首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
T‐cell homeostasis preserves the numbers, the diversity and functional competence of different T‐cell subsets that are required for adaptive immunity. Naïve CD4+ T (TN) cells are maintained in the periphery via the common γ‐chain family cytokine IL‐7 and weak antigenic signals. However, it is not clear how memory CD4+ T‐cell subsets are maintained in the periphery and which factors are responsible for the maintenance. To examine the homeostatic mechanisms, CFSE‐labeled CD4+CD44highCD62Llow effector memory T (TEM) cells were transferred into sublethally‐irradiated syngeneic C57BL/6 mice, and the systemic cell proliferative responses, which can be divided distinctively into fast and slow proliferations, were assessed by CFSE dye dilution. We found that the fast homeostatic proliferation of TEM cells was strictly regulated by both antigen and OX40 costimulatory signals and that the slow proliferation was dependent on IL‐7. The simultaneous blockade of both OX40 and IL‐7 signaling completely inhibited the both fast and slow proliferation. The antigen‐ and OX40‐dependent fast proliferation preferentially expanded IL‐17‐producing helper T cells (Th17 cells). Thus, OX40 and IL‐7 play synergistic, but distinct roles in the homeostatic proliferation of CD4+ TEM cells.  相似文献   

2.
To investigate the importance of OX40 signals for physiological CD4+ T‐cell responses, an endogenous antigen‐specific population of CD4+ T cells that recognise the 2W1S peptide was assessed and temporal control of OX40 signals was achieved using blocking or agonistic antibodies (Abs) in vivo. Following infection with Listeria monocytogenes expressing 2W1S peptide, OX40 was briefly expressed by the responding 2W1S‐specific CD4+ T cells, but only on a subset that co‐expressed effector cell markers. This population was specifically expanded by Ab‐ligation of OX40 during priming, which also caused skewing of the memory response towards effector memory cells. Strikingly, this greatly enhanced effector response was accompanied by the loss of T follicular helper (TFH) cells and germinal centres. Mice deficient in OX40 and CD30 showed normal generation of TFH cells but impaired numbers of 2W1S‐specific effector cells. OX40 was not expressed by 2W1S‐specific memory cells, although it was rapidly up‐regulated upon challenge whereupon Ab‐ligation of OX40 specifically affected the effector subset. In summary, these data indicate that for CD4+ T cells, OX40 signals are important for generation of effector T cells rather than TFH cells in this response to acute bacterial infection.  相似文献   

3.
天然CD4+ CD25+ Treg细胞在针对自身抗原和外来抗原的免疫应答中起关键控制作用,其缺乏或功能性的缺陷将导致多重病理性的失调.本文就近年在其产生、作用机制以及与免疫耐受的诱导关系等方面的研究进展进行了综述.  相似文献   

4.
Cooperation between CD4(+) T cells can enhance the response and modulate the cytokine profile, and defining these parameters has become a major issue for multivalent-vaccine strategies.We explored cooperation using adoptive transfer of two populations of TCR transgenic T cells of different specificity. One was transferred without prior activation, whereas the second was activated for five days by antigen stimulation under polarizing culture conditions. Both populations were transferred into a single adoptive host and then primed by particle-mediated DNA delivery. Polarized Th1 cells (inducers) raised the frequency of IFN-gamma(+) cells within a naive (target) population, whereas Th2 inducers raised the frequency of IL-4(+) and reduced that of IL-2(+) cells. These effects were obtained when the genes for both antigens were on the same particle, favoring presentation by the same dendritic cell, but not when on different particles delivered to different dendritic cells. Autonomy of DC clusters allows linked sets of antigens (e.g. from a single pathogen) to maintain cytokine bias, but allows other independent responses, each with their own set of autonomous clusters.  相似文献   

5.
Ligation of CD28 provides a costimulatory signal to T cells necessary for their activation resulting in increased interleukin (IL)-2 production in vitro, but its role in IL-4 and other cytokine production and functional differentiation of T helper (Th) cells remains uncertain. We studied the pattern of cytokine production by highly purified human adult and neonatal CD4+ T cells activated with anti-CD3, phorbol 12-myristate 13-acetate (PMA) and ionomycin, or phytohemagglutinin (PHA) in the presence or absence of anti-CD28 in repetitive stimulation-rest cycles. Initial stimulation of CD4+ cells with anti-CD3 (or the mitogens PHA or PMA+ionomycin) and anti-CD28 monoclonal antibodies induced IL-4, IL-5 and interferon-γ (IFN-γ) production and augmented IL-2 production (6- to 11-fold) compared to cells stimulated with anti-CD3 or mitogen alone. The anti-CD28-induced cytokine production corresponded with augmented IL-4 and IL-5 mRNA levels suggesting increased gene expression and/or mRNA stabilization. Most striking, however, was the progressively enhanced IL-4 and IL-5 production and diminished IL-2 and IFN-γ production with repetitive consecutive cycles of CD28 stimulation. The enhanced Th2-like response correlated with an increased frequency of IL-4-secreting cells; up to 70% of the cells produced IL-4 on the third round of stimulation compared to only 5% after the first stimulation as determined by ELISPOT. CD28 activation also promoted a Th2 response in naive neonatal CD4+ cells, indicating that Th cells are induced to express a Th2 response rather than preferential expansion of already established Th2-type cells. This CD28-mediated response was IL-4 independent, since enhanced IL-5 production with repetitive stimulation cycles was not affected in the presence of neutralizing anti-IL-4 antibodies. These results indicate that CD28 activation may play an important role in the differentiation of the Th2 subset in humans.  相似文献   

6.
Malaria is a major global health problem. Despite decades of research, there is still no effective vaccine to prevent disease in the majority of people living in malaria-endemic regions. Additionally, drug treatment options are continually threatened by the emergence of drug-resistant parasites. Immune responses generated against Plasmodium parasites that cause malaria are generally not sufficient to prevent the establishment of infection and can even contribute to the development of disease, unless individuals have survived multiple infections. Research conducted in experimental models, controlled human malaria infection studies, and with malaria patients from disease-endemic areas indicate the rapid development of immunoregulatory pathways in response to Plasmodium infection. These “imprinted” immune responses limit inflammation, and likely prevent progression to severe disease manifestations. However, they also cause slow acquisition of immunity and possibly hamper the development of vaccine-mediated protection against disease. A major target for and mediator of the immunoregulatory pathways established during malaria are CD4+ T cells that play critical roles in priming phagocytic cells to capture and kill malaria parasites, as well as helping B cells produce functional anti-parasitic antibodies. In this review, we describe mechanisms of CD4+ T cell activation during malaria and discuss the immunoregulatory mechanisms that develop to dampen their anti-parasitic and pathological functions. We also offer some ideas about how host-directed approaches might be applied to modulate CD4+ T cell functions to improve vaccine responses and enhance development of natural immunity.  相似文献   

7.
目的 探讨表面受体CD244在活动性肺结核患者CD8+T细胞中的功能.方法 密度梯度离心法提取活动性肺结核患者和健康对照者的外周血单个核细胞,通过流式细胞术检测CD244在CD3+ CD8+细胞中的表达;通过细胞内染色方法检测CD244与细胞因子IFN-γ和TNF-α表达的关系.结果 CD244在活动性肺结核患者CD8+T细胞表达强度显著高于健康对照者(P=0.0003);复治肺结核患者的CD244表达强度显著高于新发肺结核患者(P=0.0011);CD244-细胞表达IFN-γ比例显著高于CD244+细胞(P=0.0013);CD244-细胞表达TNF-α比例显著高于CD244+细胞(P =0.0016).结论 CD244抑制活动性肺结核患者CD8+T细胞的细胞因子分泌表达.  相似文献   

8.
CD4+CD25+调节性T细胞及相关细胞因子的研究进展   总被引:1,自引:0,他引:1  
胸腺来源的CD4^+CD25^+调节性T细胞(Treg)是机体维持自身免疫耐受的重要组成部分,约占CD4^+T细胞的5%-10%。它具有免疫抑制及免疫无能的特性,是最重要的Treg细胞的亚群之一。近年发现CD4^+CD25^+Treg细胞主要通过分泌一些抑制性细胞因子和抑制自身反应性T细胞的免疫应答等方式在维持自身免疫耐受中扮演着重要的角色,其数量的缺乏或功能紊乱会导致各种自身免疫性疾病的发生。  相似文献   

9.
Alloimmunization against red blood cells (RBCs) is the main immunological risk associated with transfusion in patients with sickle cell disease (SCD). However, about 50–70% of SCD patients never get immunized despite frequent transfusion. In murine models, CD4+ T cells play a key role in RBC alloimmunization. We therefore explored and compared the CD4+ T‐cell phenotypes and functions between a group of SCD patients (n = 11) who never became immunized despite a high transfusion regimen and a group of SCD patients (n = 10) who had become immunized (at least against Kidd antigen b) after a low transfusion regimen. We studied markers of CD4+ T‐cell function, including TLR, that directly control lymphocyte function, and their spontaneous cytokine production. We also tested responders for the cytokine profile in response to Kidd antigen b peptides. Low TLR2/TLR3 expression and, unexpectedly, strong expression of CD40 on CD4+ T cells were associated with the nonresponder status, whereas spontaneous expression of IL‐10 by CD4+ T cells and weak Tbet expression were associated with the responder status. A Th17 profile was predominant in responders when stimulated by Jbk. These findings implicate CD4+ T cells in alloimmunization in humans and suggest that they may be exploited to differentiate responders from nonresponders.  相似文献   

10.
目的 研究CD4+CD25+调节性T细胞对氧化型低密度脂蛋白(oxLDL)激活的巨噬细胞功能的影响及其机制.方法 磁性细胞分离器(MACS)分离CD4+CD25+T细胞及CD4+CD25-T细胞,在oxLDL作用下,将巨噬细胞分别与CD4+CD25+T细胞、CD4+CD25-T细胞共培养48 h.采用流式细胞术检测巨噬细胞HLA-DR、CD86的表达;ELISA检测上清液MCP-1、MMP-9、TNF-α、TGF-β和IL-10细胞因子的表达;采用Griess反应测定NO生成量,RT-PCR测定iNOS表达.结果 与对照组比较,CD4+CD25+T细胞可显著抑制oxLDL激活的巨噬细胞HLA-DR及CD86的表达、减少NO生成、抑制iNOS mRNA表达和促炎细胞因子生成.结论 调节性T细胞可促使oxLDL激活的巨噬细胞由具有促炎表型的M1型向具有抗炎表型的M2型转化.  相似文献   

11.
Phenotypic and functional heterogeneity is the hallmark of effector and memory T cells. Upon antigenic stimulation, naïve CD4+ T cells make choices to become effector Th1, Th2 or Th17 cells, or even Treg. In addition to differences in cytokine repertoire, effector CD4+ T cells exhibit diversity in homing, such as migration to lymph node follicles to help B cells versus migration to inflamed tissues. Upon clearance of the antigen, two major types of memory T cells remain: central memory cells, which patrol lymphoid organs, and effector memory cells that act as sentinels in peripheral tissues such as the skin and the gut. Here, we review our current understanding of CD4+ T‐cell lineage heterogeneity and flexibility, with emphasis on the human system, and propose an organization of effector and memory T cells based on distinct functional modules.  相似文献   

12.
Central memory CD8+ T cells (TCM) play key roles in the protective immunity against infectious agents, cancer immunotherapy, and adoptive treatments of malignant and viral diseases. CD8+ TCM cells are characterized by specific phenotypes, homing, and proliferative capacities. However, CD8+ TCM‐cell generation is challenging, and usually requires CD4+ CD40L+ T‐cell “help” during the priming of naïve CD8+ T cells. We have generated a replication incompetent CD40 ligand‐expressing recombinant vaccinia virus (rVV40L) to promote the differentiation of human naïve CD8+ T cells into TCM specific for viral and tumor‐associated antigens. Soluble CD40 ligand recombinant protein (sCD40L), and vaccinia virus wild‐type (VV WT), alone or in combination, were used as controls. Here, we show that, in the absence of CD4+ T cells, a single “in vitro” stimulation of naïve CD8+ T cells by rVV40L‐infected nonprofessional CD14+ antigen presenting cells promotes the rapid generation of viral or tumor associated antigen‐specific CD8+ T cells displaying TCM phenotypic and functional properties. These observations demonstrate the high ability of rVV40L to fine tune CD8+ mediated immune responses, and strongly support the use of similar reagents for clinical immunization and adoptive immunotherapy purposes.  相似文献   

13.
目的 探讨CD4^+CD25^+调节性T细胞是否对树突状细胞发挥免疫调节作用及其可能的机制。方法 用MACS(magnetic cell sorting)从BALB/c小鼠静息T细胞分离纯化CD4^+CD25^+T细胞,体外细胞增殖实验观察其对CD4^+CD25^+T细胞的免疫抑制作用;GM-CSF/IL-4培养自体小鼠骨髓来源DC,FACS(fluorescence-activated cell sorting)鉴定其表面分子特性;以CD3/CD28单克隆抗体活化CD4^+CD25^+调节性T细胞,FACS体外杀伤实验研究其对自体DC的调节作用,并观察穿孔素抑制剂EGTA对上述作用的影响。结果 用MACS法成功分离出CD4^+CD25^+T细胞,纯度可达98%,特异性表达而Faxp3基因,能明显抑制CD4^+CD25^+T细胞的体外增殖;骨髓来源的DC表达CDllc、MHCⅡ及少量协同刺激分子CD80、CD86;FACS体外杀伤实验证实以CD3/CD28抗体体外活化的CD4^+CD25^+调节性T细胞对自体DC有显著杀伤作用(P〈0.05),穿孔素抑制剂EGTA能部分抑制该杀伤效应(P〈0.05)。结论 CD4^+CD25^+调节性T细胞可通过杀伤作用对自体DC发挥免疫调节作用,穿孔素/颗粒酶杀伤途径可能参与其中。  相似文献   

14.
目的研究卵巢癌细胞培养上清液是否能诱导外周血CD4^+CD25^- T细胞转变为CD4^+CD25^+调节性T细胞。方法将外周血CD4^+CD25^- T细胞分离后,对照组用CD3和CD28单抗活化,实验组在对照基础上加用卵巢癌细胞株SKOV3培养上清,72h后分离各组的CD25^+和CD25^-T细胞,溴化脱氧尿嘧啶掺入标记法测定增殖能力及对静息的自体同源CD4^+CD25^- T细胞的增殖抑制能力,流式细胞仪测定细胞糖皮质激素诱发型TNF受体(glucocorticoid-induced TNFR,GITR)与CTLA-4分子的表达,RT-PCR检测细胞卿mRNA的表达。结果与对照组相反,实验组的CD4^+CD25^+T细胞具有免疫抑制功能,自身增殖能力下降,GITR和CTLA-4分子的表达和CD4^+CD25^+调节性T细胞相似,并被诱导表达转录因子Foxp3 mRNA。结论卵巢癌细胞分泌的可溶性物质能诱导外周血CD4^+CD25^-T细胞转化为CD4^+CD25^+调节性T细胞。  相似文献   

15.
16.
CD4+CD25+调节性T细胞(Tr)是体内自然发生的调节性T细胞的重要亚群,具有无反应性和免疫抑制两大特性,主要通过与靶细胞的直接接触而起作用,其在体内不仅参与自身免疫性疾病、移植排斥反应等,还在肿瘤的发生、发展及免疫治疗中发挥重要作用.近几年来,Tr在肿瘤免疫中的作用倍受关注.  相似文献   

17.
CD4+CD25+调节性T细胞(Tr)是同时具有免疫低反应性和免疫抑制性功能两大特征的T细胞.研究证实,CD4+ CD25+ Tr在抑制器官特异性自身免疫性疾病及GVHD是抗原特异性的,因此,应用器官特异性而不是多克隆性的Tr将大大促进以Tr为基础的免疫治疗.而具有调节活性的CD4+ CD25+ Tr仅占人类外周血CIM+ T细胞的1%~2%,因此,研究体外大量扩增的方法 对于以Tr基础的治疗至关重要.研究表明,树突状细胞(DC)作为机体强有力的专职抗原递呈细胞可以扩增具有抗原特异性的CD4+ CD25+ Tr且能增加后者的抑制活性,这为治疗自身免疫性疾病及GVHD提供了新的治疗前景.  相似文献   

18.
T cell protective immunity is associated with multifunctional memory cells that produce several different cytokines. Currently, our understanding of when and how these cells are generated is limited. We have used an influenza virus mouse infection model to investigate whether the cytokine profile of memory T cells is reflective of primary responding cells or skewed toward a distinct profile. We found that, in comparison to primary cells, memory T cells tended to make multiple cytokines simultaneously. Analysis of the timings of release of cytokine by influenza virus‐specific T cells, demonstrated that primary responding CD4 T cells from lymphoid organs were unable to produce a sustained cytokine response. In contrast CD8 T cells, memory CD4 T cells, and primary responding CD4 T cells from the lung produced a sustained cytokine response throughout the restimulation period. Moreover, memory CD4 T cells were more resistant than primary responding CD4 T cells to inhibitors that suppress T cell receptor signaling. Together, these data suggest that memory CD4 T cells display superior cytokine responses compared to primary responding cells. These data are key to our ability to identify the cues that drive the generation of protective memory CD4 T cells following infection.  相似文献   

19.
CD4+CD25+Foxp3+ Treg cells maintain immunological tolerance. In this study, the possibility that Treg cells control immune responses via the production of secreted membrane vesicles, such as exosomes, was investigated. Exosomes are released by many cell types, including T cells, and have regulatory functions. Indeed, TCR activation of both freshly isolated Treg cells and an antigen‐specific Treg‐cell line resulted in the production of exosomes as defined morphologically by EM and by the presence of tetraspanin molecules LAMP‐1/CD63 and CD81. Expression of the ecto‐5‐nucleotide enzyme CD73 by Treg cells has been shown to contribute to their suppressive function by converting extracellular adenosine‐5‐monophosphate to adenosine, which, following interaction with adenosine receptors expressed on target cells, leads to immune modulation. CD73 was evident on Treg cell derived exosomes, accordingly when these exosomes were incubated in the presence of adenosine‐5‐monophosphate production of adenosine was observed. Most importantly, CD73 present on Treg cell derived exosomes was essential for their suppressive function hitherto exosomes derived from a CD73‐negative CD4+ T‐cell line did not have such capabilities. Overall our findings demonstrate that CD73‐expressing exosomes produced by Treg cells following activation contribute to their suppressive activity through the production of adenosine.  相似文献   

20.
Multi-color flow cytometric analysis on human CD8(+) T cell subsets revealed that CXCR4 is predominantly expressed on CD8(+) T cells with the naive CD27(+)CD28(+)CD45RA(+) phenotype, and is down-regulated during differentiation into those with an effector phenotype. The down-regulation of CXCR4 expression during peripheral differentiation was supported by the fact that the expression of CXCR4 on CD8(+) T cells was negatively correlated with that of perforin. The analysis of CCR5, CCR7, and CXCR4 co-expression further showed that CD8(+) T cells expressing a high level of CXCR4 are CCR7(+)CCR5(-) naive or central memory subsets, and those expressing a low level of CXCR4 were included in the CCR7(-)CCR5(+/-) memory/effector and effector subsets. Epstein Barr virus-specific CD8(+) T cells, which mostly express the memory phenotype, expressed CXCR4, while human cytomegalovirus-specific CD8(+) T cells, which mostly express the effector phenotype, partially expressed this receptor, showing that the expression of CXCR4 is also down-regulated during differentiation of viral antigen-specific CD8(+) T cells. The classification of human CD8(+) T cells based on the expression of these chemokine receptors should prove useful for studies that clarify the differentiation of human CD8(+) T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号