首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD4+ Th cells play a critical role in orchestrating the adaptive immune response. Uncontrolled Th1 responses are implicated in the pathogenesis of autoimmune diseases. T cells with immune‐modulatory properties are beneficial for inhibiting such inflammatory responses. Previously we demonstrated that repetitive injections of immature DC induce expansion of DX5+CD4+ T cells, which upon adoptive transfer show potent regulatory properties in murine collagen‐induced arthritis as well as in delayed‐hypersensitivity models. However, their regulatory mechanism remains to be defined. Here, we analyzed the effect of DX5+CD4+ T cells on other CD4+ T cells in vitro. Although proliferation of naïve CD4+ T cells upon antigenic triggering was not altered in the presence of DX5+CD4+ T cells, there was a striking difference in cytokine production. In the presence of DX5+CD4+ T cells, an IL‐10‐producing CD4+ T‐cell response was induced instead of a predominant IFN‐γ‐producing Th1 response. This modulation did not require cell–cell contact. Instead, IL‐4 produced by DX5+CD4+ T cells was primarily involved in the inhibition of IFN‐γ and promotion of IL‐10 production by CD4+ T cells. Together, our data indicate that DX5+CD4+ T cells modulate the outcome of Th‐responses by diverting Th1‐induction into Th responses characterized by the production of IL‐10.  相似文献   

2.
CD161++CD8+ T cells represent a novel subset that is dominated in adult peripheral blood by mucosal‐associated invariant T (MAIT) cells, as defined by the expression of a variable‐α chain 7.2 (Vα7.2)‐Jα33 TCR, and IL‐18Rα. Stimulation with IL‐18+IL‐12 is known to induce IFN‐γ by both NK cells and, to a more limited extent, T cells. Here, we show the CD161++ CD8+ T‐cell population is the primary T‐cell population triggered by this mechanism. Both CD161++Vα7.2+ and CD161++Vα7.2? T‐cell subsets responded to IL‐12+IL‐18 stimulation, demonstrating this response was not restricted to the MAIT cells, but to the CD161++ phenotype. Bacteria and TLR agonists also indirectly triggered IFN‐γ expression via IL‐12 and IL‐18. These data show that CD161++ T cells are the predominant T‐cell population that responds directly to IL‐12+IL‐18 stimulation. Furthermore, our findings broaden the potential role of MAIT cells beyond bacterial responsiveness to potentially include viral infections and other inflammatory stimuli.  相似文献   

3.
CD70‐mediated stimulation of CD27 is an important cofactor of CD4+ T‐cell licensed dendritic cells (DCs). However, it is unclear how CD70‐mediated stimulation of T cells is integrated with signals that emanate from signal 3 pathways, such as type‐1 interferon (IFN‐1) and IL‐12. We find that while stimulation of CD27 in isolation drives weak EomesoderminhiT‐betlo CD8+ T‐cell responses to OVA immunization, profound synergistic expansion is achieved by cotargeting TLR. This cooperativity can substantially boost antiviral CD8+ T‐cell responses during acute infection. Concomitant stimulation of TLR significantly increases per cell IFN‐γ production and the proportion of the population with characteristics of short‐lived effector cells, yet also promotes the ability to form long‐lived memory. Notably, while IFN‐1 contributes to the expression of CD70 on DCs, the synergy between CD27 and TLR stimulation is dependent upon IFN‐1's effect directly on CD8+ T cells, and is associated with the increased expression of T‐bet in T cells. Surprisingly, we find that IL‐12 fails to synergize with CD27 stimulation to promote CD8+ T‐cell expansion, despite its capacity to drive effector CD8+ T‐cell differentiation. Together, these data identify complex interactions between signal 3 and costimulatory pathways, and identify opportunities to influence the differentiation of CD8+ T‐cell responses.  相似文献   

4.
Modified vaccinia Ankara‐expressing Ag85A (MVA85A) is a new tuberculosis (TB) vaccine aimed at enhancing immunity induced by BCG. We investigated the safety and immunogenicity of MVA85A in healthy adolescents and children from a TB endemic region, who received BCG at birth. Twelve adolescents and 24 children were vaccinated and followed up for 12 or 6 months, respectively. Adverse events were documented and vaccine‐induced immune responses assessed by IFN‐γ ELISpot and intracellular cytokine staining. The vaccine was well tolerated and there were no vaccine‐related serious adverse events. MVA85A induced potent and durable T‐cell responses. Multiple CD4+ T‐cell subsets, based on expression of IFN‐γ, TNF‐α, IL‐2, IL‐17 and GM‐CSF, were induced. Polyfunctional CD4+ T cells co‐expressing IFN‐γ, TNF‐α and IL‐2 dominated the response in both age groups. A novel CD4+ cell subset co‐expressing these three Th1 cytokines and IL‐17 was induced in adolescents, while a novel CD4+ T‐cell subset co‐expressing Th1 cytokines and GM‐CSF was induced in children. Ag‐specific CD8+ T cells were not detected. We conclude that in adolescents and children MVA85A safely induces the type of immunity thought to be important in protection against TB. This includes induction of novel Th1‐cell populations that have not been previously described in humans.  相似文献   

5.
IL‐18 has been implicated in inflammatory bowel disease (IBD), however its role in the regulation of intestinal CD4+ T‐cell function remains unclear. Here we show that murine intestinal CD4+ T cells express high levels of IL‐18Rα and provide evidence that IL‐18Rα expression is induced on these cells subsequent to their entry into the intestinal mucosa. Using the CD45RBhi T‐cell transfer colitis model, we show that IL‐18Rα is expressed on IFN‐γ+, IL‐17+, and IL‐17+IFN‐γ+ effector CD4+ T cells in the inflamed colonic lamina propria (cLP) and mesenteric lymph node (MLN) and is required for the optimal generation and/or maintenance of IFN‐γ‐producing cells in the cLP. In the steady state and during colitis, TCR‐independent cytokine‐induced IFN‐γ and IL‐17 production by intestinal CD4+ T cells was largely IL‐18Rα?dependent. Despite these findings however, IL‐18Rα?deficient CD4+ T cells induced comparable intestinal pathology to WT CD4+ T cells. These findings suggest that IL‐18‐dependent cytokine induced activation of CD4+ T cells is not critical for the development of T‐cell‐mediated colitis.  相似文献   

6.
Evidence is presented that thermal or oxidizing stress‐activated DC interact with CD4+ T cells to induce and maintain a TCR‐independent homeostatic memory circuit. Stress‐activated DC expressed endogenous intra‐cellular and cell surface HSP70. The NF‐κB signalling pathway was activated and led to the expression of membrane‐associated IL‐15 molecules. These interacted with the IL‐15 receptor complex on CD4+ T cells, thus activating the Jak3 and STAT5 phosphorylation signalling pathway to induce CD40 ligand expression, T‐cell proliferation and IFN‐γ production. CD40 ligand on CD4+ T cells in turn re‐activated CD40 molecules on DC, inducing DC maturation and IL‐15 expression thereby maintaining the feedback circuit. The proliferating CD4+ T cells were characterized as CD45RA? CD62L+ central memory cells, which underwent homeostatic proliferation. The circuit is independent of antigen and MHC‐class‐II‐TCR interaction as demonstrated by resistance to TCR inhibition by ZAP70 inhibitor or MHC‐class II antibodies. These findings suggest that stress can activate a DC‐CD4+ T‐cell interacting circuit, which may be responsible for maintaining a homeostatic antigen‐independent memory.  相似文献   

7.
The immunological mechanisms that modulate protection during Mycobacterium tuberculosis (Mtb) infection or vaccination are not fully understood. Secretion of IFN‐γ and, to a lesser extent, of IL‐17 by CD4+ T cells plays a major role both in protection and immunopathology. Few Mtb Ags interacting with DCs affect priming, activation, and regulation of Ag‐unrelated CD4+ T‐cell responses. Here we demonstrate that PstS1, a 38 kDa‐lipoprotein of Mtb, promotes Ag‐independent activation of memory T lymphocytes specific for Ag85B or Ag85A, two immunodominant protective Ags of Mtb. PstS1 expands CD4+ and CD8+ memory T cells, amplifies secretion of IFN‐γ and IL‐22 and induces IL‐17 production by effector memory cells in an Ag‐unrelated manner in vitro and in vivo. These effects were mediated through the stimulation of DCs, particularly of the CD8α? subtype, which respond to PstS1 by undergoing phenotypic maturation and by secreting IL‐6, IL‐1β and, to a lower extent, IL‐23. IL‐6 secretion by PstS1‐stimulated DCs was required for IFN‐γ, and to a lesser extent for IL‐22 responses by Ag85B‐specific memory T cells. These results may open new perspectives for immunotherapeutic strategies to control Th1/Th17 immune responses in Mtb infections and in vaccinations against tuberculosis.  相似文献   

8.
CXCL4 regulates multiple facets of the immune response and is highly upregulated in various Th17‐associated rheumatic diseases. However, whether CXCL4 plays a direct role in the induction of IL‐17 production by human CD4+ T cells is currently unclear. Here, we demonstrated that CXCL4 induced human CD4+ T cells to secrete IL‐17 that co‐expressed IFN‐γ and IL‐22, and differentiated naïve CD4+ T cells to become Th17‐cytokine producing cells. In a co‐culture system of human CD4+ T cells with monocytes or myeloid dendritic cells, CXCL4 induced IL‐17 production upon triggering by superantigen. Moreover, when monocyte‐derived dendritic cells were differentiated in the presence of CXCL4, they orchestrated increased levels of IL‐17, IFN‐γ, and proliferation by CD4+ T cells. Furthermore, the CXCL4 levels in synovial fluid from psoriatic arthritis patients strongly correlated with IL‐17 and IL‐22 levels. A similar response to CXCL4 of enhanced IL‐17 production by CD4+ T cells was also observed in patients with psoriatic arthritis. Altogether, we demonstrate that CXCL4 boosts pro‐inflammatory cytokine production especially IL‐17 by human CD4+ T cells, either by acting directly or indirectly via myeloid antigen presenting cells, implicating a role for CXCL4 in PsA pathology.  相似文献   

9.
CpG oligodeoxynucleotide (ODN) is one of promising nucleic acid‐based adjuvants. We recently improved its ability to enhance CD8+ T‐cell responses to coadministered protein antigen without conjugation or emulsion, by forming a nanoparticulate complex between CpG ODN (K3) and mushroom‐derived β‐glucan schizophyllan (SPG), namely K3‐SPG. Here, we sought to elucidate the cellular immunological mechanisms by which K3‐SPG induce such potent CD8+ T‐cell responses to coadministered antigen. By focusing on two DC subsets, plasmacytoid DCs and CD8α+ DCs, as well as the secreted cytokines, IFN‐α and IL‐12, we found that K3‐SPG strongly activates mouse plasmacytoid DCs to secrete IFN‐α and CD8α+ DCs to secrete IL‐12, respectively. Although a single cytokine deficiency had no impact on adjuvant effects, the lack of both type I IFN and IL‐12 in mice resulted in a significant reduction of Th1 type immune responses and CD8+ T‐cell responses elicited by protein vaccine model. By sharp contrast, type I IFN, but not IL‐12, was required for the production of IFN‐γ by human PBMCs as well as antigen‐specific CD8+ T‐cell proliferation. Taken together, K3‐SPG may overcome the species barrier for CpG ODN to enhance antigen‐specific CD8+ T‐cell responses despite the differential role of IL‐12 between human and mice.  相似文献   

10.
T cell and T cell‐related cytokine abnormalities are involved in the pathogenesis of systemic lupus erythematosus (SLE). Our previous study showed that the interleukin (IL)‐22+CD4+T cells and IL‐22 play an important role in the pathogenesis of SLE. In this study, we aimed to investigate the effects of glucocorticoids (GCs) and immunodepressant agents on IL‐22 and IL‐22‐producing T cell subsets in SLE patients. The frequencies of peripheral blood T helper type 22 (Th22), IL‐22+Th17, IL‐22+Th1 and Th17 cells and the concentrations of serum IL‐22, IL‐17 and interferon (IFN)‐γ in SLE patients receiving 4 weeks of treatment with cyclophosphamide (CYC), methylprednisolone and hydroxychloroquine (HCQ) were characterized by flow cytometry analysis and enzyme‐linked immunosorbent assay (ELISA). The frequencies of Th22, IL‐22+ Th17 and Th17 cells and the concentrations of IL‐22 and IL‐17 were reduced in response to the drugs methylprednisolone, cyclophosphamide and hydroxychloroquine for 4 weeks in the majority of SLE patients. However, the percentage of Th1 cells showed no change. No differences in the levels of IL‐22 and IL‐22+CD4+ T cells were found between non‐responders and health controls either before or after therapy. IL‐22 levels were correlated positively with Th22 cells in SLE patients after treatment. These results suggest that elevated IL‐22 is correlated with IL‐22+CD4+T cells, especially Th22 cells, and may have a co‐operative or synergetic function in the immunopathogenesis of SLE. GC, CYC and HCQ treatment may regulate the production of IL‐22, possibly by correcting the IL‐22+CD4+T cells polarizations in SLE, thus providing new insights into the mechanism of GC, CYC and HCQ in the treatment of SLE.  相似文献   

11.
Malignant pleural effusion (MPE) is a poor prognostic sign for cancer patients, whereas the functional condition of MPE CD8+ T cells is unknown. Intracavitary immunotherapy with interleukin (IL)‐2 has been proven effective in controlling MPE. To elucidate the underlying mechanism, 35 lung cancer (LC) patients with MPE and 12 healthy donors were included in this study. For the IL‐2 therapy experiments, after draining partial MPE, we treated 14 patients by administrating IL‐2 (3 or 5 × 106 U in 50 ml saline) into the thoracic cavity. Before and after IL‐2 treatment (40‐48 h), the MPE and peripheral blood (PB) were obtained from the subjects. PB from healthy volunteers was collected as control. The expression of programmed cell death 1 (PD‐1), granzyme B (GzmB), interferon (IFN)‐γ and the proliferation were analysed in CD8+ T cells from MPE and PB. The CD8+ T cells in the MPE of LC patients showed lowest GzmB, IFN‐γ and proliferation but highest PD‐1 expression, compared with that in PB of LC patients and healthy donors. IL‐2 treatment reduced the expression of PD‐1, increased the expression of GzmB and IFN‐γ and enhanced the proliferation of CD8+ T cells in MPE. In addition, IL‐2 treatment reduced carcino‐embryonic antigen (CEA) level in MPE. These results indicate that MPE CD8+ T cells exhibit exhaustion phenotype which can be reversed by IL‐2 therapy.  相似文献   

12.
Heterologous prime‐boost strategies hold promise for vaccination against tuberculosis. However, the T‐cell characteristics required for protection are not known. We proposed that boost vaccines should induce long‐lived functional and phenotypic changes to T cells primed by Bacille Calmette Guerin (BCG) and/or natural exposure to mycobacteria. We characterized changes among specific CD4+ T cells after vaccination with the MVA85A vaccine in adults, adolescents, and children. CD4+ T cells identified with Ag85A peptide‐bearing HLA class II tetramers were characterized by flow cytometry. We also measured proliferative potential and cytokine expression of Ag85A‐specific CD4+ T cells. During the effector phase, MVA85A‐induced specific CD4+ T cells coexpressed IFN‐γ and IL‐2, skin homing integrins, and the activation marker CD38. This was followed by contraction and a transition to predominantly IL‐2‐expressing, CD45RA?CCR7+CD27+ or CD45RA+CCR7+CD27+ specific CD4+ T cells. These surface phenotypes were similar to Ag85A‐specific T cells prior to MVA85A. However, functional differences were observed postvaccination: specific proliferative capacity was markedly higher after 6–12 months than before vaccination. Our data suggest that MVA85A vaccination may modulate Ag85A‐specific CD4+ T‐cell function, resulting in greater recall potential. Importantly, surface phenotypes commonly used as proxies for memory T‐cell function did not associate with functional effects of vaccination.  相似文献   

13.
The addition of IL‐12p75 to naïve CD4+ T cells promotes their differentiation towards a TH1‐type cytokine pattern. Dendritic cells stimulated by LPS generate IL‐12p75, but only if the environment also contains IFN‐γ. Thus, it appears that IFN‐γ is needed to start the response that will result in further production of IFN‐γ. We previously reported that paradoxically DCs produce IL‐12p75 only after engaging primed, but not naïve T cells. This study examines the mechanism by which primed T cells trigger IL‐12p75 secretion and asks whether this induction is also dependent on the presence of IFN‐γ. Here, we show that, in contrast to LPS, primed T cells induce IL‐12p75 in an IFN‐γ‐independent manner. Addition of rIFN‐γ to cocultures of naïve T cells with DCs did not induce IL‐12p75. Moreover, antigen‐activated CD4+ T cells from wild type or IFN‐γ‐deficient mice both initiated IL‐12p75 production from DCs. Surprisingly, we found that synergies between three T‐cell‐derived factors – CD40 Ligand, IL‐4 and GM‐CSF – were necessary and sufficient for IL‐12p75 production. These results suggest that there are at least two distinct pathways for IL‐12p75 production in vivo. Furthermore, the T‐cell‐dependent pathway of IL‐12p75 production employs molecules that are not classically associated with a TH1‐type response.  相似文献   

14.
Natural killer (NK) cells are the major antiviral effector cell population of the innate immune system. It has been demonstrated that NK‐cell activity can be modulated by the interaction with dendritic cells (DCs). The HIV‐1 vaccine candidate Modified Vaccinia Ankara encoding an HIV polypeptide (MVAHIV), developed by the French National Agency for Research on AIDS (ANRS), has the ability to prime NK cells to control HIV‐1 infection in DCs. However, whether or not MVAHIV‐primed NK cells are able to better control HIV‐1 infection in CD4+ T cells, and the mechanism underlying the specific priming, remain undetermined. In this study, we show that MVAHIV‐primed NK cells display a greater capacity to control HIV‐1 infection in autologous CD4+ T cells. We also highlight the importance of NKG2D engagement on NK cells and DC‐produced IL‐15 to achieve the anti‐HIV‐1 specific priming, as blockade of either NKG2D or IL‐15 during MVAHIV‐priming lead to a subsequent decreased control of HIV‐1 infection in autologous CD4+ T cells. Furthermore, we show that the decreased control of HIV‐1 infection in CD4+ T cells might be due, at least in part, to the decreased expression of membrane‐bound IL‐15 (mbIL‐15) on DCs when NKG2D is blocked during MVAHIV‐priming of NK cells.  相似文献   

15.
Bystander activation of T cells, i.e. the stimulation of unrelated (heterologous) T cells by cytokines during an Ag‐specific T‐cell response, has been best described for CD8+ T cells. In the CD8+ compartment, the release of IFN and IFN‐inducers leads to the production of IL‐15, which mediates the proliferation of CD8+ T cells, notably memory‐phenotype CD8+ T cells. CD4+ T cells also undergo bystander activation, however, the signals inducing this Ag‐nonspecific stimulation of CD4+ T cells are less well known. A study in this issue of the European Journal of Immunology sheds light on this aspect, suggesting that common γ‐chain cytokines including IL‐2 might be involved in bystander activation of CD4+ T cells.  相似文献   

16.
17.
Primary Leishmania major infection typically produces cutaneous lesions that not only heal but also harbor persistent parasites. While the opposing roles of CD4+ T‐cell‐derived IFN‐γ and IL‐10 in promoting parasite killing and persistence have been well established, how these responses develop from naïve precursors has not been directly monitored throughout the course of infection. We used peptide:Major Histocompatibility Complex class II (pMHCII) tetramers to investigate the endogenous, parasite‐specific primary CD4+ T‐cell response to L. major in mice resistant to infection. Maximal frequencies of IFN‐γ+ CD4+ T cells were observed in the spleen and infected ears within a month after infection and were maintained into the chronic phase. In contrast, peak frequencies of IL‐10+ CD4+ T cells emerged within 2 weeks of infection, persisted into the chronic phase, and accumulated in the infected ears but not the spleen, via a process that depended on local antigen presentation. T helper type‐1 (Th1) cells, not Foxp3+ regulatory T cells, were the chief producers of IL‐10 and were not exhausted. Therefore, tracking antigenspecific CD4+ T cells revealed that IL‐10 production by Th1 cells is not due to persistent T‐cell antigen receptor stimulation, but rather driven by early antigen encounter at the site of infection.  相似文献   

18.
19.
γδ T cells are a potent source of innate IL‐17A and IFN‐γ, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24low CD44high effector γδ T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ γδ T cells produced IL‐17A, while NK1.1+ γδ T cells were efficient producers of IFN‐γ but not of IL‐17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ γδ T cells. Accordingly, both γδ T‐cell subsets were rare in gut‐associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL‐17A and IFN‐γ in response to TCR‐specific and TCR‐independent stimuli. IL‐12 and IL‐18 induced IFN‐γ and IL‐23 induced IL‐17A production by NK1.1+ or CCR6+ γδ T cells, respectively. Importantly, we show that CCR6+ γδ T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL‐17A‐producing γδ T cells derive from less TCR‐dependent selection events than IFN‐γ‐producing NK1.1+ γδ T cells.  相似文献   

20.
Type I interferons (IFNs) have the dual ability to promote the development of the immune response and exert an anti‐inflammatory activity. We analyzed the integrated effect of IFN‐α, TCR signal strength, and CD28 costimulation on human CD4+ T‐cell differentiation into cell subsets producing the anti‐ and proinflammatory cytokines IL‐10 and IFN‐γ. We show that IFN‐α boosted TCR‐induced IL‐10 expression in activated peripheral CD45RA+CD4+ T cells and in whole blood cultures. The functional cooperation between TCR and IFN‐α efficiently occurred at low engagement of receptors. Moreover, IFN‐α rapidly cooperated with anti‐CD3 stimulation alone. IFN‐α, but not IL‐10, drove the early development of type I regulatory T cells that were mostly IL‐10+ Foxp3? IFN‐γ? and favored IL‐10 expression in a fraction of Foxp3+ T cells. Our data support a model in which IFN‐α costimulates TCR toward the production of IL‐10 whose level can be amplified via an autocrine feedback loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号