to impairments in threat/fear processing associated with PTSD.  相似文献   

14.
The objective of this study is to investigate the relationships among frontotemporal fiber tract compromise and task-switching performance in healthy controls and patients with temporal lobe epilepsy (TLE). We performed diffusion tensor imaging (DTI) on 30 controls and 32 patients with TLE (15 left TLE). Fractional anisotropy (FA) was calculated for four fiber tracts [uncinate fasciculus (UncF), arcuate fasciculus (ArcF), dorsal cingulum (CING), and inferior fronto-occipital fasciculus (IFOF)]. Participants completed the Trail Making Test-B (TMT-B) and Verbal Fluency Category Switching (VFCS) test. Multivariate analyses of variances (MANOVAs) were performed to investigate group differences in fiber FA and set-shifting performances. Canonical correlations were used to examine the overall patterns of structural-cognitive relationships and were followed by within-group bivariate correlations. We found a significant canonical correlation between fiber FA and task-switching performance. In controls, TMT-B correlated with left IFOF, whereas VFCS correlated with FA of left ArcF and left UncF. These correlations were not significant in patients with TLE. We report significant correlations between frontotemporal fiber tract integrity and set-shifting performance in healthy controls that appear to be absent or attenuated in patients with TLE. These findings suggest a breakdown of typical structure-function relationships in TLE that may reflect aberrant developmental or degenerative processes.  相似文献   

15.
While auditory verbal hallucinations (AVH) are most characteristic for schizophrenia, they also occur in nonpsychotic individuals in the absence of a psychiatric or neurological disorder and in the absence of substance abuse. At present, it is unclear if AVH in these nonpsychotic individuals constitute the same phenomenon as AVH in psychotic patients. Comparing brain activation during AVH between nonpsychotic and psychotic individuals could provide important clues regarding this question. 21 nonpsychotic subjects with AVH and 21 matched psychotic patients indicated the presence of AVH during 3T functional magnetic resonance imaging (fMRI) scanning. To identify common areas of activation during the experience of AVH in both groups, a conjunction analysis was performed. In addition, a 2-sample t-test was employed to discover possible differences in AVH-related activation between the groups. Several common areas of activation were observed for the psychotic and nonpsychotic subjects during the experience of AVH, consisting of the bilateral inferior frontal gyri, insula, superior temporal gyri, supramarginal gyri and postcentral gyri, left precentral gyrus, inferior parietal lobule, superior temporal pole, and right cerebellum. No significant differences in AVH-related brain activation were present between the groups. The presence of multiple common areas of AVH-related activation in psychotic and nonpsychotic individuals, in the absence of significant differences, implicates the involvement of the same cortical network in the experience of AVH in both groups.  相似文献   

16.
OBJECTIVE: To determine whether the major temporal lobe white matter tracts in patients with temporal lobe epilepsy manifest abnormal water diffusion properties. METHODS: Diffusion tensor MRI measurements were obtained from tractography for uncinate, arcuate, inferior longitudinal fasciculi and corticospinal tract in 13 children with left temporal lobe epilepsy and normal conventional MRI, and the data were compared to measurements in 12 age-matched normal volunteers. The relationship between tensor parameters and duration of epilepsy was also determined. RESULTS: All four tracts in the affected left hemisphere showed lower mean anisotropy, planar and linear indices, but higher spherical index in patients versus controls. Diffusion changes in the left uncinate and arcuate fasciculus correlated significantly with duration of epilepsy. Arcuate fasciculus showed a reversal of the normal left-right asymmetry. Various diffusion abnormalities were also seen in the four tracts studied in the right hemisphere. CONCLUSION: Our findings indicate abnormal water diffusion in temporal lobe and extra-temporal lobe tracts with robust changes in the direction perpendicular to the axons. Diffusion abnormalities associated with duration of epilepsy suggest progressive changes in ipsilateral uncinate and arcuate fasciculus due to chronic seizure activity. Finally, our results in arcuate fasciculus are consistent with language reorganization to the contralateral right hemisphere.  相似文献   

17.
Several lines of evidence suggest that the normal integration of cerebral communication may be compromised in schizophrenia, with white matter (WM) abnormalities being integral to these functional deficits. Diffusion tensor imaging (DTI) is a neuroimaging technique which has increasingly been used to study WM through quantitative indices of its structural and orientational characteristics. Identifying the WM differences early in the course of schizophrenia may assist in prevention, early diagnosis and identification of treatment targets. In that respect, the aims of the present study were to (a) systematically review WM integrity in the early stages of schizophrenia as inferred by DTI and (b) specifically examine parameters that may affect WM: age, duration of illness and treatment. In summary, DTI studies in early schizophrenia suggest that structural dysconnectivity may be already present in recent‐onset and drug‐naïve patients, as well as in individuals clinically at high risk for developing schizophrenia. Although the pattern of WM differences is not totally consistent frontal, fronto‐temporal and fronto‐limbic connections, with tracts including the superior longitudinal fasciculus, cingulum bundle, uncinate fasciculus and corpus callosum seem to be affected. These differences may depend on the developmental stage of the subjects, the duration of illness and exposure to antipsychotic medication.  相似文献   

18.
Background: The pathophysiology of the syndrome of conduction aphasia has been thought to involve a disconnection between posterior and anterior language areas. The arcuate fasciculus has been one of the principal candidates for an anatomical link between Wernicke's and Broca's area, but direct evidence for its involvement in conduction aphasia has been difficult to obtain. Aims: The purpose of this study was to examine white matter tract integrity, using the novel magnetic resonance imaging technique of diffusion tensor imaging, in a patient with transcortical aphasia. Methods & Procedures: A case study of a 55-year-old, right-handed man with aphasia following a left hemisphere stroke is reported. The patient's language performance was assessed with the Boston Diagnostic Aphasia Examination twice: at 10 days and at 2 years after his stroke. An MR diffusion tensor imaging study was obtained approximately 2 years after his stroke using the 1.5 T Phillips Gyroscan NT system. White matter fibre tracts maps were reconstructed using the “FACT” algorithm. Outcomes and Results: Ten days after his stroke, the patient had a non-fluent aphasia with marked impairment of both auditory comprehension and spontaneous speech. However, repetition was relatively intact. By 2 years, when the MR diffusion tensor imaging study was performed, repetition was completely normal and the patient had only subtle deficits in areas of naming and auditory comprehension. The MR diffusion tensor imaging study revealed a lesion of the dominant hemisphere arcuate fasciculus. Conclusions: This study documents normal repetition performance in a patient who on subsequent MR diffusion tensor imaging was found to have a lesion involving the dominant hemisphere arcuate fasciculus lesion. This case adds to previously published cases of normal repetition performance despite a documented lesion of the arcuate fasciculus, and thus further challenges the traditional model of conduction aphasia invoking a critical role of this white matter tract. Our case also suggests that MR diffusion tensor imaging may be a potentially useful technique to evaluate regional involvement of specific white matter tract projections in patients with aphasia.  相似文献   

19.
We investigated the radiologic developmental process of the arcuate fasciculus(AF) using subcomponent diffusion tensor imaging(DTI) analysis in typically developing volunteers. DTI data were acquired from 96 consecutive typically developing children, aged 0–14 years. AF subcomponents, including the posterior, anterior, and direct AF tracts were analyzed. Success rates of analysis(AR) and fractional anisotropy(FA) values of each subcomponent tract were measured and compared. AR of all subcomponent tracts, except the posterior, showed a significant increase with aging(P 0.05). Subcomponent tracts had a specific developmental sequence: First, the posterior AF tract, second, the anterior AF tract, and last, the direct AF tract in identical hemispheres. FA values of all subcomponent tracts, except right direct AF tract, showed correlation with subject's age(P 0.05). Increased AR and FA values were observed in female subjects in young age(0–2 years) group compared with males(P 0.05). The direct AF tract showed leftward hemispheric asymmetry and this tendency showed greater consolidation in older age(3–14 years) groups(P 0.05). These findings demonstrated the radiologic developmental patterns of the AF from infancy to adolescence using subcomponent DTI analysis. The AF showed a specific developmental sequence, sex difference in younger age, and hemispheric asymmetry in older age.  相似文献   

20.
Diffusion tensor imaging (DTI) studies have identified changes in white matter tracts in schizophrenia patients and those at high risk of transition. Schizotypal samples represent a group on the schizophrenia continuum that share some aetiological risk factors but without the confounds of illness. The aim of the current study was to compare tract microstructural coherence as measured by fractional anisotropy (FA) between 12 psychometrically defined schizotypes and controls. We investigated bilaterally the uncinate and arcuate fasciculi (UF and AF) via a probabilistic tractography algorithm (PICo), with FA values compared between groups. Partial correlations were also examined between measures of subclinical hallucinatory/delusional experiences and FA values. Participants with schizotypal features were found to have increased FA values in the left hemisphere UF only. In the whole sample there was a positive correlation between FA values and measures of hallucinatory experience in the right AF. These findings suggest subtle changes in microstructural coherence are found in individuals with schizotypal features, but are not similar to changes predominantly observed in clinical samples. Correlations between mild hallucinatory experience and FA values could indicate increasing tract coherence could be associated with symptom formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号