首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helminth parasites suppress immune responses to prolong their survival within the mammalian host. Thereby not only helminth‐specific but also nonhelminth‐specific bystander immune responses are suppressed. Here, we use the murine model of Litomosoides sigmodontis infection to elucidate the underlying mechanisms leading to this bystander T‐cell suppression. When OT‐II T cells specific for the third‐party antigen ovalbumin are transferred into helminth‐infected mice, these cells respond to antigen‐specific stimulation with reduced proliferation compared to activation within non‐infected mice. Thus, the presence of parasitic worms in the thoracic cavity translates to suppression of T cells with a different specificity at a different site. By eliminating regulatory receptors, cytokines, and cell populations from this system, we provide evidence for a two‐staged process. Parasite products first engage the TGF‐β receptor on host‐derived T cells that are central to suppression. In a second step, host‐derived T cells produce IL‐10 and subsequently suppress the adoptively transferred OT‐II T cells. Terminal suppression was IL‐10‐dependant but independent of intrinsic TGF‐β receptor‐ or PD‐1‐mediated signaling in the suppressed OT‐II T cells. Blockade of the same key suppression mediators, i.e. TGF‐β‐ and IL‐10 receptor, also ameliorated the suppression of IgG response to bystander antigen vaccination in L. sigmodontis‐infected mice.  相似文献   

2.
BALB/c mice develop a patent state [release of microfilariae (Mf), the transmission life‐stage, into the periphery] when exposed to the rodent filariae Litomosoides sigmodontis. Interestingly, only a portion of the infected mice become patent, which reflects the situation in human individuals infected with Wuchereria bancrofti. Since those individuals had differing filarial‐specific profiles, this study compared differences in immune responses between Mf+ and Mf infected BALB/c mice. We demonstrate that cultures of total spleen or mediastinal lymph node cells from Mf+ mice produce significantly more interleukin‐5 (IL‐5) to filarial antigens but equal levels of IL‐10 when compared with Mf mice. However, isolated CD4+ T cells from Mf+ mice produced significantly higher amounts of all measured cytokines, including IL‐10, when compared with CD4+ T‐cell responses from Mf mice. Since adaptive immune responses are influenced by triggering the innate immune system we further studied the immune profiles and parasitology in infected Toll‐like receptor‐2‐deficient (TLR2?/?) and TLR4?/? BALB/c mice. Ninety‐three per cent of L. sigmodontis‐exposed TLR4?/? BALB/c mice became patent (Mf+) although worm numbers remained comparable to those in Mf+ wild‐type controls. Lack of TLR2 had no influence on patency outcome or worm burden but infected Mf+ mice had significantly lower numbers of Foxp3+ regulatory T cells and dampened peripheral immune responses. Interestingly, in vitro culturing of CD4+ T cells from infected wild‐type mice with granulocyte–macrophage colony‐stimulating factor‐derived TLR2?/? dendritic cells resulted in an overall diminished cytokine profile to filarial antigens. Hence, triggering TLR4 or TLR2 during chronic filarial infection has a significant impact on patency and efficient CD4+ T‐cell responses, respectively.  相似文献   

3.
Gp130 is the common receptor of the IL‐6 family of cytokines and is involved in many biological processes, including acute phase response, inflammation and immune reactions. To investigate the role of gp130 under inflammatory conditions, T‐cell‐specific conditional gp130 mice were first bred to the IL‐10‐deficient background and were then infected with the gastrointestinal nematode Trichuris muris. While IL‐10?/? mice were highly susceptible to T. muris, developed a mixed Th1/Th17 response and displayed severe inflammation of the caecum, infection of mice with an additional T‐cell‐specific deletion of gp130 signalling completely reversed the phenotype. These mice showed an accelerated worm expulsion that was associated with the rapid generation of a strong Th2 immune response and a significant increase in Foxp3‐expressing Treg. Therefore, gp130 signalling in T cells regulates a switch between proinflammatory and pathogenic Th1/Th17 cells and regulatory Th2/Treg in vivo. Taken together, the data demonstrate that gp130 signalling in T cells is a positive regulator of inflammatory processes, favouring the Th1/Th17 axis.  相似文献   

4.
We sought to determine whether Litomosoides sigmodontis, a filarial infection of rodents, protects against type 1 diabetes in non‐obese diabetic (NOD) mice. Six‐week‐old NOD mice were sham‐infected or infected with either L3 larvae, adult male worms, or adult female worms. Whereas 82% of uninfected NOD mice developed diabetes by 25 weeks of age, no L. sigmodontis‐infected mice developed disease. Although all mice had evidence of ongoing islet cell inflammation by histology, L. sigmodontis‐infected mice had greater numbers of total islets and non‐infiltrated islets than control mice. Protection against diabetes was associated with a T helper type 2 (Th2) shift, as interleukin‐4 (IL‐4) and IL‐5 release from α‐CD3/α‐CD28‐stimulated splenocytes was greater in L. sigmodontis‐infected mice than in uninfected mice. Increased circulating levels of insulin‐specific immunoglobulin G1, showed that this Th2 shift occurs in response to one of the main autoantigens in diabetes. Multicolour flow cytometry studies demonstrated that protection against diabetes in L. sigmodontis‐infected NOD mice was associated with significantly increased numbers of splenic CD4+ CD25+ FoxP3+ regulatory T cells. Interestingly, injection of crude worm antigen into NOD mice also resulted in protection against type 1 diabetes, though to a lesser degree than infection with live L. sigmodontis worms. In conclusion, these studies demonstrate that filarial worms can protect against the onset of type 1 diabetes in NOD mice. This protection is associated with a Th2 shift, as demonstrated by cytokine and antibody production, and with an increase in CD4+ CD25+ FoxP3+ regulatory T cells.  相似文献   

5.
Graft‐versus‐host disease (GvHD) is a frequent life‐threatening complication following allogeneic HSC transplantation (HSCT). IL‐10 is a regulatory cytokine with important roles during GvHD, yet its relevant sources, and mode of action, remain incompletely defined in this disease. Using IL‐10‐deficient donor or host mice (BALB/c or C57BL/6, respectively) in a MHC‐mismatched model for acute GvHD, we found a strongly aggravated course of the disease with increased mortality when either donor or host cells could not produce this cytokine. A lack of IL‐10 resulted in increased allogeneic T‐cell responses and enhanced activation of host DCs in spleen and MLNs. Remarkably, IL‐10 was prominently produced by host‐ and donor‐derived CD5intCD1dintTIM‐1int B cells in this disease, and consistent with this, allogeneic HSCT resulted in exacerbated GvHD when mice lacking IL‐10 expression in B cells were used as donor or host, compared with controls. Taken together, this study demonstrates that host and donor B cell‐derived IL‐10 provides a unique mechanism of suppression of acute GvHD, and suggests that DCs are the targets of this B cell‐mediated suppressive effect. These findings open novel therapeutic possibilities based on the use of B cells to increase the feasibility of allogeneic HSCT.  相似文献   

6.
Galectin‐9 (Gal‐9) plays pivotal roles in the modulation of innate and adaptive immunity to suppress T‐cell‐mediated autoimmune models. However, it remains unclear if Gal‐9 plays a suppressive role for T‐cell function in non‐autoimmune disease models. We assessed the effects of Gal‐9 on experimental hypersensitivity pneumonitis induced by Trichosporon asahii. When Gal‐9 was given subcutaneously to C57BL/6 mice at the time of challenge with T. asahii, it significantly suppressed T. asahii‐induced lung inflammation, as the levels of IL‐1, IL‐6, IFN‐γ, and IL‐17 were significantly reduced in the BALF of Gal‐9‐treated mice. Moreover, co‐culture of anti‐CD3‐stimulated CD4 T cells with BALF cells harvested from Gal‐9‐treated mice on day 1 resulted in diminished CD4 T‐cell proliferation and decreased levels of IFN‐γ and IL‐17. CD11b+Ly‐6ChighF4/80+ BALF M? expanded by Gal‐9 were responsible for the suppression. We further found in vitro that Gal‐9, only in the presence of T. asahii, expands CD11b+Ly‐6ChighF4/80+ cells from BM cells, and the cells suppress T‐cell proliferation and IFN‐γ and IL‐17 production. The present results indicate that Gal‐9 expands immunosuppressive CD11b+Ly‐6Chigh M? to ameliorate Th1/Th17 cell‐mediated hypersensitivity pneumonitis.  相似文献   

7.
IL‐10‐secreting regulatory B cells have been postulated as negative mediators of inflammation. However, their impact on immune‐mediated diseases requires further investigation. We recently found that IL‐10‐secreting B cells infiltrate the kidney during crescentic glomerulonephritis (GN). We therefore studied the function of B‐cell‐derived IL‐10 in light of the potential risks associated with increasingly used B‐cell depleting therapies. Lack of IL‐10 production by B cells, however, did not influence acute or adaptively mediated progressive renal injury in terms of renal function and histological damage in the nephrotoxic nephritis model of GN. Renal leukocyte infiltration and cytokine expression were similar apart from increased macrophages in mice lacking B‐cell‐derived IL‐10. Systemic immune responses as assessed by cytokine production, leukocyte composition, proliferation, and activation were indistinguishable, while production and renal deposition of Ag‐specific IgG were mildly impaired in the absence of B‐cell‐produced IL‐10. Importantly, detailed analysis of systemic and renal regulatory T cells did not show any differences between nephritic mice bearing IL‐10‐deficient B cells and WT controls. Finally, studies in reporter mice revealed that B cells are only a minor source of systemic IL‐10. In summary, our data reveal that endogenous B‐cell‐derived IL‐10 does not play a major role in the nephrotoxic nephritis model of crescentic GN.  相似文献   

8.
Foxp3+ regulatory T (Treg) cells are key immune regulators during helminth infections, and identifying the mechanisms governing their induction is of principal importance for the design of treatments for helminth infections, allergies and autoimmunity. Little is yet known regarding the co‐stimulatory environment that favours the development of Foxp3+ Treg‐cell responses during helminth infections. As recent evidence implicates the co‐stimulatory receptor ICOS in defining Foxp3+ Treg‐cell functions, we investigated the role of ICOS in helminth‐induced Foxp3+ Treg‐cell responses. Infection of ICOS?/? mice with Heligmosomoides polygyrus or Schistosoma mansoni led to a reduced expansion and maintenance of Foxp3+ Treg cells. Moreover, during H. polygyrus infection, ICOS deficiency resulted in increased Foxp3+ Treg‐cell apoptosis, a Foxp3+ Treg‐cell specific impairment in IL‐10 production, and a failure to mount putatively adaptive Helios?Foxp3+ Treg‐cell responses within the intestinal lamina propria. Impaired lamina propria Foxp3+ Treg‐cell responses were associated with increased production of IL‐4 and IL‐13 by CD4+ T cells, demonstrating that ICOS dominantly downregulates Type 2 responses at the infection site, sharply contrasting with its Type 2‐promoting effects within lymphoid tissue. Thus, ICOS regulates Type 2 immunity in a tissue‐specific manner, and plays a key role in driving Foxp3+ Treg‐cell expansion and function during helminth infections.  相似文献   

9.
Recent studies have indicated that Treg contribute to the HIV type 1 (HIV‐1)‐related immune pathogenesis. However, it is not clear whether T cells with suppressive properties reside within the HIV‐1‐specific T‐cell population. Here, PBMC from HIV‐1‐infected individuals were stimulated with a 15‐mer Gag peptide pool, and HIV‐1‐specific T cells were enriched by virtue of their secretion of IL‐10 or IFN‐γ using immunomagnetic cell‐sorting. Neither the IL‐10‐secreting cells nor the IFN‐γ‐secreting cells expressed the Treg marker FOXP3, yet the IL‐10‐secreting cells potently suppressed anti‐CD3/CD28‐induced CD4+ as well as CD8+ T‐cell proliferative responses. As shown by intracellular cytokine staining, IL‐10‐ and IFN‐γ‐producing T cells represent distinct subsets of the HIV‐1‐specific T cells. Our data collectively suggest that functionally defined HIV‐1‐specific T‐cell subsets harbor potent immunoregulatory properties that may contribute to HIV‐1‐associated T‐cell dysfunction.  相似文献   

10.
11.
IL‐6 plays a pivotal role in favoring T‐cell commitment toward a Th17 cell rather than Treg‐cell phenotype, as established through in vitro model systems. We predicted that in the absence of IL‐6, mice infected with the gastrointestinal helminth Heligmosomoides polygyrus would show reduced Th17‐cell responses, but also enhanced Treg‐cell activity and consequently greater susceptibility. Surprisingly, worm expulsion was markedly potentiated in IL‐6‐deficient mice, with significantly stronger adaptive Th2 responses in both IL‐6?/? mice and BALB/c recipients of neutralizing anti‐IL‐6 monoclonal Ab. Although IL‐6‐deficient mice showed lower steady‐state Th17‐cell levels, IL‐6‐independent Th17‐cell responses occurred during in vivo infection. We excluded the Th17 response as a factor in protection, as Ab neutralization did not modify immunity to H. polygyrus infection in BALB/c mice. Resistance did correlate with significant changes to the associated Treg‐cell phenotype however, as IL‐6‐deficient mice displayed reduced expression of Foxp3, Helios, and GATA‐3, and enhanced production of cytokines within the Treg‐cell population. Administration of an anti‐IL‐2:IL‐2 complex boosted Treg‐cell proportions in vivo, reduced adaptive Th2 responses to WT levels, and fully restored susceptibility to H. polygyrus in IL‐6‐deficient mice. Thus, in vivo, IL‐6 limits the Th2 response, modifies the Treg‐cell phenotype, and promotes host susceptibility following helminth infection.  相似文献   

12.
The amino acid L ‐arginine plays a crucial role in the regulation of immune responses. We have recently shown that uncontrolled replication of Leishmania parasites at the site of pathology correlates with high levels of arginase activity in nonhealing leishmaniasis and that this elevated arginase activity causes local depletion of L ‐arginine. To further our understanding of the impact of L ‐arginine deprivation in experimental leishmaniasis, here we characterize in detail the effects of L ‐arginine deprivation on antigen‐specific T cells and MΦ. The results of our study show that decrease of L ‐arginine levels in the extracellular milieu affects the biological activities of Leishmania major‐specific T cells, both at the level of the magnitude and the quality of their responses. L. major‐specific CD4+ T cells rendered hyporesponsive by L ‐arginine deprivation can be partially rescued by addition of exogenous L ‐arginine to produce IL‐4 and IL‐10, but not to produce IFN‐γ. Furthermore, our results show that L ‐arginine deprivation also greatly impacts parasite growth in activated macrophages. In summary, our results suggest that L ‐arginine levels affect both Th cell responses and parasite replication.  相似文献   

13.
Osteopontin (OPN) is a secreted phosphoglycoprotein with a wide range of functions, and is involved in various pathophysiological conditions. However, the role of OPN in IgE and Th2‐associated allergic responses remains incompletely defined. The aim of this study was to elucidate the role of OPN in systemic allergen sensitization in mice. When compared with OPN+/+ mice, significantly increased levels of OVA‐induced IgE were found in OPN?/? mice. OPN?/? DC demonstrated an increased capacity to enhance Th2 cytokine production in CD4+ T cells from sensitized OPN+/+ mice. Furthermore, significantly reduced levels of IL‐12p70 expression were seen in LPS‐stimulated OPN?/? DC as compared with the WT DC, and the reduction was reversible by the addition of recombinant OPN (rOPN). rOPN was able to suppress OVA‐induced IL‐13 production in the cultures of CD4 and OPN?/? DC, but this inhibitory activity was neutralized by the addition of anti‐IL‐12 Ab. In addition, administration of rOPN in vivo suppressed OVA‐specific IgE production; however, this suppressive effect was abrogated in IL‐12‐deficient mice. These results indicate that DC‐derived OPN plays a regulatory role in the development of systemic allergen sensitization, which is mediated, at least in part, through the production of endogenous IL‐12.  相似文献   

14.
The impact of the interaction between NK cells and lung dendritic cells (LDCs) on the outcome of respiratory infections is poorly understood. In this study, we investigated the effect and mechanism of NK cells on the function of LDCs during intracellular bacterial lung infection of Chlamydia muridarum in mice. We found that the naive mice receiving LDCs from C. muridarum‐infected NK‐cell‐depleted mice (NK‐LDCs) showed more serious body weight loss, bacterial burden, and pathology upon chlamydial challenge when compared with the recipients of LDCs from infected sham‐treated mice (NK+LDCs). Cytokine analysis of the local tissues of the former compared with the latter exhibited lower levels of Th1 (IFN‐γ) and Th17 (IL‐17), but higher levels of Th2 (IL‐4), cytokines. Consistently, NK‐LDCs were less efficient in directing C. muridarum‐specific Th1 and Th17 responses than NK+LDCs when cocultured with CD4+ T cells. In NK cell/LDC coculture experiments, the blockade of NKG2D receptor reduced the production of IL‐12p70, IL‐6, and IL‐23 by LDCs. The neutralization of IFN‐γ in the culture decreased the production of IL‐12p70 by LDCs, whereas the blockade of TNF‐α resulted in diminished IL‐6 production. Our findings demonstrate that NK cells modulate LDC function to elicit Th1/Th17 immunity during intracellular bacterial infection.  相似文献   

15.
IL‐15 is a pleiotropic cytokine involved in host defense as well as autoimmunity. IL‐15‐deficient mice show a decrease of memory phenotype (MP) CD8+ T cells, which develop naturally in naïve mice and whose origin is unclear. It has been shown that self‐specific CD8+ T cells developed in male H‐Y antigen‐specific TCR transgenic mice share many similarities with naturally occurring MP CD8+ T cells in normal mice. In this study, we found that H‐Y antigen‐specific CD8+ T cells in male but not female mice decreased when they were crossed with IL‐15‐deficient mice, mainly due to impaired peripheral maintenance. The self‐specific TCR transgenic CD8+ T cells developed in IL‐15‐deficient mice showed altered surface phenotypes and reduced effector functions ex vivo. Bystander activation of the self‐specific CD8+ T cells was induced in vivo during infection with Listeria monocytogenes, in which proliferation but not IFN‐γ production was IL‐15‐dependent. These results indicated important roles for IL‐15 in the maintenance and functions of self‐specific CD8+ T cells, which may be included in the naturally occurring MP CD8+ T‐cell population in naïve normal mice and participate in innate host defense responses.  相似文献   

16.
Programmed death‐1 (PD‐1) plays an important role in mediating immune tolerance through mechanisms that remain unclear. Herein, we investigated whether PD‐1 prevents excessive host tissue damage during infection with the protozoan parasite, Toxoplasma gondii. Surprisingly, our results demonstrate that PD‐1‐deficient mice have increased susceptibility to T. gondii, with increased parasite cyst counts along with reduced type‐1 cytokine responses (IL‐12 and IFN‐γ). PD‐1?/? DCs showed no cell intrinsic defect in IL‐12 production in vitro. Instead, PD‐1 neutralization via genetic or pharmacological approaches resulted in a striking increase in IL‐10 release, which impaired type‐1‐inflammation during infection. Our results indicate that the absence of PD‐1 increases IL‐10 production even in the absence of infection. Although the possibility that such increased IL‐10 protects against autoimmune damage is speculative, our results show that IL‐10 suppresses the development of protective Th1 immune response after T. gondii infection.  相似文献   

17.
Although interleukin‐21 (IL‐21) potently activates and controls the differentiation of immune cells after stimulation in vitro, the role for this pleiotropic cytokine during in vivo infection remains poorly defined. Herein, the requirement for IL‐21 in innate and adaptive host defence after Listeria monocytogenes infection was examined. In the innate phase, IL‐21 deficiency did not cause significant defects in infection susceptibility, or in the early activation of natural killer and T cells. In the adaptive phase, L. monocytogenes‐specific CD8+ T cells expand to a similar magnitude in IL‐21‐deficient mice compared with control mice. Interestingly, the IL‐21‐independent expansion of L. monocytogenes‐specific CD8+ T cells was maintained even in the combined absence of IL‐12 and type I interferon (IFN) receptor. Similarly, L. monocytogenes‐specific CD4+ T cells expanded and produced similar levels of IFN‐γ regardless of IL‐21 deficiency. Unexpectedly however, IL‐21 deficiency caused significantly increased CD4+ T‐cell IL‐17 production, and this effect became even more pronounced after L. monocytogenes infection in mice with combined defects in both IL‐12 and type I IFN receptor that develop a T helper type 17‐dominated CD4+ T‐cell response. Despite increased CD4+ T‐cell IL‐17 production, L. monocytogenes‐specific T cells re‐expanded and conferred protection against secondary challenge with virulent L. monocytogenes regardless of IL‐21 deficiency, or combined defects in IL‐21, IL‐12, and type I IFN receptor. Together, these results demonstrate non‐essential individual and combined roles for IL‐21, IL‐12 and type I IFNs in priming pathogen‐specific CD8+ T cells, and reveal IL‐21‐dependent suppression of IL‐17 production by CD4+ T cells during in vivo infection.  相似文献   

18.
T cells that produce both IL‐17 and IFN‐γ, and co‐express ROR‐γt and T‐bet, are often found at sites of autoimmune inflammation. However, it is unknown whether this co‐expression of T‐bet with ROR‐γt is a prerequisite for immunopathology. We show here that T‐bet is not required for the development of Th17‐driven experimental autoimmune encephalomyelitis (EAE). The disease was not impaired in T‐bet?/? mice and was associated with low IFN‐γ production and elevated IL‐17 production among central nervous system (CNS) infiltrating CD4+ T cells. T‐bet?/? Th17 cells generated in the presence of IL‐6/TGF‐β/IL‐1 and IL‐23 produced GM‐CSF and high levels of IL‐17 and induced disease upon transfer to naïve mice. Unlike their WT counterparts, these T‐bet?/– Th17 cells did not exhibit an IL‐17→IFN‐γ switch upon reencounter with antigen in the CNS, indicating that this functional change is not critical to disease development. In contrast, T‐bet was absolutely required for the pathogenicity of myelin‐responsive Th1 cells. T‐bet‐deficient Th1 cells failed to accumulate in the CNS upon transfer, despite being able to produce GM‐CSF. Therefore, T‐bet is essential for establishing Th1‐mediated inflammation but is not required to drive IL‐23‐induced GM‐CSF production, or Th17‐mediated autoimmune inflammation.  相似文献   

19.
Trichuris muris infection is an ideal model for defining T‐cell‐driven immunity, and also provides essential insights that may impact on potential helminth therapies currently in development. Conflicting host variables determine the efficiency of such treatments and we have identified host‐derived sex steroid hormones as key factors in the development of immunity. The female‐associated hormone 17‐β estradiol (E2) significantly enhanced the generation of a Th2 response in vitro; however, this stimulatory effect was found to be dispensable for the generation of immunity to Trichuris in the gender‐biased IL‐4KO mouse model. In contrast, the male‐associated hormone dihydrotestosterone significantly inhibited the T‐cell stimulatory capacity of DC and directly suppressed the immune response of male IL‐4KO mice, with worm expulsion restored following castration. This finding was associated with dramatically reduced IL‐18 mRNA expression suggesting androgens may act via this cytokine to suppress Th2 immunity to Trichuris. This study has critical implications for the development and efficacy of potential helminth therapeutics and identifies host gender – specifically sex hormones – as important factors in the development of Th2 immunity in susceptible and immunocompromised mice.  相似文献   

20.
The identification of DC‐derived signals orchestrating activation of Th1 and Th17 immune responses has advanced our understanding on how these inflammatory responses develop. However, whether specific signals delivered by DCs also participate in the regulation of Th2 immune responses remains largely unknown. In this study, we show that administration of antigen‐loaded, IL‐6‐deficient DCs to naïve mice induced an exacerbated Th2 response, characterized by the differentiation of GATA‐3‐expressing T lymphocytes secreting high levels of IL‐4, IL‐5, and IL‐13. Coinjection of wild type and IL‐6‐deficient bone marrow‐derived dendritic cells (BMDCs) confirmed that IL‐6 exerted a dominant, negative influence on Th2‐cell development. This finding was confirmed in vitro, where exogenously added IL‐6 was found to limit IL‐4‐induced Th2‐cell differentiation. iNKT cells were required for optimal Th2‐cell differentiation in vivo although their activation occurred independently of IL‐6 secretion by the BMDCs. Collectively, these observations identify IL‐6 secretion as a major, unsuspected, mechanism whereby DCs control the magnitude of Th2 immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号