首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The study of the TRPC cation channels as signal transducers in sensory neurons is in its infancy. Mechanoreceptors that monitor arterial pressure are prime candidates for the involvement of TRPC channels as either primary mechanical transducers or as modulators of the transduction process. Their activity patterns can be regulated by growth factors such as BDNF and by a variety of ligands that activate Gq-coupled receptors, mechanisms that have been shown in heterologous expression systems to activate TRPC channels. We investigated the distribution of TRPC1 and TRPC3–7 in nodose sensory neurons and in their peripheral axons that terminate as mechanosensitive receptors in the aortic arch of the rat. Using immunocytochemical techniques we identified these six TRPC proteins in the soma of the nodose neurons but only TRPC1 and TRPC3–5 were found to distribute to the peripheral axons and the mechanosensory terminals. TRPC1 and TRPC3 extended into the low threshold complex sensory endings with very strong labeling. In contrast, TRPC4 and TRPC5 were found primarily in major branches of the receptor but immunoreactivity was weak in the region where mechanotransduction is presumed to occur. Terminals arising from unmyelinated fibers also expressed TRPC1 and TRPC3–5 but not all fibers expressed all of the channels suggesting that specific TRPC protein may be aligned with previously described subclasses of the unmyelinated C-fibers.  相似文献   

2.
Voltage‐gated calcium channels (VGCC) play important roles in electrically excitable cells and embryonic development. The VGCC β subunits are essential for membrane localization of the channel and exert modulatory effects on channel functions. In mammals, the VGCC β subunit gene family contains four members. In zebrafish, there appear to be seven VGCC β subunits including the previously identified β1 subunit. cDNAs for six additional VGCC β subunit homologs were identified in zebrafish, their chromosomal locations determined and their expression patterns characterized during embryonic development. These six genes are primarily expressed in the nervous system with cacnb4a also expressed in the developing heart. Sequence homology, genomic synteny and expression patterns suggest that there are three pairs of duplicate genes for β2, β3, and β4 in zebrafish with distinct expression patterns during embryonic development. Developmental Dynamics 237:3842–3852, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
4.
Protease‐activated receptors (PARs) play critical roles in hemostasis in vertebrates including zebrafish. However, the zebrafish gene classification appears to be complex, and the expression patterns of par genes are not established. Based on analyses of genomic organization, phylogenetics, protein primary structure, and protein internalization, we report the identification of four zebrafish PARs: par1, par2a, par2b, and par3. This classification differs from one reported previously. We also show that these genes have distinct spatiotemporal expression profiles in embryos and larvae, with par1, par2a, and par2b expressed maternally and ubiquitously during gastrula stages and their expression patterns refined at later stages, and par3 expressed only in 3‐day‐old larvae. Notably, the expression patterns of zebrafish par1 and par2b resemble those of their mammalian counterparts, suggesting that receptor function is conserved among vertebrates. This conservation is supported by our findings that Par1 and Par2b are internalized following exposure to thrombin and trypsin, respectively. Developmental Dynamics, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Comparison of Iroquois gene expression in limbs/fins of vertebrate embryos   总被引:1,自引:0,他引:1  
In Drosophila, Iroquois (Irx) genes have various functions including the specification of the identity of wing veins. Vertebrate Iroquois (Irx) genes have been reported to be expressed in the developing digits of mouse limbs. Here we carry out a phylogenetic analysis of vertebrate Irx genes and compare expression in developing limbs of mouse, chick and human embryos and in zebrafish pectoral fin buds. We confirm that the six Irx gene families in vertebrates are well defined and that Clusters A and B are duplicates; in contrast, Irx1 and 3, Irx2 and 5, and Irx4 and 6 are paralogs. All Irx genes in mouse and chick are expressed in developing limbs. Detailed comparison of the expression patterns in mouse and chick shows that expression patterns of genes in the same cluster are generally similar but paralogous genes have different expression patterns. Mouse and chick Irx1 are expressed in digit condensations, whereas mouse and chick Irx6 are expressed interdigitally. The timing of Irx1 expression in individual digits in mouse and chick is different. Irx1 is also expressed in digit condensations in developing human limbs, thus showing conservation of expression of this gene in higher vertebrates. In zebrafish, Irx genes of all but six of the families are expressed in early stage pectoral fin buds but not at later stages, suggesting that these genes are not involved in patterning distal structures in zebrafish fins.  相似文献   

6.
Cyclic nucleotide-gated (CNG) channels are nonselective cation channels opened by binding of intracellular cyclic GMP or cyclic AMP. CNG channels mediate sensory transduction in the rods and cones of the retina and in olfactory sensory neurons, but in addition, CNG channels are also expressed elsewhere in the CNS, where their physiological roles have not yet been well defined. Besides the CNG channel subtypes that mediate vision and olfaction, zebrafish has an additional subtype, CNGA5, which is expressed almost exclusively in the brain. We have generated CNGA5-specific monoclonal antibodies, which we use here to show that immunoreactivity for CNGA5 channels is highly enriched in synaptic terminals of a discrete set of neurons that project to a subregion of the pituitary, as well as diffusely in the brain and spinal cord. Double labeling with a variety of antibodies against pituitary hormones revealed that CNGA5 is located in the terminals of neuroendocrine cells that secrete the nonapeptide hormone/transmitter isotocin in the neurohypophysis, brain, and spinal cord. Furthermore, we show that CNGA5 channels expressed in Xenopus oocytes are highly permeable to Ca2+, which suggests that the channels are capable of modulating isotocin release in the zebrafish brain and pituitary. Isotocin is the teleost homolog of the mammalian hormone oxytocin, and like oxytocin, it regulates reproductive and social behavior. Therefore, the high calcium permeability of CNGA5 channels and their strategic location in isotocin-secreting synaptic terminals suggest that activation of CNGA5 channels in response to cyclic nucleotide signaling may have wide-ranging neuroendocrine and behavioral effects.  相似文献   

7.
8.
The establishment and maturation of appropriate synaptic connections is crucial in the development of neuronal circuits. Cellular adhesion is believed to play a central role in this process. Neuroligins are neuronal cell adhesion molecules that are hypothesized to act in the initial formation and maturation of synaptic connections. In order to establish the zebrafish as a model to investigate the in vivo role of Neuroligin proteins in nervous system development, we identified the zebrafish orthologs of neuroligin family members and characterized their expression. Zebrafish possess seven neuroligin genes. Synteny analysis and sequence comparisons show that NLGN2, NLGN3, and NLGN4X are duplicated in zebrafish, but NLGN1 has a single zebrafish ortholog. All seven zebrafish neuroligins are expressed in complex patterns in the developing nervous system and in the adult brain. The spatial and temporal expression patterns of these genes suggest that they occupy a role in nervous system development and maintenance. Developmental Dynamics 239:703–714, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
alpha‐actinins are actin microfilament crosslinking proteins. Vertebrate actinins fall into two classes: the broadly‐expressed actinins 1 and 4 (actn1 and actn4) and muscle‐specific actinins, actn2 and actn3. Members of this family have numerous roles, including regulation of cell adhesion, cell differentiation, directed cell motility, intracellular signaling, and stabilization of f‐actin at the sarcomeric Z‐line in muscle. Here we identify five zebrafish actinin genes including two paralogs of ACTN3. We describe the temporal and spatial expression patterns of these genes through embryonic development. All zebrafish actinin genes have unique expression profiles, indicating specialization of each gene. In particular, the muscle actinins display preferential expression in different domains of axial, pharyngeal, and cranial musculature. There is no identified avian actn3 and approximately 16% of humans are null for ACTN3. Duplication of actn3 in the zebrafish indicates that variation in actn3 expression may promote physiological diversity in muscle function among vertebrates. Developmental Dynamics 238:2936–2947, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Scinderin, the closest homologue of the actin‐severing protein, gelsolin, has two similar paralogs (Scinla and Scinlb) in zebrafish. Scinla is abundant in the adult cornea; Scinlb comprises considerably less corneal protein. Here, we show that scinla is expressed in the nose, lens, brain, cornea and annular ligament of the iridocorneal angle; by contrast, scinlb is expressed in the hatching gland, floor plate, notochord, otic vesicle, brain, pharynx, cartilage, swim bladder and cornea. Activity of scinla and scinlb promoter fragments driving the EGFP reporter gene in transgenic zebrafish resembled scinla or scinlb expression. Previously, we showed that reduction of scinla by injection of antisense morpholino oligonucleotides ventralized embryos; here, specific reduction of scinlb expression led to subtle brain abnormalities associated with increased cell death, decreased shhb expression in the floor plate, and slightly reduced eye distance. Thus, scinla and scinlb have different expression patterns and developmental roles during zebrafish development. Developmental Dynamics 238:2633–2640, 2009. Published 2009 Wiley‐Liss, Inc.  相似文献   

11.
The CD133/prominin1 gene encodes a pentamembrane glycoprotein cell surface marker that is expressed in stem cells from neuroepithelial, hematopoietic, and various organ tissues. Here we report the analysis of two zebrafish CD133/prominin1 orthologues, prominin1a and prominin1b. The expression patterns of the zebrafish prominin1a and b genes were analyzed during embryogenesis using whole mount in situ hybridization. prominin1a and b show novel complementary and overlapping patterns of expression in proliferating zones in the developing sensory organs and central nervous system. The expression patterns suggest functional conservation of the zebrafish prominin1 genes. Initial analyses of prominin1a and b in neoplastic tissue show increased expression of both genes in a subpopulation of cells in malignant peripheral nerve sheath tumors in tp53 mutants. Based on these analyses, the zebrafish prominin1 genes will be useful markers for examining proliferating cell populations in adult organs, tissues, and tumors. Developmental Dynamics 239:1849–1857, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Neurobiology of TRPC2: from gene to behavior   总被引:6,自引:1,他引:5  
The mammalian vomeronasal organ (VNO), a part of the accessory olfactory system, plays an essential role in the sensing of pheromonal signals. The VNO has emerged as an excellent model to investigate the functional role of transient receptor potential (TRP) channels in intact neurons and intact physiological systems. TRPC2, a member of the (canonical) TRPC subfamily, is highly localized to the dendritic tip of vomeronasal sensory neurons. Phenotypic analysis of mice exhibiting a targeted deletion in the TRPC2 gene has established that TRPC2 occupies a fundamental role in the transduction machinery underlying the detection of pheromone signals by the VNO. TRPC2-deficient mice exhibit striking behavioral defects in the regulation of sexual and social behaviors. A previously unknown Ca2+-permeable, diacylglycerol (DAG)-activated cation channel found at the dendritic tip of vomeronasal neurons is severely defective in TRPC2 mutants, providing the first clear example for the existence of native DAG-gated cation channels in the mammalian nervous system. The experimental strategy employed in the mouse VNO now serves as a powerful model for examining the native functions of other TRP genes.  相似文献   

13.
The endothelial cells (ECs) form a semipermeable barrier between the blood and the tissue. An important function of the endothelium is to maintain the integrity of the barrier function of the vessel wall. Ca2+ signaling in ECs plays a key role in maintaining the barrier integrity. Transient receptor potential canonical (TRPC) channels are mammalian homologs of Drosophila TRP Ca2+-permeable channels expressed in EC. TRPC channels are thought to function as a Ca2+ entry channel operated by store-depletion as well as receptor-activated channels in a variety of cell types, including ECs. Inflammatory mediators such as thrombin, histamine, bradykinin, and others increase endothelial permeability by actin polymerization-dependent EC rounding and formation of inter-endothelial gaps, a process critically dependent on the increase in EC cytosolic [Ca2+] ([Ca2+]i). Increase in endothelial permeability depends on both intracellular Ca2+ release and extracellular Ca2+ entry through TRPC channels. This review summarizes recent findings on the role of TRPC channels in the mechanism of Ca2+ entry in ECs, and, in particular, the role of TRPC channels in regulating endothelial barrier function.  相似文献   

14.
Results : As a prelude to examining the functional roles of Slitrks, we identified eight slitrk orthologs in zebrafish and observed that seven of the eight orthologs were actively transcribed in the nervous system at embryonic, larval, and adult stages. Similar to previous findings in mice and humans, zebrafish slitrks exhibited unique but overlapping spatial and temporal expression patterns in the developing brain, retina, and spinal cord. 相似文献   

15.
Background: Sphingolipids represent a major class of lipids which both serve as structural components of membranes and as bioactive molecules involved in lipid signaling. Ceramide synthases (cers) reside in the center of sphingolipid metabolism by producing ceramide through de novo synthesis or degradative pathways. While the six mammalian cers family members have been extensively studied in cell culture and in adult tissues, a systematic analysis of cers expression and function during embryogenesis is still lacking. Results: Using bioinformatic and phylogenetic analysis, we identified nine highly conserved homologs of the vertebrate cers gene family in the zebrafish genome. A systematic expression analysis throughout five developmental stages indicates that, whereas until 48 hours post fertilization most zebrafish cers homologs are expressed in distinct patterns, e.g., in the intermediate cell mass and the pronephric duct, they show a highly overlapping expression during later stages of embryonic development, mostprominently in the developing brain. Conclusions: In this study, the expression of the cers gene homologs is comprehensively analyzed for the first time during vertebrate embryogenesis. Our data indicate that each embryonic tissue has a unique profile of cers expression during zebrafish embryogenesis suggesting tissue‐specific profiles of ceramides and their derivatives. Developmental Dynamics 242:189–200, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
17.
Seventeen transient receptor potential (TRP) family proteins are encoded by the C. elegans genome, and they cover all of the seven TRP subfamilies, including TRPC, TRPV, TRPM, TRPN, TRPA, TRPP, and TRPML. Classical forward and reverse genetic screens have isolated mutant alleles in every C. elegans trp gene, and their characterizations have revealed novel functions and regulatory mechanisms of TRP channels. For example, the TRPC channels TRP-1 and TRP-2 control nicotine-dependent behavior, while TRP-3, a sperm TRPC channel, is regulated by sperm activation and required for sperm–egg interactions during fertilization. Similar to their vertebrate counterparts, C. elegans TRPs function in sensory physiology. For instance, the TRPV channels OSM-9 and OCR-2 act in chemosensation, osmosensation, and touch sensation, the TRPA member TRPA-1 regulates touch sensation, while the TRPN channel TRP-4 mediates proprioception. Some C. elegans TRPM, TRPP, and TRPML members exhibit cellular functions similar to their vertebrate homologues and have provided insights into human diseases, including polycystic kidney disease, hypomagnesemia, and mucolipidosis type IV. The availability of a complete set of trp gene mutants in conjunction with its facile genetics makes C. elegans a powerful model for studying the function and regulation of TRP family channels in vivo.  相似文献   

18.
The transient receptor potential canonical type 5 (TRPC5) channel is a member of the channels that has been implicated in neurite extension and growth cone morphology of hippocampal neurons. Although homomeric TRPC5 channels are activated following stimulation of Gq/11-coupled receptors, the exact mechanism for this activation remains unresolved. Using two-electrode voltage clamp recordings, we show that the activity of TRPC5 channels expressed in Xenopus oocytes is dependent on the presence of Ca2+ at the extracellular as well as the cytoplasmic side of the plasma membrane. TRPC5 was activated by the stimulation of coexpressed M5 muscarinic receptors or by ionomycin. The TRPC5 activity was detectable with the presence of submillimolar levels of extracellular Ca2+, but it was eliminated by the injection of 5 mM 1,2-bis(o-aminophenoxy)ethane-N,N,N,N-tetraacetic acid into the oocytes. Lanthanum could substitute for extracellular Ca2+ to support TRPC5 activity. Coexpression of Ca2+-binding protein 1 (CaBP1), but not calmodulin (CaM), inhibited the TRPC5 activity, without affecting the cell surface expression of TRPC5 proteins. Using in vitro binding assays, we demonstrated direction interactions between CaBP1 and TRPC5. The CaBP1-binding sites at the C terminus of TRPC5 are closely localized, but not identical, to CaM-binding sites. We conclude that TRPC5 is a Ca2+-regulated channel, and its activity is negatively controlled by CaBP1.  相似文献   

19.
Transient receptor potential (TRP) channels are a large family of cation channels. The 28 TRP channel subtypes in rodent are divided into 6 subfamilies: TRPC1-7, TRPV1-6, TRPM1-8, TRPP2/3/5, TRPML1-3 and TRPA1. TRP channels are involved in peripheral olfactory transduction. Several TRPC channels are expressed in unidentified neurons in the main olfactory bulb (OB), but the expression of most TRP channels in the OB has not been investigated. The present study employed RT-PCR as an initial survey of the expression of TRP channel mRNAs in the mouse OB and in 3 cell types: external tufted, mitral and granule cells. All TRP channel mRNAs except TRPV5 were detected in OB tissue. Single cell RT-PCR revealed that external tufted, mitral and granule cell populations expressed in aggregate 14 TRP channel mRNAs encompassing members of all 6 subfamilies. These different OB neuron populations expressed 7–12 channel mRNAs. Common channel expression was more similar among external tufted and mitral cells than among these cells and granule cells. These results indicate that a large number of TRP channel subtypes are expressed in OB neurons, providing the molecular bases for these channels to regulate OB neuron activity and central olfactory processing.  相似文献   

20.
mab21l1 and mab21l2 paralogs have widespread and dynamic expression patterns during vertebrate development. Both genes are expressed in the developing eye, midbrain, neural tube, and branchial arches. Our goal was to identify promoter regions with activity in mab21l2 expression domains. Assays of mab21l2 promoter‐EGFP constructs in zebrafish embryos confirm that constructs containing 7.2 or 4.9 kb of mab21l2 promoter region are sufficient to drive expression in known (e.g., tectum, branchial arches) and unexpected domains (e.g., lens and retinal amacrine cells). A comparative analysis identifies complementary and novel expression domains of endogenous mab21l2 (e.g., lens and ventral iridocorneal canal) and mab21l1 (e.g., retinal amacrine and ganglion cells). Interestingly, therefore, despite the absence of conserved non‐coding elements, a 4.9‐kb mab21l2 promoter is sufficient to recapitulate expression in tissues unique to mab21l1 or mab21l2. Developmental Dynamics 240:745–754, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号