首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Malathion is an organophosphate pesticide that is known for its high toxicity to insects and low to moderate potency to humans and other mammals. Its toxicity has been associated with the inhibition of acetylcholinesterase activity, leading to the interference with the transmission of nerve impulse, accumulation of acetylcholine at synaptic junctions, and subsequent induction of adverse health effects including headache, dizziness, nausea, vomiting, bradycardia, and miosis. Oxidative stress (OS) has been reported as a possible mechanism of malathion toxicity in humans. Hence, the aim of this study was to examine the role of OS in malathion‐induced cytotoxicity and genotoxicity. To achieve this goal, MTT, lipid peroxidation, and single cell gel electrophoresis (Comet) assays were performed, respectively, to evaluate the levels of cell viability, malondialdehyde (MDA) production, and DNA damage in human liver carcinoma (HepG2) cells. Study results indicated that malathion is mitogenic at lower levels of exposure, and cytotoxic at higher levels of exposure. Upon 48 h of exposure, the average percentages of cell viability were 100% ± 11%, 117% ± 15%, 86% ± 15%, 35% ± 9%, and 27% ± 7% for 0, 6, 12, 18, and 24 mM, respectively. In the lipid peroxidation assay, the concentrations of MDA produced were 12.55 ± 0.16, 20.65 ± 0.27, 31.1 ± 0.40, 34.75 ± 0.45, and 15.1 ± 0.20 μM in 0, 6, 12, 18, and 24 mM malathion, respectively. The Comet assay showed a significant increase in DNA damage at the 24 mM malathion exposure. Taken together, our results indicate that malathion exposure at higher concentrations induces cytotoxic and genotoxic effects in HepG2 cells, and its toxicity may be mediated through OS as evidenced by a significant production of MDA, an end product of lipid peroxidation. © 2009 Wiley Periodicals, Inc. Environ Toxicol 2010.  相似文献   

2.
The use of silver nanoparticles in food, food contact materials, dietary supplements and cosmetics has increased significantly owing to their antibacterial and antifungal properties. As a consequence, the need for validated rapid screening methods to assess their toxicity is necessary to ensure consumer safety. This study evaluated two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, as tools for assessing the potential cytotoxicity of food‐ and cosmetic‐related nanoparticles. The two cell culture models were utilized to compare the potential cytotoxicity of 20‐nm silver. The average size of the silver nanoparticle determined by our transmission electron microscopy (TEM) analysis was 20.4 nm. The dynamic light scattering (DLS) analysis showed no large agglomeration of the silver nanoparticles. The concentration of the 20‐nm silver solution determined by our inductively coupled plasma–mass spectrometry (ICP‐MS) analysis was 0.962 mg ml–1. Our ICP‐MS and TEM analysis demonstrated the uptake of 20‐nm silver by both HepG2 and Caco2 cells. Cytotoxicity, determined by the Alamar Blue reduction assay, was evaluated in the nanosilver concentration range of 0.1 to 20 µg ml–1. Significant concentration‐dependent cytotoxicity of the nanosilver in HepG2 cells was observed in the concentration range of 1 to 20 µg ml–1 and at a higher concentration range of 10 to 20 µg ml–1 in Caco2 cells compared with the vehicle control. A concentration‐dependent decrease in dsDNA content was observed in both cell types exposed to nanosilver but not controls, suggesting an increase in DNA damage. The DNA damage was observed in the concentration range of 1 to 20 µg ml–1. Nanosilver‐exposed HepG2 and Caco2 cells showed no cellular oxidative stress, determined by the dichlorofluorescein assay, compared with the vehicle control in the concentration range used in this study. A concentration‐dependent decrease in mitochondria membrane potential in both nanosilver exposed cell types suggested increased mitochondria injury compared with the vehicle control. The mitochondrial injury in HepG2 cells was significant in the concentration range of 1 to 20 µg ml–1, but in Caco2 cells it was significant at a higher concentration range of 10 to 20 µg ml–1. These results indicated that HepG2 cells were more sensitive to nanosilver exposure than Caco2 cells. It is generally believed that cellular oxidative stress induces cytotoxicity of nanoparticles. However, in this study we did not detect any nanosilver‐induced oxidative stress in either cell type at the concentration range used in this study. Our results suggest that cellular oxidative stress did not play a major role in the observed cytotoxicity of nanosilver in HepG2 and Caco2 cells and that a different mechanism of nanosilver‐induced mitochondrial injury leads to the cytotoxicity. The HepG2 and Caco2 cells used this study appear to be targets for silver nanoparticles. The results of this study suggest that the differences in the mechanisms of toxicity induced by nanosilver may be largely as a consequence of the type of cells used. This differential rather than universal response of different cell types exposed to nanoparticles may play an important role in the mechanism of their toxicity. In summary, the results of this study indicate that the widely used in vitro models, HepG2 and Caco2 cells in culture, are excellent systems for screening cytotoxicity of silver nanoparticles. These long established cell culture models and simple assays used in this study can provide useful toxicity and mechanistic information that can help to better inform safety assessments of food‐ and cosmetic‐related silver nanoparticles. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

3.
4.
Silver nanoparticles (Ag NPs) have been widely used in medical and healthcare products owing to their unique antibacterial activities. However, their safety for humans and the environment has not yet been established. This study evaluated the cellular proliferation and apoptosis of Ag NPs suspended in different solvents using human liver HepG2 cells. The ionization of Ag NPs in different dispersion media [deionized water, phosphate‐buffered saline (PBS), saline and cell culture] was measured using an Ag ion selective electrode. The MTT assay was used to examine the cell proliferation activities. The effects of Ag NPs on cell cycle, induction of apoptosis, production of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were analyzed using flow cytometry. The degree of Ag NPs ionization differed with dispersion media, with the concentrations of silver ions in deionized water being the highest in all suspensions. Ag NPs could inhibit the viability of HepG2 cells in a time‐ and concentration‐dependent manner. Ag NPs (40, 80 and 160 µg ml?1) exposure could cause cell‐cycle arrest in the G2/M phase, significantly increasing the apoptosis rate and ROS generation, and decreasing the MMP in HepG2 cells more sensitive to deionized water than in cell culture. These results suggested that the cellular toxicological mechanism of Ag NPs might be related to the oxidative stress of cells by the generation of ROS, leading to mitochondria injury and induction of apoptosis. It also implies that it is important to assess the physicochemical properties of NPs in the media where the biological toxicity tests are performed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Methyl parathion (C8H10NO5PS) and parathion (C10H14NO5PS) are both organophosphate insecticides (OPI) widely used for household and agricultural applications. They are known for their ability to irreversibly inhibit acetylcholinesterase which often leads to a profound effect on the nervous system of exposed organisms. Many recently published studies have indicated that human exposure to OPI may be associated with neurologic, hematopoietic, cardiovascular, and reproductive adverse effects. Studies have also linked OPI exposure to a number of degenerative diseases including Parkinson's, Alzheimer's, and amyotrophic lateral sclerosis. Also, oxidative stress (OS) has been reported as a possible mechanism of OPI toxicity in humans. Hence, the aim of the present investigation was to use human liver carcinoma (HepG2) cells as a test model to evaluate the role of OS in methyl parathion‐ and parathion‐induced toxicity. To achieve this goal, we performed the MTT [3‐(4, 5‐dimethylthiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide] assay for cell viability, lipid peroxidation assay for malondialdehyde (MDA) production, and Comet assay for DNA damage, respectively. Results from MTT assay indicated that methyl parathion and parathion gradually reduce the viability of HepG2 cells in a dose‐dependent manner, showing 48 h‐LD50 values of 26.20 mM and 23.58 mM, respectively. Lipid peroxidation assay resulted in a significant increase (P < 0.05) of MDA level in methyl parathion‐ and parathion‐treated HepG2 cells compared with controls, suggesting that OS plays a key role in OPI‐induced toxicity. Comet assay indicated a significant increase in genotoxicity at higher concentrations of OPI exposure. Overall, we found that methyl‐parathion is slightly less toxic than parathion to HepG2 cells. The cytotoxic effect of these OPI was found to be associated, at least in part, with oxidative cell/tissue damage. © 2011 Wiley Periodicals, Inc. Environ Toxicol, 2013.  相似文献   

6.
目的探讨金纳米粒子(AuNP)对卵巢细胞CHO-K1的毒性作用及谷胱甘肽(GSH)的对抗作用。方法 AuNP 10~100μmol.L-1作用卵巢细胞CHO-K1 72 h,MTT比色法检测细胞存活。AuNP10μmo.lL-1,丁硫氨酸-亚砜亚胺(BSO)20μmo.lL-1及GSH 1 mmo.l L-1单独或联合作用细胞72 h,MTT比色法检测细胞增殖,倒置相差显微镜观察细胞形态,AnnexinⅤ-FITC和PI染色流式细胞仪检测细胞凋亡;AuNP 10μmo.l L-1,BSO 20μmo.l L-1及GSH 1 mmo.l L-1单独或联合作用细胞48 h,共聚焦显微镜检测细胞骨架微丝,JC-1染色流式细胞仪检测线粒体膜电位。结果 AuNP 10~100μmo.lL-1对正常的CHO-K1细胞存活无明显影响。与正常对照组相比,AuNP 10μmol.L-1和BSO 20μmol.L-1联合作用,可明显抑制CHO-K1细胞存活,抑制率为(80±2)%(P<0.01),胞体皱缩、变圆,细胞骨架微丝破坏;凋亡率为(66±6)%(P<0.01);细胞线粒体膜电位显著增加(P<0.01);加入外源性的GSH可逆转AuNP对因细胞GSH水平受抑而产生的细胞毒性。结论 AuNP对CHO-K1细胞损伤可能与GSH水平降低有关。  相似文献   

7.
8.
《Nanotoxicology》2013,7(3):341-353
Abstract

We investigated the genotoxic responses to two types of TiO2 nanoparticles (<25 nm anatase: TiO2-An, and <100 nm rutile: TiO2-Ru) in human hepatoma HepG2 cells. Under the applied exposure conditions the particles were agglomerated or aggregated with the size of agglomerates and aggregates in the micrometer range, and were not cytotoxic. TiO2-An, but not TiO2-Ru, caused a persistent increase in DNA strand breaks (comet assay) and oxidized purines (Fpg-comet). TiO2-An was a stronger inducer of intracellular reactive oxygen species (ROS) than TiO2-Ru. Both types of TiO2 nanoparticles transiently upregulated mRNA expression of p53 and its downstream regulated DNA damage responsive genes (mdm2, gadd45α, p21), providing additional evidence that TiO2 nanoparticles are genotoxic. The observed differences in responses of HepG2 cells to exposure to anatase and rutile TiO2 nanoparticles support the evidence that the toxic potential of TiO2 nanoparticles varies not only with particle size but also with crystalline structure.  相似文献   

9.
目的 为了探讨阿莫西林对人HepG2细胞DNA是否有损伤作用.方法 培养的人HepG2细胞经不同浓度(2、10、50和250μmol/L)阿莫西林处理1h或经50μmol/L阿莫西林处理不同时间(20、40、60、120和180min)后,运用单细胞凝胶电泳(SCGE)技术结合彗星图像软件(CASP)分析细胞尾部DNA百分率(tail DNA%)变化情况.结果 不同浓度阿莫西林处理后结果显示,HepG2细胞尾部DNA百分率明显升高,至50μmol/L阿莫西林时达到最高值,各浓度处理组与不处理对照组相比差异皆有显著性(P<0.01);而同一浓度(50μmol/L)阿莫西林处理不同时间后结果显示,HepG2细胞尾部DNA百分率逐渐升高,至1h处理时间点时达到最高值,其后随着处理时间延长HepG2细胞尾部DNA百分率逐渐降低.结论 阿莫西林对人HepG2细胞DNA有短暂损伤作用,阿莫西林诱发的HepG2细胞DNA损伤可能随时间延长逐渐被HepG2细胞本身修复除去.  相似文献   

10.
Copper ferrite nanoparticles (NPs) have the potential to be applied in biomedical fields such as cell labeling and hyperthermia. However, there is a lack of information concerning the toxicity of copper ferrite NPs. We explored the cytotoxic potential of copper ferrite NPs in human lung (A549) and liver (HepG2) cells. Copper ferrite NPs were crystalline and almost spherically shaped with an average diameter of 35 nm. Copper ferrite NPs induced dose‐dependent cytotoxicity in both types of cells, evident by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazoliumbromide and neutral red uptake assays. However, we observed a quite different susceptibility in the two kinds of cells regarding toxicity of copper ferrite NPs. Particularly, A549 cells showed higher susceptibility against copper ferrite NP exposure than those of HepG2 cells. Loss of mitochondrial membrane potential due to copper ferrite NP exposure was observed. The mRNA level as well as activity of caspase‐3 enzyme was higher in cells exposed to copper ferrite NPs. Cellular redox status was disturbed as indicated by induction of reactive oxygen species (oxidant) generation and depletion of the glutathione (antioxidant) level. Moreover, cytotoxicity induced by copper ferrite NPs was efficiently prevented by N‐acetylcysteine treatment, which suggests that reactive oxygen species generation might be one of the possible mechanisms of cytotoxicity caused by copper ferrite NPs. To the best of our knowledge, this is the first report showing the cytotoxic potential of copper ferrite NPs in human cells. This study warrants further investigation to explore the mechanisms of differential toxicity of copper ferrite NPs in different types of cells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Aflatoxin B1 (AFB1) has strong carcinogenicity. Consumption of AFB1-contaminated agricultural products and the occurrence of hepatocellular carcinoma have received widespread attention. The aim of this paper was to investigate whether zinc supplementation could inhibit AFB1-induced cytotoxicity and genotoxicity in HepG2 cells and the mechanism of this inhibition. Our data suggest that zinc sources can relieve a certain degree of AFB1-induced cytotoxicity and genotoxicity by protecting against apoptotic body formation and DNA strand breaks, affecting S phase cell cycle arrest, reducing 8-OHdG formation, inhibiting global DNA hypomethylation and regulating gene expression in antioxidation, zinc-association and apoptosis processes. Consequently, zinc stabilizes the integrity of DNA and improves cell survival.These data provides new insights into the protective role of zinc in alleviating AFB1-induced cytotoxicity and mediating epigenetic changes in hepatocytes, demonstrating that zinc sources have detoxification properties in mycotoxin-induced toxicity.  相似文献   

12.
Curcumin, a polyphenolic yellow pigment found in turmeric, is commonly used as a coloring agent in foods, drugs, and cosmetics. In our previous study, we found that low levels of curcumin did not increase the reactive oxygen species (ROS) formation and caused no damage to DNA in human hepatoma G2 (HepG2) cells, but at high doses, curcumin imposed oxidative stress and damaged DNA. In the present study, we are determined to investigate the genotoxic and antigenotoxic effects of curcumin using HepG2 cell line, a relevant in vitro model to detect the cytoprotective, antigenotoxic, and cogenotoxic agents. The results of micronucleus (MN) assays showed that, on one hand, curcumin at the high tested concentrations (8 and 16 μg/ml) displayed a small but significant increase in the frequency of MN, and on the other hand, it was observed that the low tested concentration (2 μg/ml) significantly reduced the MN formation induced by the chemotherapeutic agent cyclophosphamide. The present results indicate that curcumin shows both genotoxicity and antigenotoxicity depending on its concentration.  相似文献   

13.
Dolomite is a natural mineral of great industrial and commercial importance. With the advent of nanotechnology, natural minerals including dolomite in the form of nanoparticles (NPs) are being utilized in various applications to improve the quality of products. However, safety or toxicity information of dolomite NPs is largely lacking. This study evaluated the cytotoxicity of dolomite NPs in two widely used in vitro cell culture models: human airway epithelial (HEp2) and human liver (HepG2) cells. Concentration‐dependent decreased cell viability and damaged cell membrane integrity revealed the cytotoxicity of dolomite NPs. We further observed that dolomite NPs induce oxidative stress in a concentration‐dependent manner, as indicated by depletion of glutathione and induction of reactive oxygen species (ROS) and lipid peroxidation. Quantitative real‐time PCR data demonstrated that the mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were up‐regulated whereas the anti‐apoptotic gene bcl‐2 was down‐regulated in HEp2 and HepG2 cells exposed to dolomite NPs. Moreover, the activity of apoptotic enzymes (caspase‐3 and caspase‐9) was also higher in both kinds of cells treated with dolomite NPs. It is also worth mentioning that HEp2 cells seem to be marginally more susceptible to dolomite NPs exposure than HepG2 cells. Cytotoxicity induced by dolomite NPs was efficiently prevented by N‐acetyl cysteine treatment, which suggests that oxidative stress is primarily responsible for the cytotoxicity of dolomite NPs in both HEp2 and HepG2 cells. Toxicity mechanisms of dolomite NPs warrant further investigations at the in vivo level. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
目的研究白鲜碱的肝细胞毒性作用及其毒性机制。方法白鲜碱2.5~800μmol·L-1与HepG2细胞作用24 h,用MTT法检测细胞存活率并计算IC50值,用乳酸脱氢酶(LDH)释放实验检测细胞膜损伤。白鲜碱25~100μmol·L-1与HepG2细胞作用4,24或48 h,用试剂盒方法分别检测细胞培养液中丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)、谷胱甘肽S-转移酶(GST)和谷氨酰转肽酶(GGT)活性。用倒置显微镜观察细胞形态变化;激光共聚焦扫描显微镜检测细胞线粒体膜电位的变化。结果白鲜碱25~800μmol· L-1与HepG2细胞作用24 h对HepG2细胞存活的抑制作用随着浓度的增加而降低(r=0.965,P<0.05),IC50值为(283±27)μmol·L-1。与溶剂对照组相比,白鲜碱12.5~50μmol·L-1作用24 h,HepG2细胞LDH释放率显著升高(P<0.01)。白鲜碱100和200μmol·L-1可引起HepG2细胞形态发生明显变化,细胞皱缩脱落,细胞数目减少,并使HepG2细胞线粒体膜电位下降(P<0.05,P<0.01)。白鲜碱100和200μmol·L-1与HepG2细胞作用24 h可使细胞培养液中ALT和AST活性显著升高,并呈浓度依赖性(r=0.995,P<0.05和r=0.996,P<0.05),线粒体膜电位亦明显下降(r=0.978,P<0.05)。与溶剂对照组相比,白鲜碱100和200μmol·L-1与HepG2细胞作用4 h,细胞培养液中GST活性明显升高(P<0.05);作用24 h,GST活性升高呈浓度依赖性(r=0.987,P<0.05)。白鲜碱200μmol· L-1作用48 h导致HepG2细胞培养液中GGT活性升高(P<0.05)。结论较高浓度的白鲜碱(≥100μmol· L-1)具有潜在的肝毒性,细胞膜损伤和线粒体损伤可能是其肝毒性作用机制之一。  相似文献   

15.
Enniatins (ENNs) are mycotoxins found in Fusarium fungi and they appear in nature as mixtures of cyclic depsipeptides. The ability to form ionophores in the cell membrane is related to their cytotoxicity. Changes in ion distribution between inner and outer phases of the mitochondria affect to their metabolism, proton gradient, and chemiosmotic coupling, so a mitochondrial toxicity analysis of enniatins is highly recommended because they host the homeostasis required for cellular survival. Two ENNs, ENN A and ENN B on hepatocarcinoma cells (HepG2) at 1.5 and 3 μM and three exposure times (24, 48 and 72 h) were studied. Flow cytometry was used to examine their effects on cell proliferation, to characterize at which phase of the cell cycle progression the cells were blocked and to study the role of the mitochondrial in ENNs-induced apoptosis. In conclusion, apoptosis induction on HepG2 cells allowed to compare cytotoxic effects caused by both ENNs, A and B. It is reported the possible mechanism observed in MMP changes, cell cycle analysis and apoptosis/necrosis, identifying ENN B more toxic than ENN A.  相似文献   

16.
17.
With the ongoing commercialization of nanotechnology products, human exposure to nanoparticles (NPs) is set to increase dramatically and an evaluation of their potential adverse effects is essential. Surface charge, among other physico‐chemicals parameters, is a key criterion that should be considered when using a definition for nanomaterials in a regulatory context. It has recently been recognized as an important factor in determining the toxicity of NPs; however, a complete understanding of the mechanisms involved is still lacking. In this context, the aim of the present study was to investigate the influence of the surface charge modification of NPs on in vitro toxicity assays. Poly(lactic‐co‐glycolic acid) (PLGA) nanoparticles bearing different surface charges, positive(+), neutral(n) or negative(?), were synthesized. In vitro genotoxicity assays (micronucleus and comet assays) coupled with an assessment of cytotoxicity, were performed in different cell lines (L5178Y mouse lymphoma cells, TK6 human B‐lymphoblastoid cells and 16HBE14o‐ human bronchial epithelial cells). Reactive oxygen species (ROS) production and endocytosis studies were also performed. Our results showed that PLGA(+) NPs were cytotoxic. They are endocytosed by the clathrin pathway and induced ROS in the three cell lines. They led to chromosomal aberrations without primary DNA damage in 16HBE14o‐ cells, suggesting that aneuploidy may be considered as an important biomarker when assessing the genotoxic potential of NPs. Moreover, 16HBE14o‐ cells seem to be more suitable for the in vitro screening of inhaled NPs than the regulatory L5178Y and TK6 cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Patulin-induced genotoxicity and modulation of glutathione in HepG2 cells   总被引:1,自引:0,他引:1  
Patulin (PAT), a mycotoxin produced by certain species of Penicillium, Aspergillus and Byssochlamys, is mainly found in ripe apple and apple products. In our present study, a significant increase of the micronuclei frequency induced by PAT was found in human hepatoma HepG2 cells. To elucidate the role of glutathione (GSH) in the effect, the intracellular GSH level was modulated by pre-treatment with buthionine-(S, R)-sulfoximine (BSO), a specific GSH synthesis inhibitor, and by pre-treatment with N-acetylcysteine (NAC), a GSH precursor. It was found that depletion of GSH in HepG2 cells with BSO dramatically increased the PAT-induced micronuclei frequencies and that when the intracellular GSH content was elevated by NAC, the chromosome damage induced by PAT was significantly prevented in our test concentrations (0.19-0.75 μM). These results indicate that GSH play an important role in cellular defense against PAT-induced genotoxicity.  相似文献   

19.
A549细胞对壳寡糖及其纳米粒的摄取作用   总被引:5,自引:0,他引:5  
万丽卿  胡富强  袁弘 《药学学报》2004,39(3):227-231
目的研究壳寡糖及其纳米粒的A549肺上皮细胞摄取作用,探讨壳寡糖纳米粒作为药物载体的可能性。方法溶剂扩散法制备壳寡糖纳米粒,以A549肺上皮细胞评价壳寡糖及其纳米粒的细胞毒性,由荧光倒置显微镜、流式细胞仪研究A549细胞对壳寡糖及其纳米粒的摄取作用。结果壳寡糖及其纳米粒的细胞毒性均较低,IC50分别为944.36和643.16 mg·L-1。壳寡糖及其纳米粒的细胞摄取作用与其浓度及细胞孵育时间相关;在同一孵育时间壳寡糖纳米粒的摄取量比等浓度的壳寡糖增加0.49~13.9倍。结论壳寡糖及其纳米粒的细胞毒性较低。壳寡糖形成纳米粒后,可显著增加A549细胞的摄取作用。  相似文献   

20.
Scientific information on the potential harmful effects of silver nanoparticles (AgNPs) on human health severely lags behind their exponentially growing applications in consumer products. In assessing the toxic risk of AgNP usage, liver, as a detoxifying organ, is particularly important. The aim of this study was to explore the toxicity mechanisms of nano and ionic forms of silver on human hepatoblastoma (HepG2) cells. The results showed that silver ions and citrate‐coated AgNPs reduced cell viability in a dose‐dependent manner. The IC50 values of silver ions and citrate‐coated AgNPs were 0.5 and 50 mg L?1, respectively. The LDH leakage and inhibition of albumin synthesis, along with decreased ALT activity, indicated that treatment with either AgNP or Ag ions resulted in membrane damage and reduced the cell function of human liver cells. Evaluation of oxidative stress markers demonstrating depletion of GSH, increased ROS production, and increased SOD activity, indicated that oxidative stress might contribute to the toxicity effects of nano and ionic forms of silver. The observed toxic effect of AgNP on HepG2 cells was substantially weaker than that caused by ionic silver, while the uptake of nano and ionic forms of silver by HepG2 cells was nearly the same. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 679–692, 2016.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号