首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
This prospective case‐cohort study aimed to map the distribution of bone density in the proximal femur and examine its association with hip fracture. We analyzed baseline quantitative computed tomography (QCT) scans in 250 men aged 65 years or older, which comprised a randomly‐selected subcohort of 210 men and 40 cases of first hip fracture during a mean follow‐up period of 5.5 years. We quantified cortical, trabecular, and integral volumetric bone mineral density (vBMD), and cortical thickness (CtTh) in four quadrants of cross‐sections along the length of the femoral neck (FN), intertrochanter (IT), and trochanter (TR). In most quadrants, vBMDs and CtTh were significantly (p < 0.05) lower in cases compared to the subcohort and these deficits were present across the entire proximal femur. To examine the association of QCT measurements with hip fracture, we merged the two quadrants in the medial and lateral aspects of the FN, IT, and TR. At most sites, QCT measurements were associated significantly (p < 0.001) with hip fracture, the hazard ratio (HR) adjusted for age, body mass index (BMI), and clinical site for a 1‐SD decrease ranged between 2.28 (95% confidence interval [CI], 1.44–3.63) to 6.91 (95% CI, 3.11–15.53). After additional adjustment for total hip (TH) areal BMD (aBMD), trabecular vBMDs at the FN, TR, and TH were still associated with hip fracture significantly (p < 0.001), the HRs ranged from 3.21 (95% CI, 1.65–6.24) for the superolateral FN to 6.20 (95% CI, 2.71–14.18) for medial TR. QCT measurements alone or in combination did not predict fracture significantly (p > 0.05) better than TH aBMD. With an area under the receiver operating characteristic curve (AUC) of 0.901 (95% CI, 0.852–0.950), the regression model combining TH aBMD, age, and trabecular vBMD predicted hip fracture significantly (p < 0.05) better than TH aBMD alone or TH aBMD plus age. These findings confirm that both cortical and trabecular bone contribute to hip fracture risk and highlight trabecular vBMD at the FN and TR as an independent risk factor. © 2012 American Society for Bone and Mineral Research.  相似文献   

2.
Genetic factors likely contribute to the risk for vertebral fractures; however, there are few studies on the genetic contributions to vertebral fracture (VFrx), vertebral volumetric bone mineral density (vBMD), and geometry. Also, the heritability (h2) for VFrx and its genetic correlation with phenotypes contributing to VFrx risk have not been established. This study aims to estimate the h2 of vertebral fracture, vBMD, and cross‐sectional area (CSA) derived from quantitative computed tomography (QCT) scans and to estimate the extent to which they share common genetic association in adults of European ancestry from three generations of Framingham Heart Study (FHS) families. Members of the FHS families were assessed for VFrx by lateral radiographs or QCT lateral scout views at 13 vertebral levels (T4 to L4) using Genant's semiquantitative (SQ) scale (grades 0 to 3). Vertebral fracture was defined as having at least 25% reduction in height of any vertebra. We also analyzed QCT scans at the L3 level for integral (In.BMD) and trabecular (Tb.BMD) vBMD and CSA. Heritability estimates were calculated, and bivariate genetic correlation analysis was performed, adjusting for various covariates. For VFrx, we analyzed 4099 individuals (148 VFrx cases) including 2082 women and 2017 men from three generations. Estimates of crude and multivariable‐adjusted h2 were 0.43 to 0.69 (p < 1.1 × 10?2). A total of 3333 individuals including 1737 men and 1596 women from two generations had VFrx status and QCT‐derived vBMD and CSA information. Estimates of crude and multivariable‐adjusted h2 for vBMD and CSA ranged from 0.27 to 0.51. In a bivariate analysis, there was a moderate genetic correlation between VFrx and multivariable‐adjusted In.BMD (?0.22) and Tb.BMD (?0.29). Our study suggests vertebral fracture, vertebral vBMD, and CSA in adults of European ancestry are heritable, underscoring the importance of further work to identify the specific variants underlying genetic susceptibility to vertebral fracture, bone density, and geometry. © 2012 American Society for Bone and Mineral Research.  相似文献   

3.
In assessing osteoporotic fractures of the proximal femur, the main objective of this in vivo case‐control study was to evaluate the performance of quantitative computed tomography (QCT) and a dedicated 3D image analysis tool [Medical Image Analysis Framework—Femur option (MIAF‐Femur)] in differentiating hip fracture and non–hip fracture subjects. One‐hundred and seven women were recruited in the study, 47 women (mean age 81.6 years) with low‐energy hip fractures and 60 female non–hip fracture control subjects (mean age 73.4 years). Bone mineral density (BMD) and geometric variables of cortical and trabecular bone in the femoral head and neck, trochanteric, and intertrochanteric regions and proximal shaft were assessed using QCT and MIAF‐Femur. Areal BMD (aBMD) was assessed using dual‐energy X‐ray absorptiometry (DXA) in 96 (37 hip fracture and 59 non–hip fracture subjects) of the 107 patients. Logistic regressions were computed to extract the best discriminates of hip fracture, and area under the receiver characteristic operating curve (AUC) was calculated. Three logistic models that discriminated the occurrence of hip fracture with QCT variables were obtained (AUC = 0.84). All three models combined one densitometric variable—a trabecular BMD (measured in the femoral head or in the trochanteric region)—and one geometric variable—a cortical thickness value (measured in the femoral neck or proximal shaft). The best discriminant using DXA variables was obtained with total femur aBMD (AUC = 0.80, p = .003). Results highlight a synergistic contribution of trabecular and cortical components in hip fracture risk and the utility of assessing QCT BMD of the femoral head for improved understanding and possible insights into prevention of hip fractures. © 2011 American Society for Bone and Mineral Research.  相似文献   

4.
All people are exposed to cadmium (Cd) via food; smokers are additionally exposed. High Cd exposure is associated with severe bone damage, but the public health impact in relation to osteoporosis and fractures at low environmental exposure remains to be clarified. Within the population‐based Swedish Mammography Cohort, we assessed urinary Cd [U‐Cd, µg/g of creatinine (cr)] as a marker of lifetime exposure and bone mineral density (BMD) by dual‐energy X‐ray absorptiometry (DXA) among 2688 women. Register‐based information on fractures was retrieved from 1997 to 2009. Associations were evaluated by multivariable regression analyses. In linear regression, U‐Cd was inversely associated with BMD at the total body (p < .001), femoral neck (p = .025), total hip (p = .004), lumbar spine (p = .088), and volumetric femoral neck (p = .013). In comparison with women with U‐Cd < 0.50 µg/g of cr, those with U‐Cd ≥ 0.75 µg/g of cr had odds ratios (ORs) of 2.45 [95% confidence interval (CI) 1.51–3.97] and 1.97 (95% CI 1.24–3.14) for osteoporosis at the femoral neck and lumbar spine, respectively. Among never‐smokers, the corresponding ORs were 3.47 (95% CI 1.46–8.23) and 3.26 (95% CI 1.44–7.38). For any first fracture (n = 395), the OR was 1.16 (95% CI 0.89–1.50) comparing U‐Cd ≥ 0.50 µg/g of cr with lower levels. Among never‐smokers, the ORs (95% CIs) were 2.03 (1.33–3.09) for any first fracture, 2.06 (1.28–3.32) for first osteoporotic fracture, 2.18 (1.20–3.94) for first distal forearm fracture, and 1.89 (1.25–2.85) for multiple incident fractures. U‐Cd at low environmental exposure from food in a general population of women showed modest but significant association with both BMD and fractures, especially in never‐smokers, indicating a larger concern than previously known. © 2011 American Society for Bone and Mineral Research.  相似文献   

5.
Measurements of change in bone mineral density (BMD) are thought to be weak predictors of treatment effect on the reduction of fracture risk. In this study we report an alternative year-on-year approach for the estimation of treatment effect explained by BMD in which we examine the relationship between fracture risk and the most recent change in BMD. We studied 7736 postmenopausal women (ages 65 to 89 years) who were participants in the Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly-Pivotal Fracture Trial (HORIZON-PFT) and were randomized to either intravenous administration of zoledronic acid or placebo. The percentage of treatment effect explained by change in total hip BMD was estimated using the alternative year-on-year approach and the standard approach of looking at change over 3 years. We also studied a subset of 1132 women in whom procollagen type 1 amino-terminal propeptide (PINP) was measured at baseline and 12 months, to estimate the percentage of treatment effect explained by change in PINP. Regardless of the method used, the change in total hip BMD explained a large percentage of the effect of zoledronic acid in reducing new vertebral fracture risk (40%; 95% CI, 30% to 54%; for the 3-year analysis). The treatment effects for nonvertebral fracture were not statistically significant for the year-on-year analysis but 3-year change in BMD explained 61% (95% CI, 24% to 156%) of treatment effect. Change in PINP explained 58% (95% CI, 15% to 222%) of the effect of zoledronic acid in reducing new vertebral fracture risk. We conclude that our estimates of the percentage of treatment effect explained may be higher than in previous studies because of high compliance with zoledronic acid (due to its once-yearly intravenous administration). Previous studies may have underestimated the relationship between BMD change and the effect of treatment on fracture risk.  相似文献   

6.
Previous genome‐wide association studies (GWAS) have identified common variants in genes associated with variation in bone mineral density (BMD), although most have been carried out in combined samples of older women and men. Meta‐analyses of these results have identified numerous single‐nucleotide polymorphisms (SNPs) of modest effect at genome‐wide significance levels in genes involved in both bone formation and resorption, as well as other pathways. We performed a meta‐analysis restricted to premenopausal white women from four cohorts (n = 4061 women, aged 20 to 45 years) to identify genes influencing peak bone mass at the lumbar spine and femoral neck. After imputation, age‐ and weight‐adjusted bone‐mineral density (BMD) values were tested for association with each SNP. Association of an SNP in the WNT16 gene (rs3801387; p = 1.7 × 10?9) and multiple SNPs in the ESR1/C6orf97 region (rs4870044; p = 1.3 × 10?8) achieved genome‐wide significance levels for lumbar spine BMD. These SNPs, along with others demonstrating suggestive evidence of association, were then tested for association in seven replication cohorts that included premenopausal women of European, Hispanic‐American, and African‐American descent (combined n = 5597 for femoral neck; n = 4744 for lumbar spine). When the data from the discovery and replication cohorts were analyzed jointly, the evidence was more significant (WNT16 joint p = 1.3 × 10?11; ESR1/C6orf97 joint p = 1.4 × 10?10). Multiple independent association signals were observed with spine BMD at the ESR1 region after conditioning on the primary signal. Analyses of femoral neck BMD also supported association with SNPs in WNT16 and ESR1/C6orf97 (p < 1 × 10?5). Our results confirm that several of the genes contributing to BMD variation across a broad age range in both sexes have effects of similar magnitude on BMD of the spine in premenopausal women. These data support the hypothesis that variants in these genes of known skeletal function also affect BMD during the premenopausal period. © 2013 American Society for Bone and Mineral Research.  相似文献   

7.
The trabecular bone score (TBS) is an index of bone microarchitectural texture calculated from anteroposterior dual‐energy X‐ray absorptiometry (DXA) scans of the lumbar spine (LS) that predicts fracture risk, independent of bone mineral density (BMD). The aim of this study was to compare the effects of yearly intravenous zoledronate (ZOL) versus placebo (PLB) on LS BMD and TBS in postmenopausal women with osteoporosis. Changes in TBS were assessed in the subset of 107 patients recruited at the Department of Osteoporosis of the University Hospital of Berne, Switzerland, who were included in the HORIZON trial. All subjects received adequate calcium and vitamin D3. In these patients randomly assigned to either ZOL (n = 54) or PLB (n = 53) for 3 years, BMD was measured by DXA and TBS assessed by TBS iNsight (v1.9) at baseline and 6, 12, 24, and 36 months after treatment initiation. Baseline characteristics (mean ± SD) were similar between groups in terms of age, 76.8 ± 5.0 years; body mass index (BMI), 24.5 ± 3.6 kg/m2; TBS, 1.178 ± 0.1 but for LS T‐score (ZOL–2.9 ± 1.5 versus PLB–2.1 ± 1.5). Changes in LS BMD were significantly greater with ZOL than with PLB at all time points (p < 0.0001 for all), reaching +9.58% versus +1.38% at month 36. Change in TBS was significantly greater with ZOL than with PLB as of month 24, reaching +1.41 versus–0.49% at month 36; p = 0.031, respectively. LS BMD and TBS were weakly correlated (r = 0.20) and there were no correlations between changes in BMD and TBS from baseline at any visit. In postmenopausal women with osteoporosis, once‐yearly intravenous ZOL therapy significantly increased LS BMD relative to PLB over 3 years and TBS as of 2 years. © 2013 American Society for Bone and Mineral Research.  相似文献   

8.
After the age of 60 years, hip fracture risk strongly increases, but only a fifth of this increase is attributable to reduced bone mineral density (BMD, measured clinically). Changes in bone quality, specifically bone composition as measured by Fourier transform infrared spectroscopic imaging (FTIRI), also contribute to fracture risk. Here, FTIRI was applied to study the femoral neck and provide spatially derived information on its mineral and matrix properties in age‐matched fractured and nonfractured bones. Whole femoral neck cross sections, divided into quadrants along the neck's axis, from 10 women with hip fracture and 10 cadaveric controls were studied using FTIRI and micro‐computed tomography. Although 3‐dimensional micro‐CT bone mineral densities were similar, the mineral‐to‐matrix ratio was reduced in the cases of hip fracture, confirming previous reports. New findings were that the FTIRI microscopic variation (heterogeneity) of the mineral‐to‐matrix ratio was substantially reduced in the fracture group as was the heterogeneity of the carbonate‐to‐phosphate ratio. Conversely, the heterogeneity of crystallinity was increased. Increased variation of crystallinity was statistically associated with reduced variation of the carbonate‐to‐phosphate ratio. Anatomical variation in these properties between the different femoral neck quadrants was reduced in the fracture group compared with controls. Although our treatment‐naive patients had reduced rather than increased bending resistance, these changes in heterogeneity associated with hip fracture are in another way comparable to the effects of experimental bisphosphonate therapy, which decreases heterogeneity and other indicators of bone's toughness as a material. © 2013 American Society for Bone and Mineral Research  相似文献   

9.
Understanding the etiology of skeletal fragility during growth is critical for the development of treatments and prevention strategies aimed at reducing the burden of childhood fractures. Thus we evaluated the relationship between prior fracture and bone parameters in young girls. Data from 465 girls aged 8 to 13 years from the Jump‐In: Building Better Bones study were analyzed. Bone parameters were assessed at metaphyseal and diaphyseal sites of the nondominant femur and tibia using peripheral quantitative computed tomography (pQCT). Dual‐energy X‐ray absorptiometry (DXA) was used to assess femur, tibia, lumbar spine, and total body less head bone mineral content. Binary logistic regression was used to evaluate the relationship between prior fracture and bone parameters, controlling for maturity, body mass, leg length, ethnicity, and physical activity. Associations between prior fracture and all DXA and pQCT bone parameters at diaphyseal sites were nonsignificant. In contrast, lower trabecular volumetric BMD (vBMD) at distal metaphyseal sites of the femur and tibia was significantly associated with prior fracture. After adjustment for covariates, every SD decrease in trabecular vBMD at metaphyseal sites of the distal femur and tibia was associated with 1.4 (1.1–1.9) and 1.3 (1.0–1.7) times higher fracture prevalence, respectively. Prior fracture was not associated with metaphyseal bone size (ie, periosteal circumference). In conclusion, fractures in girls are associated with lower trabecular vBMD, but not bone size, at metaphyseal sites of the femur and tibia. Lower trabecular vBMD at metaphyseal sites of long bones may be an early marker of skeletal fragility in girls. © 2011 American Society for Bone and Mineral Research.  相似文献   

10.
The relative contributions of calcium and vitamin D to calcium metabolism and bone mineral density (BMD) have been examined previously, but not in a population with very low calcium intake. To determine the relative importance of dietary calcium intake and serum 25‐hydroxyvitamin D [25(OH)D] concentration to calcium metabolism and bone mass in a population with low calcium intake, a total of 4662 adults (2567 men and 2095 women) ≥50 years of age from the 2009–2010 Korea National Health and Nutrition Examination Survey (KNHANES) were divided into groups according to dietary calcium intakes (quintiles means: 154, 278, 400, 557, and 951 mg/d) and serum 25(OH)D concentrations (<50, 50–75, and >75 nmol/L). Serum intact parathyroid hormone (PTH) and femoral neck and lumbar spine BMD were evaluated according to dietary calcium intake and serum 25(OH)D. Mean calcium intake was 485 mg/d; mean serum 25(OH)D concentration was 48.1 nmol/L; PTH was 68.4 pg/mL; femoral neck BMD was 0.692 g/cm2; and lumbar spine BMD was 0.881 g/cm2. Lower dietary calcium intakes were significantly associated with higher serum PTH concentrations and lower femoral neck BMD, not only at lower (<50 nmol/L) but also at higher (>75 nmol/L) serum 25(OH)D concentrations. Serum PTH was highest and femoral neck BMD was lowest in the group, with a serum 25(OH)D less than 50 nmol/L. In this low‐intake population, calcium intake is a significant determinant of serum PTH and BMD at higher as well as lower 25(OH)D levels. This finding indicates that low calcium intake cannot be compensated for with higher 25(OH)D levels alone. As expected, serum 25(OH)D levels were inversely associated with serum PTH and BMD. A calcium intake of at least 668 mg/d and a serum 25(OH)D level of at least 50 nmol/L may be needed to maintain bone mass in this calcium deficient population. © 2013 American Society for Bone and Mineral Research.  相似文献   

11.
The selective cathepsin K inhibitor odanacatib (ODN) progressively increased bone mineral density (BMD) and decreased bone‐resorption markers during 2 years of treatment in postmenopausal women with low BMD. A 1‐year extension study further assessed ODN efficacy and safety and the effects of discontinuing therapy. In the base study, postmenopausal women with BMD T‐scores between ?2.0 and ?3.5 at the lumbar spine or femur received placebo or ODN 3, 10, 25, or 50 mg weekly. After 2 years, patients (n = 189) were rerandomized to ODN 50 mg weekly or placebo for an additional year. Endpoints included BMD at the lumbar spine (primary), total hip, and hip subregions; levels of bone turnover markers; and safety assessments. Continued treatment with 50 mg of ODN for 3 years produced significant increases from baseline and from year 2 in BMD at the spine (7.9% and 2.3%) and total hip (5.8% and 2.4%). Urine cross‐linked N‐telopeptide of type I collagen (NTx) remained suppressed at year 3 (?50.5%), but bone‐specific alkaline phosphatase (BSAP) was relatively unchanged from baseline. Treatment discontinuation resulted in bone loss at all sites, but BMD remained at or above baseline. After ODN discontinuation at month 24, bone turnover markers increased transiently above baseline, but this increase largely resolved by month 36. There were similar overall adverse‐event rates in both treatment groups. It is concluded that 3 years of ODN treatment resulted in progressive increases in BMD and was generally well tolerated. Bone‐resorption markers remained suppressed, whereas bone‐formation markers returned to near baseline. ODN effects were reversible: bone resorption increased transiently and BMD decreased following treatment discontinuation. © 2011 American Society for Bone and Mineral Research.  相似文献   

12.
Polyunsaturated fatty acids (PUFAs) may influence bone health. The objective of this work was to examine associations between plasma phosphatidylcholine (PC) PUFA concentrations and hip measures: (1) femoral neck bone mineral density (FN‐BMD) (n = 765); (2) 4‐year change in FN‐BMD (n = 556); and (3) hip fracture risk (n = 765) over 17‐year follow‐up among older adults in the Framingham Osteoporosis Study. BMD measures were regressed on quintile of plasma PC PUFAs (docosahexaenoic acid [DHA], linoleic acid [LA], and arachidonic acid [AA]), adjusted for covariates. Hazard ratios (HR) and 95% confidence interval (CI) for hip fracture were estimated by quintile of plasma PC PUFAs, adjusted for covariates. Higher concentrations of PC DHA were associated with loss of FN‐BMD over 4 years in women (p‐trend = 0.04), but was protective in men in the uppermost quintile compared to men grouped in the lower four quintiles, in post hoc analysis (p = 0.01). PC LA concentrations were inversely associated with baseline FN‐BMD in women (p‐trend = 0.02), and increased hip fracture risk in women and men (p‐trend = 0.05), but body mass index (BMI) adjustment attenuated these associations (p‐trend = 0.12 and p‐trend = 0.14, respectively). A trend toward a protective association was observed between PC AA and baseline FN‐BMD in men (p‐trend = 0.06). Women and men with the highest PC AA concentrations had 51% lower hip fracture risk than those with the lowest (HR = 0.49, 95% CI = 0.24–1.00). Opposing effects of PC DHA on FN‐BMD loss observed in women and men need further clarification. Bone loss associated with PC LA may be confounded by BMI. High PC AA concentrations may be associated with reduced hip fracture risk. © 2012 American Society for Bone and Mineral Research.  相似文献   

13.
Low 25‐hydroxyvitamin D [25(OH)D] levels have been linked to hip fracture in white women. To study the association of 25(OH)D with risk of fracture in multiethnic women, we performed a nested case‐control study within the prospective Women's Health Initiative (WHI) Observational Study. Incident fractures were identified in 381 black, 192 Hispanic, 113 Asian, and 46 Native American women over an average of 8.6 years. A random sample of 400 white women who fractured was chosen. One control individual was selected per case and matched on age, race/ethnicity, and blood draw date. 25(OH)D, parathyroid hormone, and vitamin D–binding protein (DBP) were measured in fasting baseline serum. Conditional logistic regression models were used to calculate the odds ratio (OR) and 95% CI. In multivariable models, higher 25(OH)D levels compared with levels less than 20 ng/mL were associated with a lower risk of fracture in white women (20 to <30 ng/mL: OR = 0.82, 95% CI 0.58–1.16; ≤30.0 ng/mL: OR = 0.56, 95% CI 0.35–0.90; p trend = 0.02). In contrast, higher 25(OH)D (≥20 ng/mL) compared with levels less than 20 ng/mL were associated with a higher risk of fracture in black women (OR = 1.45, 95% CI 1.06–1.98; p trend = 0.043). Higher 25(OH)D (≥30.0 ng/mL) was associated with higher fracture risk in Asian women after adjusting for DBP (OR = 2.78, 95% CI 0.99–7.80; p trend = 0.04). There was no association between 25(OH)D and fracture in Hispanic or Native American women. Our results suggest divergent associations between 25(OH)D and fracture by race/ethnicity. The optimal level of 25(OH)D for skeletal health may differ in white and black women. © 2011 American Society for Bone and Mineral Research  相似文献   

14.
The effect of the combined administration of vitamin D3 and vitamin K2 on bone mineral density (BMD) of the lumbar spine was examined in postmenopausal women with osteoporosis. Ninety-two osteoporotic women who were more than 5 years after menopause, aged 55–81 years, were randomly divided into four administration groups: vitamin D3 (1α hydroxyvitamin D3, 0.75 μg/day) (D group; n = 29), vitamin K2 (menatetrenone, 45 mg/day) (K group; n = 22), vitamin D3 plus vitamin K2 (DK group, n = 21), and calcium (calcium lactate, 2 g/day) (C group; n = 20). BMD of the lumbar spine (L2–L4) was measured by dual energy X-ray absorptiometry at 0, 1, and 2 years after the treatment started. There were no significant differences in age, body mass index, years since menopause, and initial BMD among the four groups. One-way analysis of variance (ANOVA) with repeated measurements showed a significant decrease in BMD in the C group (P < 0.001). Two-way ANOVA with repeated measurements showed a significant increase in BMD in the D and K groups compared with that in the C group (P < 0.05 and P < 0.001, respectively), and a significant increase in BMD in the DK group compared with that in the C, D, and K groups (P < 0.0001, P < 0.05 and P < 0.01, respectively). These findings indicate that combined administration of vitamin D3 and vitamin K2, compared with calcium administration, appears to be useful in increasing the BMD of the lumbar spine in postmenopausal women with osteoporosis. Received: January 13, 2000 / Accepted: June 5, 2000  相似文献   

15.
Osteogenesis and angiogenesis are closely associated with the reparative process in bone. In osteonecrosis of the femoral head (ONFH), although the progression of bone resorption by osteoclasts is considered to be followed by femoral head collapse, the reparative reaction remains unknown. In order to investigate the reparative reaction in patients with ONFH, the distribution of TRAP‐ positive cells and expression of HIF‐1α, VEGF, and FGF‐2 were observed in 51 hips in 42 patients. TRAP‐positive cells were detected around the teres insertion and retinaculum in the early radiologic stage, and increased around the new trabecular bone throughout the reparative interface zone in the late collapsed stage. HIF‐1α expression was detected at the fibrosis area and the transitional area, which included the proximal area of the reparative interface zone adjacent to the necrotic zone. VEGF was expressed at the edematous area of the reparative interface zone, while FGF‐2 was detected widely in the reparative interface zone and the normal zone. In the late radiologic stages, HIF‐1α, VEGF, and FGF‐2 were not detected in the necrotic zone, and they acted in angiogenesis in the reparative interface zone, while TRAP‐positive cells increased around the new bone formation in response to remodeling after the collapse. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 694–700, 2009  相似文献   

16.
17.
The alternative NF‐κB pathway consists predominantly of NF‐κB‐inducing kinase (NIK), IκB kinase α (IKKα), p100/p52, and RelB. The hallmark of the alternative NF‐κB signaling is the processing of p100 into p52 through NIK, thus allowing the binding of p52 and RelB. The physiologic relevance of alternative NF‐κB activation in bone biology, however, is not well understood. To elucidate the role of the alternative pathway in bone homeostasis, we first analyzed alymphoplasic (aly/aly) mice, which have a defective NIK and are unable to process p100, resulting in the absence of p52. We observed increased bone mineral density (BMD) and bone volume, indicating an osteopetrotic phenotype. These mice also have a significant defect in RANKL‐induced osteoclastogenesis in vitro and in vivo. NF‐κB DNA‐binding assays revealed reduced activity of RelA, RelB, and p50 and no binding activity of p52 in aly/aly osteoclast nuclear extracts after RANKL stimulation. To determine the role of p100 itself without the influence of a concomitant lack of p52, we used p100?/? mice, which specifically lack the p100 inhibitor but still express p52. p100?/? mice have an osteopenic phenotype owing to the increased osteoclast and decreased osteoblast numbers that was rescued by the deletion of one allele of the relB gene. Deletion of both allele of relB resulted in a significantly increased bone mass owing to decreased osteoclast activity and increased osteoblast numbers compared with wild‐type (WT) controls, revealing a hitherto unknown role for RelB in bone formation. Our data suggest a pivotal role of the alternative NF‐κB pathway, especially of the inhibitory role of p100, in both basal and stimulated osteoclastogenesis and the importance of RelB in both bone formation and resorption. © 2010 American Society for Bone and Mineral Research  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号