首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A meta‐analysis of 140 neuroimaging studies was performed using the activation‐likelihood‐estimate (ALE) method to explore the location and extent of activation in the brain in response to noxious stimuli in healthy volunteers. The first analysis involved the creation of a likelihood map illustrating brain activation common across studies using noxious stimuli. The left thalamus, right anterior cingulate cortex (ACC), bilateral anterior insulae, and left dorsal posterior insula had the highest likelihood of being activated. The second analysis contrasted noxious cold with noxious heat stimulation and revealed higher likelihood of activation to noxious cold in the subgenual ACC and the amygdala. The third analysis assessed the implications of using either a warm stimulus or a resting baseline as the control condition to reveal activation attributed to noxious heat. Comparing noxious heat to warm stimulation led to peak ALE values that were restricted to cortical regions with known nociceptive input. The fourth analysis tested for a hemispheric dominance in pain processing and showed the importance of the right hemisphere, with the strongest ALE peaks and clusters found in the right insula and ACC. The fifth analysis compared noxious muscle with cutaneous stimuli and the former type was more likely to evoke activation in the posterior and anterior cingulate cortices, precuneus, dorsolateral prefrontal cortex, and cerebellum. In general, results indicate that some brain regions such as the thalamus, insula and ACC have a significant likelihood of activation regardless of the type of noxious stimuli, while other brain regions show a stimulus‐specific likelihood of being activated. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
The study of pain integration, in vivo, within the human brain has been largely improved by the functional neuro-imaging techniques available for about 10 years. Positron Emission Tomography (PET), complemented by laser evoked potentials (LEP) and functional Magnetic Resonance Imaging (fMRI) can nowadays generate maps of physiological or neuropathic pain-related brain activity. LEP and fMRI complement PET by their better temporal resolution and the possibility of individual subject analyze. Recent advances in our knowledge of pain mechanisms concern physiological acute pain, neuropathic pain and investigation of analgesic mechanisms. The sixteen studies using PET have demonstrated pain-related activations in thalamus, insula/SII, anterior cingulate and posterior parietal cortices Activity in right pre-frontal and posterior parietal cortices, anterior cingulate and thalami can be modulated by attention (hypnosis, chronic pain, diversion, selective attention to pain) and probably subserve attentional processes rather than pain analysis. Responses in insula/SII cortex presumably subserve discriminative aspects of pain perception while SI cortex is particularly involved in particular aspects of pain discrimination (movement, contact.) In patients, neuropathic pain, angina and atypical facial pain result in PET abnormalities whose significance remain obscure but which are localized in thalamus and anterior cingulate cortices suggesting their distribution is not random while discriminative responses remain detectable in insula/SII. Drug or stimulation induced analgesia are associated with normalization of basal thalamic abnormalities associated with many chronic pains. The need to investigate the significance of these responses, their neuro-chemical correlates (PET), their time course, the individual strategies by which they have been generated by correlating PET data with LEP and fMRI results, are the challenges that remain to be addressed in the next few years by physicians and researchers. To advance our knowledge of the mechanisms generating both abnormal pain and analgesia (drugs and surgical techniques) in patients is the main motivation of such anexciting challenge.  相似文献   

3.
Placebo has been reported to exert beneficial effects in patients regarding the treatment of pain. Human functional neuroimaging technology can study the intact human brain to elucidate its functional neuroanatomy and the neurobiological mechanism of the placebo effect. Blood flow measurement using functional magnetic resonance imaging and positron emission tomography (PET) has revealed that analgesia is related to decreased neural activities in pain-modulatory brain regions, such as the rostral anterior cingulate cortex (rACC), insula, thalamus, and brainstem including periaqueductal gray (PAG) and ventromedial medulla. The endogenous opioid system and its activation of μ-opioid receptors are thought to mediate the observed effects of placebo. The μ-opioid receptor-selective radiotracer-labeled PET studies show that the placebo effects are accompanied by reduction in activation of opioid neural transmission in pain-sensitive brain regions, including rACC, prefrontal cortex, insula, thalamus, amygdala, nucleus accumbens (NAC) and PAG. Further PET studies with dopamine D2/D3 receptor-labeling radiotracer demonstrate that basal ganglia including NAC are related to placebo analgesic responses. NAC dopamine release induced by placebo analgesia is related to expectation of analgesia. These data indicate that the aforementioned brain regions and neurotransmitters such as endogenous opioid and dopamine systems contribute to placebo analgesia.  相似文献   

4.
The periaqueductal gray matter (PAG) is a key brain region of the descending pain modulation pathway. It is also involved in cardiovascular functions, anxiety, and fear; however, little is known about PAG subdivisions in humans. The aims of this study were to use resting‐state fMRI‐based functional connectivity (FC) to parcellate the human PAG and to determine FC of its subregions. To do this, we acquired resting‐state fMRI scans from 79 healthy subjects and (1) used a data‐driven method to parcellate the PAG, (2) used predefined seeds in PAG subregions to evaluate PAG FC to the whole brain, and (3) examined sex differences in PAG FC. We found that clustering of the left and right PAG yielded similar patterns of caudal, middle, and rostral subdivisions in the coronal plane, and dorsal and ventral subdivisions in the sagittal plane. FC analysis of predefined subregions revealed that the ventolateral(VL)‐PAG was supfunctionally connected to brain regions associated with descending pain modulation (anterior cingulate cortex ( ACC ) , upper pons/medulla), whereas the lateral (L) and dorsolateral (DL) subregions were connected with brain regions implicated in executive functions (prefrontal cortex, striatum, hippocampus). We also found sex differences in FC including areas implicated in pain, salience, and analgesia including the ACC and the insula in women, and the MCC, parahippocampal gyrus, and the temporal pole in men. The organization of the human PAG thus provides a framework to understand the circuitry underlying the broad range of responses to pain and its modulation in men and women. Hum Brain Mapp 37:1514‐1530, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
Functional imaging and the central control of the bladder   总被引:4,自引:0,他引:4  
The central control of the bladder is a complex, multilevel process. Recent advances in functional brain imaging have allowed research into this control in humans. This article reviews the functional imaging studies published to date and discusses the regions of the brain that have been implicated in the central control of continence. Brain regions that have been implicated include the pons (pontine micturition center, PMC), periaqueductal gray (PAG), thalamus, insula, anterior cingulate gyrus, and prefrontal cortices. The PMC and the PAG are thought to be key in the supraspinal control of continence and micturition. Higher centers such as the insula, anterior cingulate gyrus, and prefrontal regions are probably involved in the modulation of this control and cognition of bladder sensations, and in the case of the insula and anterior cingulate, modulation of autonomic function. Further work should aim to examine how the regions interact to achieve urinary continence.  相似文献   

6.
Aims: Low‐frequency transcranial magnetic stimulation (TMS) to the right prefrontal cortex has been shown to be effective in treatment‐resistant depression. The aim of the present study was to investigate changes in regional cerebral blood flow (rCBF) after low‐frequency right prefrontal stimulation (LFRS), and neuroanatomical correlates of therapeutic efficacy of LFRS in treatment‐resistant depression. Methods: Twenty‐six patients with treatment‐resistant depression received five 60‐s 1‐Hz trains over the right prefrontal cortex, and 12 treatment sessions were administered during 3 weeks. Brain scans were acquired before and after LFRS using single photon emission computed tomography with 99mTc‐ethyl cysteinate dimer. Severity of depression was assessed on the Hamilton Depression Rating Scale (HDRS). Results: Significant decreases in rCBF after LFRS were seen in the prefrontal cortex, orbitofrontal cortex, subgenual cingulate cortex, globus pallidus, thalamus, anterior and posterior insula, and midbrain in the right hemisphere. Therapeutic efficacy of LFRS was correlated with decreases in rCBF in the right prefrontal cortex, bilateral orbitofrontal cortex, right subgenual cingulate cortex, right putamen, and right anterior insula. Conclusion: The antidepressant effects of LFRS in treatment‐resistant depression may be associated with decreases in rCBF in the orbitofrontal cortex and the subgenual cingulate cortex via the right prefrontal cortex.  相似文献   

7.
Social anxiety disorder (SAD) is the second leading anxiety disorder. On the functional neurobiological level, specific brain regions involved in the processing of anxiety‐laden stimuli and in emotion regulation have been shown to be hyperactive and hyper‐responsive in SAD such as amygdala, insula and orbito‐ and prefrontal cortex. On the level of brain structure, prior studies on anatomical differences in SAD resulted in mixed and partially contradictory findings. Based on previous functional and anatomical models of SAD, this study examined cortical thickness in structural magnetic resonance imaging data of 46 patients with SAD without comorbidities (except for depressed episode in one patient) compared with 46 matched healthy controls in a region of interest‐analysis and in whole‐brain. In a theory‐driven ROI‐analysis, cortical thickness was increased in SAD in left insula, right anterior cingulate and right temporal pole. Furthermore, the whole‐brain analysis revealed increased thickness in right dorsolateral prefrontal and right parietal cortex. This study detected no regions of decreased cortical thickness or brain volume in SAD. From the perspective of brain networks, these findings are in line with prior functional differences in salience networks and frontoparietal networks associated with executive‐controlling and attentional functions. Hum Brain Mapp 35:2966–2977, 2014. © 2013 Wiley Periodicals, Inc .  相似文献   

8.
A quantitative, voxel‐wise meta‐analysis was performed to investigate the cortical control of water and saliva swallowing. Studies that were included in the meta‐analysis (1) examined water swallowing, saliva swallowing, or both, and (2) reported brain activation as coordinates in standard space. Using these criteria, a systematic literature search identified seven studies that examined water swallowing and five studies of saliva swallowing. An activation likelihood estimation (ALE) meta‐analysis of these studies was performed with GingerALE. For water swallowing, clusters with high activation likelihood were found in the bilateral sensorimotor cortex, right inferior parietal lobule, and right anterior insula. For saliva swallowing, clusters with high activation likelihood were found in the left sensorimotor cortex, right motor cortex, and bilateral cingulate gyrus. A between‐condition meta‐analysis revealed clusters with higher activation likelihood for water than for saliva swallowing in the right inferior parietal lobule, right postcentral gyrus, and right anterior insula. Clusters with higher activation likelihood for saliva than for water swallowing were found in the bilateral supplementary motor area, bilateral anterior cingulate gyrus, and bilateral precentral gyrus. This meta‐analysis emphasizes the distributed and partly overlapping cortical networks involved in the control of water and saliva swallowing. Water swallowing is associated with right inferior parietal activation, likely reflecting the sensory processing of intraoral water stimulation. Saliva swallowing more strongly involves premotor areas, which are crucial for the initiation and control of movements. Hum Brain Mapp, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
Prior neuroimaging studies support the hypothesis that anticipation, an important component of anxiety, may be mediated by activation within the insular and medial prefrontal cortices including the anterior cingulate cortex. However, there is an insufficient understanding of how affective anticipation differs across anxiety groups in emotional brain loci and networks. We examined 14 anxiety positive (AP) and 14 anxiety normative (AN) individuals completing an affective picture anticipation task during functional magnetic resonance imaging (fMRI). Brain activation was examined across groups for cued anticipation (to aversive or pleasant stimuli). Both groups showed greater activation in the bilateral anterior insula during cued differential anticipation (i.e., aversive vs. pleasant), and activation on the right was significantly higher in AP compared to AN subjects. Functional connectivity showed that the left anterior insula was involved in a similar network during pleasant anticipation in both groups. The left anterior insula during aversive and the right anterior insula during all anticipation conditions coactivated with a cortical network consisting of frontal and parietal lobes in the AP group to a greater degree. These results are consistent with the hypothesis that anxiety is related to greater anticipatory reactivity in the brain and that there may be functional asymmetries in the brain that interact with psychiatric traits.  相似文献   

10.
《Social neuroscience》2013,8(3):231-242
“Mindfulness” is a capacity for heightened present-moment awareness that we all possess to a greater or lesser extent. Enhancing this capacity through training has been shown to alleviate stress and promote physical and mental well-being. As a consequence, interest in mindfulness is growing and so is the need to better understand it. This study employed functional magnetic resonance imaging (fMRI) to identify the brain regions involved in state mindfulness and to shed light on its mechanisms of action. Significant signal decreases were observed during mindfulness meditation in midline cortical structures associated with interoception, including bilateral anterior insula, left ventral anterior cingulate cortex, right medial prefrontal cortex, and bilateral precuneus. Significant signal increase was noted in the right posterior cingulate cortex. These findings lend support to the theory that mindfulness achieves its positive outcomes through a process of disidentification.  相似文献   

11.
Influential theories of brain‐viscera interactions propose a central role for interoception in basic motivational and affective feeling states. Recent neuroimaging studies have underlined the insula, anterior cingulate, and ventral prefrontal cortices as the neural correlates of interoception. However, the relationships between these distributed brain regions remain unclear. In this study, we used spatial independent component analysis (ICA) and functional network connectivity (FNC) approaches to investigate time course correlations across the brain regions during visceral interoception. Functional magnetic resonance imaging (fMRI) was performed in thirteen healthy females who underwent viscerosensory stimulation of bladder as a representative internal organ at different prefill levels, i.e., no prefill, low prefill (100 ml saline), and high prefill (individually adapted to the sensations of persistent strong desire to void), and with different infusion temperatures, i.e., body warm (~37°C) or ice cold (4–8°C) saline solution. During Increased distention pressure on the viscera, the insula, striatum, anterior cingulate, ventromedial prefrontal cortex, amygdalo‐hippocampus, thalamus, brainstem, and cerebellar components showed increased activation. A second group of components encompassing the insula and anterior cingulate, dorsolateral prefrontal and posterior parietal cortices and temporal‐parietal junction showed increased activity with innocuous temperature stimulation of bladder mucosa. Significant differences in the FNC were found between the insula and amygdalo‐hippocampus, the insula and ventromedial prefrontal cortex, and the ventromedial prefrontal cortex and temporal‐parietal junction as the distention pressure on the viscera increased. These results provide new insight into the supraspinal processing of visceral interoception originating from an internal organ. Hum Brain Mapp 36:4438–4468, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
The insula and cingulate cortices are implicated in emotional, homeostatic/allostatic, sensorimotor, and cognitive functions. Non‐human primates have specific anatomical connections between sub‐divisions of the insula and cingulate. Specifically, the anterior insula projects to the pregenual anterior cingulate cortex (pACC) and the anterior and posterior mid‐cingulate cortex (aMCC and pMCC); the mid‐posterior insula only projects to the posterior MCC (pMCC). In humans, functional neuroimaging studies implicate the anterior insula and pre/subgenual ACC in emotional processes, the mid‐posterior insula with awareness and interoception, and the MCC with environmental monitoring, response selection, and skeletomotor body orientation. Here, we tested the hypothesis that distinct resting state functional connectivity could be identified between (1) the anterior insula and pACC/aMCC; and (2) the entire insula (anterior, middle, and posterior insula) and the pMCC. Functional connectivity was assessed from resting state fMRI scans in 19 healthy volunteers using seed regions of interest in the anterior, middle, and posterior insula. Highly correlated, low‐frequency oscillations (< 0.05 Hz) were identified between specific insula and cingulate subdivisions. The anterior insula was shown to be functionally connected with the pACC/aMCC and the pMCC, while the mid/posterior insula was only connected with the pMCC. These data provide evidence for a resting state anterior insula–pACC/aMCC cingulate system that may integrate interoceptive information with emotional salience to form a subjective representation of the body; and another system that includes the entire insula and MCC, likely involved in environmental monitoring, response selection, and skeletomotor body orientation. Human Brain Mapp 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Functional magnetic resonance imaging (fMRI) studies have shown notable age‐dependent differences in reward processing. We analyzed data from a total of 554 children, 1,059 adolescents, and 1,831 adults from 70 articles. Quantitative meta‐analyses results show that adults engage an extended set of regions that include anterior and posterior cingulate gyri, insula, basal ganglia, and thalamus. Adolescents engage the posterior cingulate and middle frontal gyri as well as the insula and amygdala, whereas children show concordance in right insula and striatal regions almost exclusively. Our data support the notion of reorganization of function over childhood and adolescence and may inform current hypotheses relating to decision‐making across age.  相似文献   

14.
The aim of this event‐related fMRI study was to investigate the cortical networks involved in case processing, an operation that is crucial to language comprehension yet whose neural underpinnings are not well‐understood. What is the relationship of these networks to those that serve other aspects of syntactic and semantic processing? Participants read Basque sentences that contained case violations, number agreement violations or semantic anomalies, or that were both syntactically and semantically correct. Case violations elicited activity increases, compared to correct control sentences, in a set of parietal regions including the posterior cingulate, the precuneus, and the left and right inferior parietal lobules. Number agreement violations also elicited activity increases in left and right inferior parietal regions, and additional activations in the left and right middle frontal gyrus. Regions‐of‐interest analyses showed that almost all of the clusters that were responsive to case or number agreement violations did not differentiate between these two. In contrast, the left and right anterior inferior frontal gyrus and the dorsomedial prefrontal cortex were only sensitive to semantic violations. Our results suggest that whereas syntactic and semantic anomalies clearly recruit distinct neural circuits, case, and number violations recruit largely overlapping neural circuits and that the distinction between the two rests on the relative contributions of parietal and prefrontal regions, respectively. Furthermore, our results are consistent with recently reported contributions of bilateral parietal and dorsolateral brain regions to syntactic processing, pointing towards potential extensions of current neurocognitive theories of language. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
Despite the crucial role of touch in social development, there is very little functional magnetic resonance imaging (fMRI) research on brain mechanisms underlying social touch processing. The “skin as a social organ” hypothesis is supported by the discovery of C‐tactile (CT) nerves that are present in hairy skin and project to the insular cortex. CT‐fibers respond specifically well to slow, gentle touch such as that which occurs during close social interactions. Given the social significance of such touch researchers have proposed that the CT‐system represents an evolutionarily conserved mechanism important for normative social development. However, it is currently unknown whether brain regions other than the insula are involved in processing CT‐targeted touch. In the current fMRI study, we sought to characterize the brain regions involved in the perception of CT‐supported affective touch. Twenty‐two healthy adults received manual brush strokes to either the arm or palm. A direct contrast of the blood‐oxygenation‐level‐dependent (BOLD) response to gentle brushing of the arm and palm revealed the involvement of a network of brain regions, in addition to the posterior insula, during CT‐targeted affective touch to the arm. This network included areas known to be involved in social perception and social cognition, including the right posterior superior temporal sulcus and the medial prefrontal cortex (mPFC)/dorso anterior cingulate cortex (dACC). Connectivity analyses with an mPFC/dACC seed revealed coactivation with the left insula and amygdala during arm touch. These findings characterize a network of brain regions beyond the insula involved in coding CT‐targeted affective touch. Hum Brain Mapp, 2013. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
Localization of cerebral activity during simple singing   总被引:1,自引:0,他引:1  
Cerebral blood flow (CBF) was measured with PET during rudimentary singing of a single pitch and vowel, contrasted to passive listening to complex tones. CBF increases in cortical areas related to motor control were seen in the supplementary motor area, anterior cingulate cortex, precentral gyri, anterior insula (and the adjacent inner face of the precentral operculum) and cerebellum, replicating most previously seen during speech. Increases in auditory cortex were seen within right Heschl's gyrus, and in the posterior superior temporal plane (and the immediately overlying parietal cortex). Since cortex near right Heschl's has been linked to complex pitch perception, its asymmetric activation here may be related to analyzing the fundamental frequency of one's own voice for feedback-guided modulation.  相似文献   

17.
Localization of cerebral activity during simple singing   总被引:7,自引:0,他引:7  
Cerebral blood flow (CBF) was measured with PET during rudimentary singing of a single pitch and vowel, contrasted to passive listening to complex tones. CBF increases in cortical areas related to motor control were seen in the supplementary motor area, anterior cingulate cortex, precentral gyri, anterior insula (and the adjacent inner face of the precentral operculum) and cerebellum, replicating most previously seen during speech. Increases in auditory cortex were seen within right Heschl's gyrus, and in the posterior superior temporal plane (and the immediately overlying parietal cortex). Since cortex near right Heschl's has been linked to complex pitch perception, its asymmetric activation here may be related to analyzing the fundamental frequency of one's own voice for feedback-guided modulation.  相似文献   

18.
Background Although many studies of painful rectal stimulation have found activation in the insula, cingulate, somatosensory, prefrontal cortices and thalamus, there is considerable variability when comparing functional magnetic resonance imaging (fMRI) results. Multiple factors may be responsible, including the model used in fMRI data analysis. Here, we assess the temporal response of activity to rectal barostat distension using novel fMRI and magnetoencephalography (MEG) analysis. Methods Liminal and painful rectal barostat balloon inflation thresholds were assessed in 14 female healthy volunteers. Subliminal, liminal and painful 40s periods of distension were applied in a pseudo‐randomized paradigm during fMRI and MEG neuroimaging. Functional MRI data analysis was performed comparing standard box‐car models of the full 40s of stimulus (Block) with models of the inflation (Ramp‐On) and deflation (Ramp‐Off) of the barostat. Similar models were used in MEG analysis of oscillatory activity. Key Results Modeling the data using a standard Block analysis failed to detect areas of interest found to be active using Ramp‐On and Ramp‐Off models. Ramp‐On generated activity in anterior insula and cingulate regions and other pain‐matrix associated areas. Ramp‐Off demonstrated activity of a network of posterior insula, SII and posterior cingulate. Active areas were consistent with those identified from MEG data. Conclusions & Inferences In studies of visceral pain, fMRI model design strongly influences the detected activity and must be accounted for to effectively explore the fMRI data in healthy subjects and within patient groups. In particular a strong cortical response is detected to inflation and deflation of the barostat, rather than to its absolute volume.  相似文献   

19.
Placebo analgesia is one of the most robust and best-studied placebo effects. With the help of brain imaging tools, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), our understanding of the brain's role in placebo analgesia has been greatly expanded. Previous studies suggest that multiple mechanisms may underlie the phenomenon of placebo analgesia. This review posits a theoretical framework for interpreting the results of the neuroimaging literature of placebo analgesia. According to this framework, placebo treatment may exert an analgesic effect on at least three stages of pain processing, by 1) influencing pre-stimulus expectation of pain relief, 2) modifying pain perception, and 3) distorting post-stimulus pain rating. Importantly, change in one such stage may hasten change in another, and furthermore, contribution from any or all of the three stages may vary by circumstance, or between individuals. The literature suggests that multiple brain regions, including the anterior cingulate cortex, anterior insula, prefrontal cortex and periaqueductal grey, play a pivotal role in these processes.  相似文献   

20.
Pain is a multidimensional phenomenon with sensory, affective, and autonomic components. Here, we used parametric functional magnetic resonance imaging (fMRI) to correlate regional brain activity with autonomic responses to (i) painful stimuli and to (ii) anticipation of pain. The autonomic parameters used for correlation were (i) skin blood flow (SBF) and (ii) skin conductance response (SCR). During (i) experience of pain and (ii) anticipation of pain, activity in the insular cortex, anterior cingulate cortex (ACC), prefrontal cortex (PFC), posterior parietal cortex (PPC), secondary somatosensory cortex (S2), thalamus, and midbrain correlated with sympathetic outflow. A conjunction analysis revealed a common central sympathetic network for (i) pain experience and (ii) pain anticipation with similar correlations between brain activity and sympathetic parameters in the anterior insula, prefrontal cortex, thalamus, midbrain, and temporoparietal junction. Therefore, we here describe shared central neural networks involved in the central autonomic processing of the experience and anticipation of pain. Hum Brain Mapp, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号