首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

BACKGROUND:

Mantle cell lymphoma (MCL) is an incurable B‐cell malignancy, and patients with this disease have the poorest prognosis among all patients with B‐cell lymphomas. The signaling pathways that trigger MCL escape from immune surveillance are unclear. Because Toll‐like receptors (TLRs) initiate innate and adaptive immune responses against invading pathogens, the authors investigated the impact of TLR signaling in MCL cells.

METHODS:

TLR expression was examined in MCL cell lines and in primary tumors. The examination focused on TLR4 and its ligand lipopolysaccharide (LPS) on MCL cells and their function on MCL proliferation and immune evasion.

RESULTS:

MCL cells expressed multiple TLRs, and TLR4 was among the highest expressed molecules. The activation of TLR4 signaling in MCL cells by LPS induced MCL proliferation and up‐regulated the secretion of cytokines like interleukin‐6 (IL‐6), IL‐10, and vascular endothelial growth factor (VEGF). LPS‐pretreated MCL cells inhibited the proliferation and cytolytic activity of T cells by secreted IL‐10 and VEGF, and neutralizing antibodies against these cytokines restored their functions. Similar results were observed in TLR4‐positive/myeloid differentiation 88 (MyD88)‐positive primary lymphoma cells but not in TLR4‐positive/MyD88‐negative primary lymphoma cells from patients with MCL. Knockdown of TLR4 on MCL cells abrogated the effect of LPS on MCL cells in term of cell growth or secretion of the cytokines and evasion of the immune system.

CONCLUSIONS:

The current results indicated that TLR4 signaling triggers a cascade that leads to MCL growth and evasion from immune surveillance. Thus, TLR4 signaling molecules may be novel therapeutic targets in patients with MCL. Cancer 2013. © 2012 American Cancer Society.  相似文献   

2.
TNFα and TRAIL, 2 members of the tumor necrosis factor family, share many common signaling pathways to induce apoptosis. Although many cancer cells are sensitive to these proapoptotic agents, some develop resistance. Recently, we have demonstrated that upregulation of c‐Fos/AP‐1 is necessary, but insufficient for cancer cells to undergo TRAIL‐induced apoptosis. Here we present a prostate cancer model with differential sensitivity to TNFα and TRAIL. We show that inhibition of NF‐κB or activation of AP‐1 can only partially sensitize resistant prostate cancer cells to proapoptotic effects of TNFα or TRAIL. Inhibition of NF‐κB by silencing TRAF2, by silencing RIP or by ectopic expression of IκB partially sensitized resistant prostate cancer. Similarly, activation of c‐Fos/AP‐1 only partially sensitized resistant cancer cells to proapoptotic effects of TNFα or TRAIL. However, concomitant repression of NF‐κB and activation of c‐Fos/AP‐1 significantly enhanced the proapoptotic effects of TNFα and TRAIL in resistant prostate cancer cells. Therefore, multiple molecular pathways may need to be modified, to overcome cancers that are resistant to proapoptotic therapies. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
Nuclear factor‐κB (NF‐κB) plays a major role in host inflammatory responses and carcinogenesis and as such is an important drug target for adjuvant therapy. In this study, we examined the effect of caffeic acid phenethyl ester (CAPE), an NF‐κB inhibitor, on Helicobacter pylori (H. pylori)‐induced NF‐κB activation in cell culture and chronic gastritis in Mongolian gerbils. In AGS gastric cancer cells, CAPE significantly inhibited H. pylori‐stimulated NF‐κB activation and mRNA expression of several inflammatory factors in a dose‐dependent manner, and prevented degradation of IκB‐α and phosphorylation of p65 subunit. To evaluate the effects of CAPE on H. pylori‐induced gastritis, specific pathogen‐free male, 6‐week‐old Mongolian gerbils were intragastrically inoculated with H. pylori, fed diets containing CAPE (0–0.1%) and sacrificed after 12 weeks. Infiltration of neutrophils and mononuclear cells and expression of NF‐κB p50 subunit and phospho‐IκB‐α were significantly suppressed by 0.1% CAPE treatment in the antrum of H. pylori‐infected gerbils. Labeling indices for 5′‐bromo‐2′‐deoxyuridine both in the antrum and corpus and lengths of isolated pyloric glands were also markedly reduced at the highest dose, suggesting a preventive effect of CAPE on epithelial proliferation. Furthermore, in the pyloric mucosa, mRNA expression of inflammatory mediators including tumor necrosis factor‐α, interferon‐γ, interleukin (IL)‐2, IL‐6, KC (IL‐8 homologue), and inducible nitric oxide synthase was significantly reduced. These results suggest that CAPE has inhibitory effects on H. pylori‐induced gastritis in Mongolian gerbils through the suppression of NF‐κB activation, and may thus have potential for prevention and therapy of H. pylori‐associated gastric disorders. © 2009 UICC  相似文献   

4.
Natural killer (NK) cells play a vital role in the rejection of tumors. Pancreatic ductal adenocarcinoma (PDAC), however, remains a poor prognosis malignancy, due to its resistance to radio‐ and chemotherapy, and low immunogenicity. We demonstrate here that IL‐2‐activated human NK cells are able to kill PDAC cells. Currently, novel strategies are being pursued to combat PDAC. In this regard, oncolytic viruses, in addition to killing tumor cells, may also have the potential to augment antitumor immune responses. We found that, besides having an intrinsic oncolytic activity, parvovirus H‐1PV is able to enhance NK cell‐mediated killing of PDAC cells. Our results show that H‐1PV infection of Panc‐1 cells increases NK cell capacity to release IFN‐γ, TNF‐α and MIP‐1α/β. Multiple activating receptors are involved in the NK cell‐mediated killing of Panc‐1 cells. Indeed, blocking of the natural cytotoxicity receptors—NKp30, 44 and 46 in combination, and NKG2D and DNAM1 alone inhibit the killing of Panc‐1 cells. Interestingly, H‐1PV infection of Panc‐1 cells overcomes the part of inhibitory effects suggesting that parvovirus may induce additional NK cell ligands on Panc‐1 cells. The enhanced sensitivity of H‐1PV‐infected PDAC cells to NK cell‐dependent killing could be traced back to the upregulation of the DNAM‐1 ligand, CD155 and to the downregulation of MHC class I expression. Our data suggests that NK cells display antitumor potential against PDAC and that H‐1PV‐based oncolytic immunotherapy could further boost NK cell‐mediated immune responses and help to develop a combinatorial therapeutic approach against PDAC.  相似文献   

5.
Toll‐like receptor (TLR) stimulation plays a crucial role in the homeostasis of human B cells. We investigated the expression of TLRs 1–9 on the cells of B‐cell chronic lymphocytic leukemia (B‐CLL) and analyzed the functional consequences of TLR stimulation on leukemic cells. We showed that B‐CLL cells express similar set of TLRs as memory B cells of healthy donors, i.e. TLR‐1, TLR‐2, TLR‐6, TLR‐7 and TLR‐9. However, in contrast to memory B cells, B‐CLL cells lack TLR‐4 expression. Expression of TLRs correlates with their capacity to respond to specific TLR agonists. At the level of phenotype, ODN2006 (TLR‐9 agonist) is the most potent stimulus. B‐CLL cells also respond to the stimulation with loxoribine, Pam3CSK4 and MALP‐2 (TLR‐7, TLR1/TLR2 and TLR2/TLR6 agonists, respectively). TLR‐7 and TLR‐9 stimulation induces production of IL‐6 and TNFα. In 47% of tested patients, treatment with ODN2006, MALP‐2 and Pam3CSK4 reduced leukemic cells survival. Stimulation of B‐CLL cells with TLR‐9 agonists, loxoribine, MALP‐2 and Pam3CSK4 induces significant proliferation. We report that TLR stimulation induces expression of CD38, a negative prognostic marker, on B‐CLL cells. Expression of CD38 is induced by direct stimulation of B‐CLL cells through TLR‐7 and TLR‐9 or CD38 can be induced on B‐CLL cells indirectly by a soluble factor induced in non‐B‐CLL cells after stimulation with TLR‐2, TLR‐3 or TLR‐5 agonists; the nature of this factor remains unknown. Our results argue for cautious evaluation of immunointervention strategies based on the administration of TLR agonists in the treatment of B‐CLL as their effects on B‐CLL cells may be tumor promoting as well as tumor suppressing.  相似文献   

6.
7.
Immunotherapy using anti‐PD‐1/PD‐L1 antibodies for several types of cancer has received considerable attention in recent decades. However, the molecular mechanism underlying PD‐L1 expression in pancreatic ductal adenocarcinoma (PDAC) cells has not been clearly elucidated. We investigated the clinical significance and regulatory mechanism of PD‐L1 expression in PDAC cells. Among the various cytokines tested, tumor necrosis factor (TNF)‐α upregulated PD‐L1 expression in PDAC cells through NF‐κB signaling. The induction of PD‐L1 expression was also caused by co‐culture with activated macrophages, and the upregulation was inhibited by neutralization with anti‐TNF‐α antibody after co‐culture with activated macrophages. PD‐L1 expression in PDAC cells was positively correlated with macrophage infiltration in tumor stroma of human PDAC tissues. In addition, survival analysis revealed that high PD‐L1 expression was significantly associated with poor prognosis in 235 PDAC patients and especially in patients harboring high CD8‐positive T‐cell infiltration. These findings indicate that tumor‐infiltrating macrophage‐derived TNF‐α could be a potential therapeutic target for PDAC.  相似文献   

8.
9.
Cervical carcinogenesis is a consequence of persistent infection with high‐risk human papillomaviruses (HPVs). Recent studies indicate that HPV‐transformed cells actively instruct their microenvironment to promote carcinogenesis. Here, we demonstrate that cervical cancer cells activate monocytes to produce their own CCL2 for further monocyte recruitment and reprogram their function during differentiation and maturation to dendritic cells (DCs). Our data show that cervical cancer cells suppress the induction of the chemokine receptor CCR7 in phenotypically mature DCs and impair their migration toward a lymph node homing chemokine, required to initiate adaptive immune responses. We confirmed the presence of CD83+CCR7low DCs in cancer biopsies. The second factor essential for DC migration, matrix‐metalloproteinase MMP‐9, which also has vasculogenic and protumorigenic properties, is not suppressed but upregulated in immature as well as mature DCs. We identified interleukin‐6 (IL‐6) as a crucial cervical cancer cell‐derived mediator and nuclear factor kappaB (NF‐κB) as the central signaling pathway targeted in DCs. Anti‐IL‐6 antibodies reverted not only NF‐κB inhibition and restored CCR7‐dependent migration but also blocked MMP‐9 induction. This is the first report demonstrating the dissociation of CCR7 and MMP‐9 expression in phenotypically mature CD83+ DCs by cancer cells. Our results show that cervical cancer cells actively shape the local microenvironment. They induce the accumulation of myeloid cells and skew their function from immune activation to local production of protumorigenic MMP‐9. Neutralizing anti‐IL‐6 antibodies can counteract this functional dysbalance and should therefore be considered for adjuvant cervical cancer therapy.  相似文献   

10.
Endoplasmic reticulum stress (ERS) plays an important role in the pathogenesis and development of malignant tumors, as well as in the regulation of radiochemoresistance and chemoresistance in many malignancies. ERS signaling pathway protein kinase RNA‐like endoplasmic reticulum kinase (PERK)‐eukaryotic initiation factor‐2 (eIF2α) may induce aberrant activation of nuclear factor‐κB (NF‐κB). Our previous study showed that NF‐κB conferred radioresistance in lymphoma cells. However, whether PERK‐eIF2α regulates radioresistance in oropharyngeal carcinoma through NF‐κB activation is unknown. Herein, we showed that PERK overexpression correlated with a poor prognosis for patients with oropharyngeal carcinoma (P < 0.01). Meanwhile, the percentage of the high expression level of PERK in oropharyngeal carcinoma patients resistant to radiation was higher than in patients sensitive to radiation (77.7 and 33.3%, respectively; P < 0.05). Silencing PERK and eIF2α increased the radiosensitivity in oropharyngeal carcinoma cells and increased radiation‐induced apoptosis and G2/M phase arrest. PERK‐eIF2α silencing also inhibited radiation‐induced NF‐κB phosphorylation and increased the DNA double strand break‐related proteins ATM phosphorylation. NF‐κB activator TNF‐α and the ATM inhibitor Ku55933 offset the regulatory effect of eIF2α on the expression of radiation‐induced cell apoptosis‐related proteins and the G2/M phase arrest‐related proteins. These data indicate that PERK regulates radioresistance in oropharyngeal carcinoma through NF‐kB activation‐mediated phosphorylation of eIF2α, enhancing X‐ray‐induced activation of DNA DSB repair, cell apoptosis inhibition and G2/M cell cycle arrest.  相似文献   

11.
12.
Immune‐enhancing adjuvants usually targets antigen (Ag)‐presenting cells to tune up cellular and humoral immunity. CD141+ dendritic cells (DC) represent the professional Ag‐presenting cells in humans. In response to microbial pattern molecules, these DCs upgrade the maturation stage sufficient to improve cross‐presentation of exogenous Ag, and upregulation of MHC and costimulators, allowing CD4/CD8 T cells to proliferate and liberating cytokines/chemokines that support lymphocyte attraction and survival. These DCs also facilitate natural killer‐mediated cell damage. Toll‐like receptors (TLRs) and their signaling pathways in DCs play a pivotal role in DC maturation. Therefore, providing adjuvants in addition to Ag is indispensable for successful vaccine immunotherapy for cancer, which has been approved in comparison with antimicrobial vaccines. Mouse CD8α+ DCs express TLR7 and TLR9 in addition to the TLR2 family (TLR1, 2, and 6) and TLR3, whereas human CD141+ DCs exclusively express the TLR2 family and TLR3. Although human and mouse plasmacytoid DCs commonly express TLR7/9 to respond to their agonists, the results on mouse adjuvant studies using TLR7/9 agonists cannot be simply extrapolated to human adjuvant immunotherapy. In contrast, TLR2 and TLR3 are similarly expressed in both human and mouse Ag‐presenting DCs. Bacillus Calmette–Guerin peptidoglycan and polyinosinic–polycytidylic acid are representative agonists for TLR2 and TLR3, respectively, although they additionally stimulate cytoplasmic sensors: their functional specificities may not be limited to the relevant TLRs. These adjuvants have been posted up to a certain achievement in immunotherapy in some cancers. We herein summarize the history and perspectives of TLR2 and TLR3 agonists in vaccine‐adjuvant immunotherapy for cancer.  相似文献   

13.
14.
15.
16.
Recent studies have demonstrated that increased expression of coding region determinant‐binding protein (CRD‐BP) in response to β‐catenin signaling leads to the stabilization of β‐TrCP1, a substrate‐specific component of SCF E3 ubiquitin ligase complex, resulting in an accelerated degradation of IκBα and activation of canonical nuclear factor‐κB (NF‐κB) pathway. Here, we show that the noncanonical NF‐κB1 p105 pathway is constitutively activated in colorectal carcinoma specimens, being particularly associated with β‐catenin‐mediated increased expression of CRD‐BP and β‐TrCP1. In the carcinoma tissues exhibiting high levels of nuclear β‐catenin the phospho‐p105 levels were increased and total p105 amounts were decreased in comparison to that of normal tissue indicating an activation of this NF‐κB pathway. Knockdown of CRD‐BP in colorectal cancer cell line SW620 resulted in significantly higher basal levels of both NF‐κB inhibitory proteins, p105 and IκBα. Furthermore decreased NF‐κB binding activity was observed in CRD‐BP siRNA‐transfected SW620 cells as compared with those transfected with control siRNA. Altogether, our findings suggest that activation of NF‐κB1 p105 signaling in colorectal carcinoma might be attributed to β‐catenin‐mediated induction of CRD‐BP and β‐TrCP1. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
We previously reported that plasmacytoid dendritic cells (pDCs) infiltrating breast tumors are impaired for their interferon‐α (IFN‐α) production, resulting in local regulatory T cells amplification. We designed our study to decipher molecular mechanisms of such functional defect of tumor‐associated pDC (TApDC) in breast cancer. We demonstrate that besides IFN‐α, the production by Toll‐like receptor (TLR)‐activated healthy pDC of IFN‐β and TNF‐α but not IP‐10/CXCL10 nor MIP1‐α/CCL3 is impaired by the breast tumor environment. Importantly, we identified TGF‐β and TNF‐α as major soluble factors involved in TApDC functional alteration. Indeed, recombinant TGF‐β1 and TNF‐α synergistically blocked IFN‐α production of TLR‐activated pDC, and neutralization of TGF‐β and TNF‐α in tumor‐derived supernatants restored pDCs' IFN‐α production. The involvment of tumor‐derived TGF‐β was further confirmed in situ by the detection of phosphorylated Smad2 in the nuclei of TApDC in breast tumor tissues. Mechanisms of type I IFN inhibition did not involve TLR downregulation but the inhibition of IRF‐7 expression and nuclear translocation in pDC after their exposure to tumor‐derived supernatants or recombinant TGF‐β1 and TNF‐α. Our findings indicate that targeting TApDC to restore their IFN‐α production might be an achievable strategy to induce antitumor immunity in breast cancer by combining TLR7/9‐based immunotherapy with TGF‐β and TNF‐α antagonists.  相似文献   

18.
The tumor microenvironment (TME) consists of various components including cancer cells, tumor vessels, cancer‐associated fibroblasts (CAFs), and inflammatory cells. These components interact with each other via various cytokines, which often induce tumor progression. Thus, a greater understanding of TME networks is crucial for the development of novel cancer therapies. Many cancer types express high levels of TGF‐β, which induces endothelial‐to‐mesenchymal transition (EndMT), leading to formation of CAFs. Although we previously reported that CAFs derived from EndMT promoted tumor formation, the molecular mechanisms underlying these interactions remain to be elucidated. Furthermore, tumor‐infiltrating inflammatory cells secrete various cytokines, including TNF‐α. However, the role of TNF‐α in TGF‐β‐induced EndMT has not been fully elucidated. Therefore, this study examined the effect of TNF‐α on TGF‐β‐induced EndMT in human endothelial cells (ECs). Various types of human ECs underwent EndMT in response to TGF‐β and TNF‐α, which was accompanied by increased and decreased expression of mesenchymal cell and EC markers, respectively. In addition, treatment of ECs with TGF‐β and TNF‐α exhibited sustained activation of Smad2/3 signals, which was presumably induced by elevated expression of TGF‐β type I receptor, TGF‐β2, activin A, and integrin αv, suggesting that TNF‐α enhanced TGF‐β‐induced EndMT by augmenting TGF‐β family signals. Furthermore, oral squamous cell carcinoma‐derived cells underwent epithelial‐to‐mesenchymal transition (EMT) in response to humoral factors produced by TGF‐β and TNF‐α‐cultured ECs. This EndMT‐driven EMT was blocked by inhibiting the action of TGF‐βs. Collectively, our findings suggest that TNF‐α enhances TGF‐β‐dependent EndMT, which contributes to tumor progression.  相似文献   

19.
20.
Lymphotoxin beta receptor (LTβR) activation on mouse fibrosarcoma cells (BFS‐1) results in enhanced solid tumor growth paralleled by increased angiogenesis induced by the expression of pro‐angiogenic CXCL2. In our study, we demonstrate that both functional ligands of the LTβR, namely LTα1β2 and LIGHT, are involved in the activation of LTβR in solid fibrosarcomas. To identify whether the lymphocyte population is involved in the activation of LTβR in these fibrosarcoma tumors, we used conditional LTβ‐deficient mice that specifically lack LTβ expression either on T cells (T‐LTβ?/?) or on B cells (B‐LTβ?/?). Solid tumor growth was reduced in both mouse strains when compared to tumor growth in wild‐type mice, indicating the participation of both T and B host lymphocytes in the activation of LTβR in these tumors. Tumor growth was also reduced in LIGHT‐deficient mice, suggesting a contribution of this ligand to the activation of LTβR in BFS‐1 fibrosarcomas. LTβR signaling can involve IκBα and/or NFκB‐inducing kinase (NIK) for subsequent NFκB activation in different types of cells. Expression of a dominant negative form of IκBα or of a dominant negative mutant of NIK resulted in decreased activation of NFκB signaling and reduced expression of pro‐angiogenic CXCL2 in vitro. Moreover, expression of dominant negative form of NIK or an IκBα repressor in these fibrosarcoma cells resulted in reduced solid tumor growth in vivo, suggesting that both IκBα and NIK are involved in pro‐angiogenic signaling after LTβR activation. Our data support the idea that the ablation of LTβR signaling should be considered for cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号