首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background Epidemiological and experimental data suggest that bacterial lipopolysaccharides (LPS) can either protect from or exacerbate allergic asthma. Lipopolysaccharides trigger immune responses through toll‐like receptor 4 (TLR4) that in turn activates two major signalling pathways via either MyD88 or TRIF adaptor proteins. The LPS is a pro‐Type 1 T helper cells (Th1) adjuvant while aluminium hydroxide (alum) is a strong Type 2 T helper cells (Th2) adjuvant, but the effect of the mixing of both adjuvants on the development of lung allergy has not been investigated. Objective We determined whether natural (LPS) or synthetic (ER‐803022) TLR4 agonists adsorbed onto alum adjuvant affect allergen sensitization and development of airway allergic disease. To dissect LPS‐induced molecular pathways, we used TLR4‐, MyD88‐, TRIF‐, or IL‐12/IFN‐γ‐deficient mice. Methods Mice were sensitized with subcutaneous injections of ovalbumin (OVA) with or without TLR4 agonists co‐adsorbed onto alum and challenged with intranasally with OVA. The development of allergic lung disease was evaluated 24 h after last OVA challenge. Results Sensitization with OVA plus LPS co‐adsorbed onto alum impaired in dose‐dependent manner OVA‐induced Th2‐mediated allergic responses such as airway eosinophilia, type‐2 cytokines secretion, airway hyper‐reactivity, mucus hyper production and serum levels of IgE or IgG1 anaphylactic antibodies. Although the levels of IgG2a, Th1‐affiliated isotype increased, investigation into the lung‐specific effects revealed that LPS did not induce a Th1 pattern of inflammation. Lipopolysaccharides impaired the development of Th2 immunity, signaling via TLR4 and MyD88 molecules and via the IL‐12/IFN‐γ axis, but not through TRIF pathway. Moreover, the synthetic TLR4 agonists that proved to have a less systemic inflammatory response than LPS also protected against allergic asthma development. Conclusion Toll‐like receptor 4 agonists co‐adsorbed with allergen onto alum down‐modulate allergic lung disease and prevent the development of polarized T cell‐mediated airway inflammation.  相似文献   

2.
Tuberculosis remains the most hazardous bacterial infection worldwide. The causative agent, Mycobacterium tuberculosis, is a facultative intracellular pathogen of resting MΦ. IFN‐γ secreted by natural killer, CD4 Th 1 and CD8 T cells upon instruction by IL‐12 and ‐18 activates MΦ to restrict mycobacterial growth. Production of both cytokines is induced by TLR signalling in DC and MΦ. Mice deficient for the TLR adaptor, MyD88, are highly susceptible to M. tuberculosis infection. Shared usage of MyD88 by signalling cascades for TLR and receptors for IL‐1 and IL‐18 prompted us to revisit the role of IL‐18 during experimental infection with M. tuberculosis. We show that mice deficient for IL‐18 and MyD88 but not for IL‐18 receptor promptly succumbed to M. tuberculosis infection in contrast to WT or TLR‐2/‐4 double KO mice indicating that lack of IL‐18 contributes to the high susceptibility of MyD88 KO mice to M. tuberculosis. Without IL‐18, the protective Th1 response was decreased and hence, mycobacterial propagation was favoured. Neutrophil‐driven lung immunopathology concomitant with unrestrained growth of tubercle bacilli are most likely responsible for the premature death of IL‐18 KO mice. Thus, IL‐18 plays a decisive role in protective immunity against tuberculosis.  相似文献   

3.
We have previously shown that MyD88 knockout (KO) mice exhibit delayed clearance of Chlamydia muridarum genital infection compared to wild-type (WT) mice. A blunted Th1 response and ineffective suppression of the Th2 response were also observed in MyD88 KO mice. The goal of the present study was to investigate specific mechanisms whereby absence of MyD88 leads to these effects and address the compensatory mechanisms in the genital tract that ultimately clear infection in the absence of MyD88. It was observed that NK cells recruited to the genital tract in MyD88 KO mice failed to produce gamma interferon (IFN-γ) mRNA and protein. This defect was associated with decreased local production of interleukin-17 (IL-17), IL-18, and tumor necrosis factor alpha (TNF-α) but normal levels of IL-12p70. Additionally, recruitment of CD4 T cells to the genital tract was reduced in MyD88 KO mice compared to that in WT mice. Although chronic infection in MyD88 KO mice resulted in oviduct pathology comparable to that of WT mice, increased histiocytic inflammation was observed in the uterine horns. This was associated with increased CCL2 levels and recruitment of macrophages as a potential compensatory mechanism. Further deletion of TLR4-TRIF signaling in MyD88 KO mice, using TLR4/MyD88 double-KO mice, did not further compromise host defense against chlamydiae, suggesting that compensatory mechanisms are Toll-like receptor (TLR) independent. Despite some polarization toward a Th2 response, a Th1 response remained predominant in the absence of MyD88, and it provided equivalent protection against a secondary infection as observed in WT mice.  相似文献   

4.
Mycobacterium avium has been reported to signal through both Toll‐like receptor (TLR2) and TLR9. To investigate the role of TLR6 in innate immune responses to M. avium, TLR6, MyD88, TLR2, and TLR2/6 KO mice were infected with this pathogen. Bacterial burdens were higher in the lungs and livers of infected TLR6, TLR2, TLR2/6, and MyD88 KO mice compared with those in C57BL/6 mice, which indicates that TLR6 is required for the efficient control of M. avium infection. However, TLR6 KO spleen cells presented with normal M. avium induced IFN‐γ responses as measured by ELISA and flow cytometry. In contrast, the production of IFN‐γ in lung tissue was diminished in all studied KO mice. Furthermore, only MyD88 deficiency reduced granuloma areas in mouse livers. Moreover, we determined that TLR6 plays an important role in controlling bacterial growth within macrophages and in the production of TNF‐α, IL‐12, and IL‐6 by M. avium infected DCs. Finally, the lack of TLR6 reduced activation of MAPKs and NF‐κB in DCs. In summary, TLR6 is required for full resistance to M. avium and for the activation of DCs to produce proinflammatory cytokines.  相似文献   

5.
Antigen‐induced allergic airway inflammation is mediated by T helper type 2 (Th2) cells and their cytokines, but the mechanism that initiates the Th2 immunity is not fully understood. Recent studies show that basophils play important roles in initiating Th2 immunity in some inflammatory models. Here we explored the role of basophils in ovalbumin (OVA) ‐induced airway allergic inflammation in BALB/c mice. We found that OVA sensitization and challenge resulted in a significant increase in the amount of basophils in blood and lung, along with the up‐regulation of activation marker of CD200R. However, depletion of basophils with MAR‐1 or Ba103 antibody attenuated airway inflammation, represented by the significantly decreased amount of the Th2 subset in spleen and draining lymph nodes, interlukin‐4 level in lung and OVA‐special immunoglobulin E (sIgE) levels in serum. On the other hand, adoptive transfer of basophils from OVA‐challenged lung tissue to naive BALB/c mice provoked the Th2 immune response. In addition, pulmonary basophils from OVA‐challenged mice were able to uptake DQ‐OVA and express MHC class II molecules and CD40 in vivo, as well as to release interleukin‐4 following stimulation by IgE–antigen complexes and promote Th2 polarization in vitro. These findings demonstrate that basophils may participate in Th2 immune responses in antigen‐induced allergic airway inflammation and that they do so through facilitating antigen presentation and providing interleukin‐4.  相似文献   

6.
We investigated the roles of Toll-like receptor 2 (TLR2) and myeloid differentiation factor 88 (MyD88) in the course of a lymphocytic choriomeningitis virus (LCMV) infection and revealed the following: (i) studies of transfected cells and murine peritoneal macrophages demonstrated that TLR2 and MyD88 are essential for the initial pro-inflammatory cytokine response (human IL-8, mouse IL-6) to LCMV; (ii) TLR2 knockout (KO) mice and MyD88 KO mice challenged with LCMV produced less IL-6 and monocyte chemotactic protein-1 in the serum than wild-type mice; (iii) in contrast to inflammatory cytokines, the production of type 1 IFN (IFN-alpha) in response to LCMV was MyD88 independent; (iv) MyD88 plays an essential role in antiviral CD8(+) T cell responses, CD8(+) T cells in MyD88 KO mice were defective in their expression of intracellular antiviral cytokines; and (v) the failure of MyD88 KO mice to activate CD8(+) T cells was accompanied by persistent viral infection in MyD88 KO mice. We demonstrate that TLR-mediated responses are important in the innate immune response to LCMV and that MyD88 is essential for the control of the LCMV infection and the maturation/activation of virus-specific CD8(+) T cells.  相似文献   

7.
BACKGROUND: Lactic acid bacteria (LAB) were reported to reduce some allergic manifestations in mice and humans but their impact on the aeroallergen-dependent immune mechanisms is still debated. OBJECTIVE: The potential capacities of Lactobacillus plantarum NCIMB8826 to reduce the allergic response induced by Der p 1, the major house dust mite allergen of Dermatophagoides pteronyssinus, were evaluated in vivo and in vitro. Methods First, the effect of the intranasal co-administration of LAB and purified Der p 1 allergen before a sensitization protocol was evaluated. The allergen-specific antibody and cellular responses as well as airway inflammation were measured. Second, the impact of LAB on the cytokine profile of spleens cells from Der p 1-sensitized mice was assessed. Third, upon stimulation with LAB, the levels of cytokine produced by dendritic cells derived from the bone marrow (BMDCs) of wild-type, Toll-like receptor 2 (TLR2)-, TLR4- and MyD88-KO mice were compared. Results The co-application of L. plantarum and Der p 1 induced a T-helper type 1 (Th1)-biased allergen-specific IgG response, the absence of specific IgE response and favoured the production of INF-gamma upon allergen re-stimulation. Moreover, the previous LAB administration reduced the development of bronchoalveolar lavage eosinophilia usually induced by aerosol exposure. Additionally, the studied LAB strain was shown to modify in vitro the cytokine level produced by Der p 1-sensitized spleen cells mainly towards a Th1 profile. Finally, L. plantarum stimulated high IL-12 and moderate IL-10 production in mouse BMDCs notably through the TLR2-, MyD88-dependent and TLR4-independent pathway. CONCLUSION: In vivo co-administration of probiotic LAB with Der p 1 might prevent the development of the mite allergic response. The probiotic L. plantarum was shown to display in vitro therapeutic potentials for the treatment of allergy and to trigger the immune system by a TLR2- and MyD88-dependent signalling pathway.  相似文献   

8.
BACKGROUND: Recognition of foreign substances by innate immunity through pattern recognition receptors (PRRs) regulates acquired immunity such as allergic reaction. Because PRRs recognize heterogeneous ligands, daily food intake can potentially regulate immune allergic reaction. OBJECTIVE: Elucidation of the effect of lambda-carrageenan on allergic reactions was aimed. METHOD: IFN-gamma and IL-4 was measured in in vitro T cell-stimulated culture. Cytokine production from macrophages in response to lambda-carrageenan was measured as indicator for innate immunity activation. Mice were immunized with OVA in alum to induce specific IgE, and then histamine release was induced by systemic injection of OVA. RESULTS: Activation of innate immunity by lambda-carrageenan is dependent on Toll-like receptor-4 (TLR4) and MyD88, in which induction of pro-inflammatory cytokines such as TNF-alpha and IL-6 was largely impaired in macrophages from TLR4- and MyD88-deficient mice. Footpad oedema, a model for in vivo inflammatory reactions, was significantly reduced in these mice. Similar to recent evidence showing a preference for the stimulation of Th1 via TLR/MyD88 signalling, lambda-carrageenan showed enhanced IFN-gamma and decreased IL-4 in stimulated T cell cultures. Interestingly, increased IFN-gamma production was still seen in TLR4- and MyD88-deficient splenocytes. Oral administration of lambda-carrageenan to immunized mice successfully decreased OVA-specific IgE, and lambda-carrageenan was also effective in previously immunized mice. Further, serum histamine release upon systemic challenge of OVA was significantly inhibited. Neither OVA-specific IgG1/IgG2a nor cytokine secretion from in vitro cultures were altered, suggesting the involvement of multiple PRRs as demonstrated by TLR4/MyD88-independent IFN-gamma up-regulation. The simultaneous feeding of OVA with lipopolysaccharide abrogated oral tolerance, but lambda-carrageenan was not only devoid of such an effect but was also found to promote oral tolerance in the absence of TLR4. CONCLUSION: lambda-Carrageenan was suggested to be a useful dietary supplement to ameliorate allergic reactions while maintaining oral tolerance-dependent intestinal homeostasis.  相似文献   

9.
Bacterial products (such as endotoxins and flagellin) trigger innate immune responses through TLRs. Flagellin‐induced signalling involves TLR5 and MyD88 and, according to some reports, TLR4. Whereas epithelial and dendritic cells are stimulated by flagellin in vitro, the cell contribution to the in vivo response is still unclear. Here, we studied the respective roles of radioresistant and radiosensitive cells in flagellin‐induced airway inflammation in mice. We found that i.n. delivery of flagellin elicits a transient change in respiratory function and an acute, pro‐inflammatory response in the lungs, characterized by TLR5‐ and MyD88‐dependent chemokine secretion and neutrophil recruitment. In contrast, TLR4, CD14 and TRIF were not essential for flagellin‐mediated responses, indicating that TLR4 does not cooperate with TLR5 in the lungs. Respiratory function, chemokine secretion and airway infiltration by neutrophils were dependent on radioresistant, TLR5‐expressing cells. Furthermore, lung haematopoietic cells also responded to flagellin by activating TNF‐α production. We suggest that the radioresistant lung epithelial cells are essential for initiating early, TLR5‐dependent signalling in response to flagellin and thus triggering the lung's innate immune responses.  相似文献   

10.
Host resistance to Leishmania major is highly dependent on the development of a Th1 immune response. The TLR adaptator myeloid differentiation protein 88 (MyD88) has been implicated in the Th1 immune response associated with the resistant phenotype observed in C57BL/6 mice after infection with L. major. To investigate whether the MyD88 pathway is differentially used by distinct substrains of parasites, MyD88−/− C57BL/6 mice were infected with two substrains of L. major, namely L. major LV39 and L. major IR75. MyD88−/− mice were susceptible to both substrains of L. major, although with different kinetics of infection. The mechanisms involved during the immune response associated with susceptibility of MyD88−/− mice to L. major is however, parasite substrain‐dependent. Susceptibility of MyD88−/− mice infected with L. major IR75 is a consequence of Th2 immune‐deviation, whereas susceptibility of MyD88−/− mice to infection with L. major LV39 resulted from an impaired Th1 response. Depletion of regulatory T cells (Treg) partially restored IFN‐γ secretion and the Th1 immune response in MyD88−/− mice infected with L. major LV39, demonstrating a role of Treg activity in the development of an impaired Th1 response in these mice.  相似文献   

11.
《Mucosal immunology》2015,8(6):1237-1247
Beryllium exposure results in beryllium hypersensitivity in a subset of exposed individuals, leading to granulomatous inflammation and fibrosis in the lung. In addition to its antigenic properties, beryllium has potent adjuvant activity that contributes to sensitization via unknown pathways. Here we show that beryllium induces cellular death and release of interleukin (IL)-1α and DNA into the lung. Release of IL-1α was inflammasome independent and required for beryllium-induced neutrophil recruitment into the lung. Beryllium enhanced classical dendritic cell (cDC) migration from the lung to draining lymph nodes (LNs) in an IL-1R-independent manner, and the accumulation of activated cDCs in the LN was associated with increased priming of CD4+ T cells. DC migration was reduced in Toll-like receptor 9 knockout (TLR9KO) mice; however, cDCs in the LNs of TLR9-deficient mice were highly activated, suggesting a role for more than one innate receptor in the effects on DCs. The adjuvant effects of beryllium on CD4+ T-cell priming were similar in wild-type, IL-1R-, caspase-1-, TLR2-, TLR4-, TLR7-, and TLR9-deficient mice. In contrast, DC migration, activation, and the adjuvant effects of beryllium were significantly reduced in myeloid differentiation primary response gene 88 knockout (MyD88KO) mice. Collectively, these data suggest that beryllium exposure results in the release of damage-associated molecular patterns that engage MyD88-dependent receptors to enhance pulmonary DC function.  相似文献   

12.
Asthma is a highly prevalent chronic allergic inflammatory disease of the airways affecting people worldwide. House dust mite (HDM) is the most common allergen implicated in human allergic asthma. HDM‐induced allergic responses are thought to depend upon activation of pathways involving Toll‐like receptors and their adaptor protein myeloid differentiation factor 88 (MyD88). We sought here to determine the role of MyD88 in myeloid and type II lung epithelial cells in the development of asthma‐like allergic disease using a mouse model. Repeated exposure to HDM caused allergic responses in control mice characterized by influx of eosinophils into the bronchoalveolar space and lung tissue, lung pathology and mucus production and protein leak into bronchoalveolar lavage fluid. All these responses were abrogated in mice with a general deficiency of MyD88 but unaltered in mice with MyD88 deficiency, specifically in myeloid or type II lung epithelial cells. We conclude that cells other than myeloid or type II lung epithelial cells are responsible for MyD88‐dependent HDM‐induced allergic airway inflammation.  相似文献   

13.
MyD88 is an adapter protein required for the induction of proinflammatory cytokines by most Toll-like receptors (TLR), and Pseudomonas aeruginosa expresses ligands for multiple TLRs. MyD88(-/-) (KO) mice are highly susceptible to aerosolized P. aeruginosa, failing to elicit an early inflammatory response and permitting a 3-log increase in bacterial CFU in the lungs by 24 h after infection. We hypothesized that alveolar macrophages are the first cells to recognize and kill aerosolized P. aeruginosa in an MyD88-dependent fashion due to their location within the airways. To determine which cells in the lungs mediate MyD88-dependent defenses against P. aeruginosa, we generated radiation bone marrow (BM) chimeras between MyD88KO and wild-type (WT) mice. MyD88KO mice transplanted with MyD88KO BM (MyD88KO-->MyD88KO mice) displayed uncontrolled bacterial replication, whereas all other chimeras controlled the infection by 24 h. However, at 4 h, both MyD88KO-->MyD88KO and WT-->MyD88KO mice permitted intrapulmonary bacterial replication, whereas MyD88KO-->WT and WT-->WT mice did not, indicating that the source of BM had little impact on the early control of infection. Similarly, the genotype of the recipient rather than that of the BM donor determined early neutrophil recruitment to the lungs. Whereas intrapulmonary TNF-alpha and IL-1beta production were associated with WT BM, levels of the CXC chemokines MIP-2 and KC as well as GM-CSF were associated with recipient genotype. We conclude that lung parenchymal and BM-derived cells collaborate in the MyD88-dependent response to P. aeruginosa infection in the lungs in mice.  相似文献   

14.
To investigate the role of Toll-like receptor 9 (TLR9) in innate immunity to Mycobacterium avium, TLR9, TLR2, and MyD88 knockout (KO) mice were infected with this bacterium. Bacterial burdens were higher in the spleens, livers, and lungs of infected TLR9 KO mice than in those of C57BL/6 mice, indicating that TLR9 is required for efficient control of M. avium infection. However, TLR9 KO or TLR2 KO spleen cells displayed normal M. avium-induced tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) responses. This finding was confirmed by determining the number of splenic CD4(+) T cells producing IFN-γ by flow cytometry. Furthermore, TLR2 and MyD88, but not TLR9, played a major role in interleukin-12 and TNF-α production by M. avium-infected macrophages and dendritic cells (DCs). We also found that major histocompatibility complex class II molecule expression on DCs is regulated by TLR2 and MyD88 signaling but not by TLR9. Finally, lack of TLR9, TLR2, or MyD88 reduced the numbers of macrophages, epithelioid cells, and lymphocytes in M. avium-induced granulomas but only MyD88 deficiency affected the number of liver granulomas. In summary, our data demonstrated that the involvement of TLR9 in the control of M. avium infection is not related to the induction of Th1 responses.  相似文献   

15.
Citrobacter koseri (C. koseri) is a Gram-negative bacterium that can cause a highly aggressive form of neonatal meningitis, which often progresses to establish multi-focal brain abscesses. The roles of Toll-like receptor 4 (TLR4) and its signaling adaptor MyD88 during CNS C. koseri infection have not yet been examined, which is important since recent evidence indicates that innate immune responses are tailored towards specific pathogen classes. Here TLR4 WT (C3H/FeJ) and TLR4 mutant (C3H/HeJ) mice as well as MyD88 KO animals were infected intracerebrally with live C. koseri, resulting in meningitis and ventriculitis with accompanying brain abscess formation. MyD88 KO mice were exquisitely sensitive to C. koseri, demonstrating enhanced mortality rates and significantly elevated bacterial burdens compared to WT animals. Interestingly, although early proinflammatory mediator release (i.e. 12 h) was MyD88-dependent, a role for MyD88-independent signaling was evident at 24 h, revealing a compensatory response to CNS C. koseri infection. In contrast, TLR4 did not significantly impact bacterial burdens or proinflammatory mediator production in response to C. koseri. Similar findings were obtained with primary astrocytes, where MyD88-dependent pathways were essential for chemokine release in response to intact C. koseri, whereas TLR4 was dispensable; implicating the involvement of alternative TLRs since highly enriched astrocytes did not produce IL-1 upon bacterial exposure, which also signals via MyD88. Collectively, these findings demonstrate the importance of MyD88-dependent mechanisms in eliciting maximal proinflammatory responses, astrocyte activation, and bacterial containment during CNS C. koseri infection, as well as a late-phase MyD88-independent signaling pathway for cytokine/chemokine production.  相似文献   

16.
Glucopyranosyl lipid adjuvant‐stable emulsion (GLA‐SE) is a synthetic adjuvant TLR4 agonist that promotes potent poly‐functional TH1 responses. Different TLR4 agonists may preferentially signal via MyD88 or TIR‐domain‐containing adapter inducing IFN‐beta (TRIF) to exert adjuvant effects; however, the contribution of MyD88 and TRIF signaling to the induction of polyclonal TH1 responses by TLR4 agonist adjuvants has not been studied in vivo. To determine whether GLA‐SE preferentially signals through MyD88 or TRIF, we evaluated the immune response against a candidate tuberculosis (TB) vaccine Ag following immunization of mice lacking either signaling adapter compared with that of wild‐type mice. We find that both MyD88 and TRIF are necessary for GLA‐SE to induce a poly‐functional TH1 immune response characterized by CD4+ T cells producing IFN‐γ, TNF, and IL‐2, as well as IgG2c class switching, when paired with the TB vaccine Ag ID93. Accordingly, the protective efficacy of ID93/GLA‐SE immunization against aerosolized Mycobacterium tuberculosis was lost when either signaling molecule was ablated. We demonstrate that MyD88 and TRIF must be expressed in the same cell for the in vivo TH1‐skewing adjuvant activity, indicating that these two signaling pathways cooperate on an intracellular level. Thus engagement of both the MyD88 and TRIF signaling pathways are essential for the effective adjuvant activity of this TLR4 agonist.  相似文献   

17.
We determined whether a potential probiotic bacterium, Bifidobacterium bifidum OLB6378 (BB6378), exerts beneficial effects on the mucosal immune system in a mouse intestinal explant model. The addition of heat‐inactivated BB6378 to intestinal explants prepared from embryonic day 18 BALB/c mice increased the expression of polymeric immunoglobulin receptor (pIgR) mRNA by two‐ to fivefold. These effects were observed on ileal and colonic explants but not on jejunal explants, suggesting that the BB6378‐induced pIgR upregulation is site‐specific within the mouse intestine. The upregulation of pIgR protein expression in colonic explants was also detected after 24 h of culture. The results of DNA microarray analysis of ileal and colonic samples indicated that BB6378 increased the gene expression of interleukin (IL)‐1α and IL‐1β, and IL‐1α content in colonic explants was significantly increased after 20 h of culture with BB6378. We then examined the involvement of endogenously induced IL‐1α in pIgR mRNA upregulation by using IL‐1α knockout (KO) mice. Contrary to our expectations, pIgR mRNA expression was equally upregulated by BB6378 in colonic explants from BALB/c and IL‐1α KO mice. Conversely, we examined the involvement of Toll‐like receptors in pIgR mRNA upregulation by using MyD88 KO mice. The upregulation of pIgR was completely suppressed in the explants derived from MyD88 KO mice. Taken together, we conclude that in a mouse intestinal explant model, the heat‐inactivated potential probiotic BB6378 increases intestinal pIgR expression in a site‐specific manner and that the upregulation of pIgR could be explained by a direct microbial effect on the epithelium via Toll‐like receptors.  相似文献   

18.
Triggering receptor expressed on myeloid cells (TREM)‐1 plays an important role in myeloid cell‐activated inflammatory responses. Although TLR ligands such as LPS and lipoteichoic acid have been shown to upregulate TREM‐1 expression in macrophage and neutrophils, the role of specific TLR in inducing the expression of TREM‐1 remains unclear. In this study, we investigated whether the presence of TLR is necessary for the expression of TREM‐1. We show that BM‐derived macrophages from TLR4 and TLR2 KO mice failed to induce expression of TREM‐1 message and protein in response to their specific ligands. Interestingly, the expression of TREM‐1 in response to LPS is not altered in myeloid differentiation factor 88 (MyD88) KO macrophages, suggesting that downstream of TLR a MyD88‐independent pathway induces the expression of TREM‐1. Inhibiting toll/IL‐1R domain‐containing adaptor‐inducing IFN‐β (TRIF) expression by siRNA decreased TREM‐1 expression in response to LPS, suggesting that the expression of TREM‐1 in response to LPS was mediated by the TRIF signaling pathway. On the other hand, the expression of TREM‐1 in response to lipoteichoic acid is dependent on MyD88 expression. These data indicate that the expression of TREM‐1 in response to TLR ligands occurs secondary to downstream signaling events and that the presence of TLR is necessary for the expression of TREM‐1 in response to their specific ligands. However, the downstream signaling required for the expression of TREM‐1 is dependent on the stimulus and the surface receptor through which the signaling is initiated.  相似文献   

19.
Allergic airway disease is characterized by eosinophilic inflammation, mucus hypersecretion and increased airway resistance. Fungal antigens are ubiquitous within the environment and are well known triggers of allergic disease. Bacterial products are also frequently encountered within the environment and may alter the immune response to certain antigens. The consequence of simultaneous exposure to bacterial and fungal products on the lung adaptive immune response has not been explored. Here, we show that oropharyngeal aspiration of fungal lysates (Candida albicans, Aspergillus fumigatus) promotes airway eosinophilia, secretion of Th2 cytokines and mucus cell metaplasia. In contrast, oropharyngeal exposure to bacterial lysates (Pseudomonas aeruginosa) promotes airway inflammation characterized by neutrophils, Th1 cytokine secretion and no mucus production. More importantly, administration of bacterial lysates together with fungal lysates deviates the adaptive immune response to a Th1 type associated with neutrophilia and diminished mucus production. The immunomodulatory effect that bacterial lysates have on the response to fungi is TLR4 independent but MyD88 dependent. Thus, different types of microbial products within the airway can alter the host's adaptive immune response and potentially impact the development of allergic airway disease to environmental fungal antigens.  相似文献   

20.
Allergic asthma is associated with eosinophilic inflammation in the airways. Animal models commonly used to elucidate allergic inflammation mechanisms include BALB/c and C57BL/6 mice. Our aim was to evaluate lung eosinophilia and the corresponding Th1/Th2 balance in the two strains after allergen exposure. BALB/c and C57BL/6 mice were subjected to ovalbumin‐induced allergic airway inflammation using BrdU to label newly produced cells. The numbers of new eosinophils were evaluated by differential cell count and immunocytochemistry (MBP+BrdU+). Proliferation rate of lung eosinophils was measured by analysis of CD45+CCR3+BrdU+ cells by FACS. Distribution of newly produced eosinophils in the lung and the Th1/Th2 (CD4+T‐bet+/CD4+GATA‐3+) balance was evaluated by immunohistochemistry. Allergen challenge with ovalbumin induced comparable eosinophilia in bone marrow (BM), blood and lung tissue in both strains of mice compared to phosphate‐buffered saline controls, which was confirmed by immunocytochemistry. There was a small increase in the number of lung MBP+BrdU? eosinophils in C57BL/6 mice compared to BALB/c mice, which suggests a basal increase in this strain following sensitization. While there was no difference in eosinophilic proliferation in the lung, the distribution of the newly produced eosinophils differs between the two strains. BALB/c mice showed staining primarily around vessels and airways, whereas C57BL/6 mice showed a more even distribution in the lung tissue. No difference in the Th1/Th2 balance was observed between two strains. This study shows that there is a difference in the distribution of eosinophils in the lung between the C57BL/6 and BALB/c mice, but no difference in eosinophil production or Th1/Th2 balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号