首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myeloid derived suppressor cells (MDSCs) play a critical role in suppression of immune responses in cancer and inflammation. Here, we describe how regulation of Bcl2a1 by cytokines controls the suppressor function of CD11b+Gr‐1high granulocytic MDSCs. Coculture of CD11b+Gr‐1high granulocytic MDSCs with antigen‐stimulated T cells and simultaneous blockade of IFN‐γ by the use of anti‐IFN‐γ blocking antibody, IFN‐γ?/? effector T cells, IFN‐γR?/? MDSCs or STAT1?/? MDSCs led to upregulation of Bcl2a1 in CD11b+Gr‐1high cells, improved survival, and enhanced their suppressor function. Molecular studies revealed that GM‐CSF released by antigen‐stimulated CD8+ T cells induced Bcl2a1 upregulation, which was repressed in the presence of IFN‐γ by a direct interaction of phosphorylated STAT‐1 with the Bcl2a1 promotor. Bcl2a1 overexpressing granulocytic MDSCs demonstrated prolonged survival and enhanced suppressor function in vitro. Our data suggest that IFN‐γ/ STAT1‐dependent regulation of Bcl2a1 regulates survival and thereby suppressor function of granulocytic MDSCs.  相似文献   

2.
After the development of highly active anti‐retroviral therapy, it became clear that the majority of emergent HIV‐1 is macrophage‐tropic and infects CD4+, CCR5‐expressing cells (R5‐tropic). There are three distinct cell populations, R5‐tropic, HIV‐1‐susceptible CD4+ cells: (i) natural killer T (NKT) cells, (ii) dendritic cells and macrophages, and (iii) tissue‐associated T cells residing primarily at mucosal surfaces. We have confirmed that CD4+ NKT cells derived from peripheral blood mononuclear cells (PBMCs) predominantly express CCR5 rather than CXCR4, whereas the reverse is true for CD4+ T cells derived from circulating PBMCs, and that R5‐tropic HIV‐1 expands efficiently in the CD4+ NKT cells. Moreover, when PBMCs depleted of CD8α+ cells were stimulated in the presence of α‐galactosylceramide (α‐GalCer) and R5‐tropic HIV‐1 [NL(AD8)], the production of HIV‐1 virions was not suppressed, whereas, similar to the untreated PBMCs, depletion of CD8β+ cells from PBMCs significantly inhibited virion production. These findings suggest that CD8αα+ but not CD8αβ+ cells may have the ability to inhibit R5‐tropic HIV‐1 replication in CD4+ NKT cells. Here, we show that co‐culturing R5‐tropic HIV‐1‐infected CD4+ NKT cells with CD8αα+ γδ T cells, in particular Vγ1Vδ1 cells, but not with CD8αα+ NKT cells or CD8αα+ dendritic cells, inhibits HIV‐1 replication mainly by secreting chemokines, such as macrophage inflammatory proteins 1α and 1β and RANTES. Collectively, these results indicate the importance of CD8αα+ γδ T cells in the control of R5‐tropic HIV‐1 replication and persistence in CD4+ NKT cells.  相似文献   

3.
Caspase recruitment domain‐containing membrane‐associated guanylate kinase protein‐1 (CARMA1) is a critical component of the NF‐κB signaling cascade mediated by TCR engagement. In addition to activation of naïve T cells, TCR signaling is important for the development of agonist‐selected T‐cell subsets such as Treg, NKT cells, and CD8‐αα T cells. However, little is known about the role of CARMA1 in the development of these lineages. Here we show that CARMA1‐deficient mice (CARMA1?/?) have altered populations of specific subsets of agonist‐selected T cells. Specifically, CARMA1?/? mice have impaired natural and adaptive Treg development, whereas NKT cell numbers are normal compared with wild‐type mice. Interestingly, CD8‐αα T cells, which may also be able to develop through an extrathymic selection pathway, are enriched in the gut of CARMA1?/? mice, whereas memory‐phenotype CD4+ T cells (CD62Llow/CD44high) are present at reduced numbers in the periphery. These results indicate that CARMA1 is essential for Treg development, but is not necessary for the development of other agonist‐selected T‐cell subsets. Overall, these data reveal an important but differential role for CARMA1‐mediated TCR signaling in T‐cell development.  相似文献   

4.
5.
Human Th17 clones and circulating Th17 cells showed lower susceptibility to the anti‐proliferative effect of TGF‐β than Th1 and Th2 clones or circulating Th1‐oriented T cells, respectively. Accordingly, human Th17 cells exhibited lower expression of clusterin, and higher Bcl‐2 expression and reduced apoptosis in the presence of TGF‐β, in comparison with Th1 cells. Umbilical cord blood naïve CD161+CD4+ T cells, which contain the precursors of human Th17 cells, differentiated into IL‐17A‐producing cells only in response to IL‐1β plus IL‐23, even in serum‐free cultures. TGF‐β had no effect on constitutive RORγt expression by umbilical cord blood CD161+ T cells but it increased the relative proportions of CD161+ T cells differentiating into Th17 cells in response to IL‐1β plus IL‐23, whereas under the same conditions it inhibited both T‐bet expression and Th1 development. These data suggest that TGF‐β is not critical for the differentiation of human Th17 cells, but indirectly favors their expansion because Th17 cells are poorly susceptible to its suppressive effects.  相似文献   

6.
Vitamin D deficiency is associated with increased incidence and severity of various immune‐mediated diseases. Active vitamin D (1α,25‐dihydroxyvitamin D3; 1,25(OH)2D3) up‐regulates CD4+ T‐cell expression of the purine ectonucleotidase CD39, a molecule that is associated with the generation of anti‐inflammatory adenosine. Here we aimed to investigate the direct impact of 1,25(OH)2D3 on expression of the downstream ecto‐5′‐nucleotidase CD73 by human CD4 T cells, and components of the transforming growth factor‐β (TGF‐β) pathway, which have been implicated in the modulation of CD73 by murine T cells. At 10?8 to 10?7 m , 1,25(OH)2D3 significantly increased expression of CD73 on peripheral human CD4+ T cells. Although 1,25(OH)2D3 did not affect the mRNA expression of latent TGF‐β1, 1,25(OH)2D3 did up‐regulate expression of TGF‐β‐associated molecules [latency‐associated peptide (LAP), glycophorin A repetitions predominant (GARP), GP96, neuropilin‐1, thrombospondin‐1 and αv integrin] which is likely to have contributed to the observed enhancement in TGF‐β bioactivity. CD73 was highly co‐expressed with LAP and GARP following 1,25(OH)2D3 treatment, but unexpectedly, each of these cell surface molecules was expressed primarily on CD4+ Foxp3 T cells, rather than CD4+ Foxp3+ T cells. Notably, neutralization of TGF‐β significantly impaired 1,25(OH)2D3‐mediated induction of CD73. Collectively, we show that 1,25(OH)2D3 enhances expression of CD73 on CD4+ Foxp3 T cells in a process that is at least partially TGF‐β‐dependent. These data reveal an additional contributing mechanism by which vitamin D may be protective in immune‐mediated disease.  相似文献   

7.
8.
Interleukin‐1α is mainly expressed on the cell membrane, but can also be secreted during inflammation. The roles of secreted and membrane IL‐1α in acute liver inflammation are still not known. Here, we examined the functions of secreted and membrane IL‐1α in a mouse model of carbon tetrachloride‐induced acute liver injury. We show that secreted IL‐1α aggravates liver damage and membrane IL‐1α slightly protects mice from liver injury. Further studies showed that secreted IL‐1α promotes T‐cell activation. It also increased the expansion of CD11b+Gr1+ myeloid cells, which may serve as a negative regulator of acute liver inflammation. Moreover, secreted IL‐1α induced IL‐6 production from hepatocytes. IL‐6 neutralization reduced the proliferation of CD11b+Gr1+ myeloid cells in vivo. CCL2 and CXCL5 expression was increased by secreted IL‐1α in vitro and in vivo. Antagonists of the chemokine receptors for CCL2 and CXCL5 significantly reduced the migration of CD11b+Gr1+ myeloid cells. These results demonstrate that secreted and membrane IL‐1α play different roles in acute liver injury. Secreted IL‐1α could promote T‐cell activation and the recruitment and expansion of CD11b+Gr1+ myeloid cells through induction of CCL2, CXCL5, and IL‐6. The controlled release of IL‐1α could be a critical regulator during acute liver inflammation.  相似文献   

9.
Occlusive transplant vasculopathy (TV) is the major cause for chronic graft rejection. Since endothelial cells (EC) are the first graft cells encountered by activated host lymphocytes, it is important to delineate the molecular mechanisms that coordinate the interaction of EC with activated T cells. Here, the interaction of CD8+ T cells with Ag‐presenting EC in vivo was examined using a transgenic heart transplantation model with β‐galactosidase (β‐gal) expression exclusively in EC (Tie2‐LacZ hearts). We found that priming with β‐gal peptide‐loaded DC failed to generate a strong systemic IFN‐γ response, but elicited pronounced TV in both IFN‐γ receptor (IFNGR)‐competent, and ifngr?/? Tie2‐LacZ hearts. In contrast, stimulation of EC‐specific CD8+ T cells with β‐gal‐recombinant mouse cytomegalovirus (MCMV‐LacZ) in recipients of ifngr+/+ Tie2‐LacZ hearts did not precipitate significant TV. However, MCMV‐LacZ infection of recipients of ifngr?/? Tie2‐LacZ hearts led to massive activation of β‐gal‐specific CD8 T cells, and led to development of fulminant TV. Further analyses revealed that the strong systemic IFN‐γ “storm” associated with MCMV infection induced upregulation of programmed death‐1 ligand 1 (PD‐L1) on EC, and subsequent attenuation of programmed death‐1 (PD‐1)‐expressing EC‐specific CD8+ T cells. Thus, IFNGR signaling in ECs activates a potent peripheral negative feedback circuit that protects vascularized grafts from occlusive TV.  相似文献   

10.
11.
Maintaining balanced levels of IL‐1β is extremely important to avoid host tissue damage during infection. Our goal was to understand the mechanisms behind the reduced pathology and decreased bacterial burdens in Ifnlr1?/? mice during lung infection with Staphylococcus aureus. Intranasal infection of Ifnlr1?/? mice with S. aureus led to significantly improved bacterial clearance, survival and decrease of proinflammatory cytokines in the airway including IL‐1β. Ifnlr1?/? mice treated with recombinant IL‐1β displayed increased bacterial burdens in the airway and lung. IL‐1β levels in neutrophils from Ifnlr1?/? infected mice lungs were decreased when compared to neutrophils from WT mice. Mice lacking NLRP3 and caspase‐1 had reduced IL‐1β levels 4 h after infection, due to reductions or absence of active caspase‐1 respectively, but levels at 24 h were comparable to WT infected mice. Ifnlr1?/? infected mice had decreases in both active caspase‐1 and neutrophil elastase indicating an important role for the neutrophil serine protease in IL‐1β processing. By inhibiting neutrophil elastase, we were able to decrease IL‐1β levels by 39% in Nlrp3?/? infected mice when compared to WT mice. These results highlight the crucial role of both proteases in IL‐1β processing, via inflammasome‐dependent and ‐independent mechanisms.  相似文献   

12.
Postganglionic sympathetic neurons innervate secondary lymphoid organs and secrete norepinephrine (NE) as the primary neurotransmitter. NE binds and signals through five distinct members of the adrenergic receptor family. In this study, we show elevated expression of the β2‐adrenergic receptor (ADRB2) on primary human CD8+ effector memory T cells. Treatment of both human and murine CD8+ T cells with NE decreased IFN‐γ and TNF‐α secretion and suppressed their cytolytic capacity in response to T‐cell receptor (TCR) activation. The effects of NE were specifically reversed by β 2‐specific antagonists. Adrb2?/? CD8+ T cells were completely resistant to the effects of NE. Further, the ADRB2‐specific pharmacological ligand, albuterol, significantly suppressed effector functions in both human and mouse CD8+ T cells. While both TCR activation and stimulation with IL‐12 + IL‐18 were able to induce inflammatory cytokine secretion, NE failed to suppress IFN‐γ secretion in response to IL‐12 + IL18. Finally, the long‐acting ADRB2‐specific agonist, salmeterol, markedly reduced the cytokine secretion capacity of CD8+ T cells in response to infection with vesicular stomatitis virus. This study reveals a novel intrinsic role for ADRB2 signaling in CD8+ T‐cell function and underscores the novel role this pathway plays in adaptive T‐cell responses to infection.  相似文献   

13.
14.
IL‐17 is produced not only by CD4+ αβ T cells, but also CD8+ αβ T cells, NKT cells, and γδ T cells, plus some non‐T cells, including macrophages and neutrophils. The ability of IL‐17 to deploy neutrophils to sites of inflammation imparts this cytokine with a key role in diseases of several types. Surprisingly, γδ T cells are responsible for much of the IL‐17 produced in several disease models, particularly early on.  相似文献   

15.
A role for NKT cells has been implicated in sepsis, but the mechanism by which NKT cells contribute to sepsis remains unclear. Here, we examined WT and NKT‐cell‐deficient mice of C57BL/6 background during cecal ligation and puncture‐induced sepsis. The levels of C5a, IFN‐γ, and IL‐10 were higher in the serum and peritoneal fluid of WT mice than in those of CD1d?/? mice, while the mortality rate was lower in CD1d?/? mice than in WT mice. C5a blockade decreased mortality of WT mice during sepsis, whereas it did not alter that of CD1d?/? mice. As assessed by intracellular staining, NKT cells expressed IFN‐γ, while neutrophils expressed IL‐10. Upon coculture, IL‐10‐deficient NKT cells enhanced IL‐10 production by WT, but not IFN‐γR‐deficient, neutrophils. Meanwhile, CD1d?/? mice exhibited high CD55 expression on neutrophils during sepsis, whereas those cells from WT mice expressed minimal levels of CD55. Recombinant IL‐10 administration into CD1d?/? mice reduced CD55 expression on neutrophils. Furthermore, adoptive transfer of sorted WT, but not IFN‐γ‐deficient, NKT cells into CD1d?/? mice suppressed CD55 expression on neutrophils, but increased IL‐10 and C5a levels. Taken together, IFN‐γ‐producing NKT cells enhance C5a generation via IL‐10‐mediated inhibition of CD55 expression on neutrophils, thereby exacerbating sepsis.  相似文献   

16.
17.
18.
TGF‐β and IL‐4 were recently shown to selectively upregulate IL‐9 production by naïve CD4+ T cells. We report here that TGF‐β interactions with IL‐1α, IL‐1β, IL‐18, and IL‐33 have equivalent IL‐9‐stimulating activities that function even in IL‐4‐deficient animals. This was observed after in vitro antigenic stimulation of immunized or unprimed mice and after polyclonal T‐cell activation. Based on intracellular IL‐9 staining, all IL‐9‐producing cells were CD4+ and 80–90% had proliferated, as indicated by reduced CFSE staining. In contrast to IL‐9, IL‐13 and IL‐17 were strongly stimulated by IL‐1 and either inhibited (IL‐13) or were unaffected (IL‐17) by addition of TGF‐β. IL‐9 and IL‐17 production also differed in their dependence on IL‐2 and regulation by IL‐1/IL‐23. As IL‐9 levels were much lower in Th2 and Th17 cultures, our results identify TGF‐β/IL‐1 and TGF‐β/IL‐4 as the main control points of IL‐9 synthesis.  相似文献   

19.
Designing CD8+ T‐cell vaccines, which would provide protection against tumors is still considered a great challenge in immunotherapy. Here we show the robust potential of cytomegalovirus (CMV) vector expressing the NKG2D ligand RAE‐1γ as CD8+ T cell‐based vaccine against malignant tumors. Immunization with the CMV vector expressing RAE‐1γ, delayed tumor growth or even provided complete protection against tumor challenge in both prophylactic and therapeutic settings. Moreover, a potent tumor control in mice vaccinated with this vector can be further enhanced by blocking the immune checkpoints TIGIT and PD‐1. CMV vector expressing RAE‐1γ potentiated expansion of KLRG1+ CD8+ T cells with enhanced effector properties. This vaccination was even more efficient in neonatal mice, resulting in the expansion and long‐term maintenance of epitope‐specific CD8+ T cells conferring robust resistance against tumor challenge. Our data show that immunomodulation of CD8+ T‐cell responses promoted by herpesvirus expressing a ligand for NKG2D receptor can provide a powerful platform for the prevention and treatment of CD8+ T‐cell sensitive tumors.  相似文献   

20.
γδ T cells are highly cytolytic lymphocytes that produce large amounts of pro‐inflammatory cytokines during immune responses to multiple pathogens. Furthermore, their ability to kill tumor cells has fueled the development of γδ‐T‐cell‐based cancer therapies. Thus, the regulation of γδ‐T‐cell activity is of great biological and clinical relevance. Here, we show that murine CD4+CD25+ αβ T cells, the vast majority of which express the Treg marker, Foxp3, abolish key effector functions of γδ T cells, namely the production of the pro‐inflammatory cytokines, IFN‐γ and IL‐17, cytotoxicity, and lymphocyte proliferation in vitro and in vivo. We further show that suppression is dependent on cellular contact between Treg and γδ T cells, results in the induction of an anergic state in γδ lymphocytes, and can be partially reversed by manipulating glucocorticoid‐induced TNF receptor‐related protein (GITR) signals. Our data collectively dissect a novel mechanism by which the expansion and pro‐inflammatory functions of γδ T cells are regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号