首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cell surface receptor low‐density lipoprotein receptor‐related protein 5 (LRP5) is a key regulator of bone mass and bone strength. Heterozygous missense mutations in LRP5 cause autosomal dominant high bone mass (HBM) in humans by reducing binding to LRP5 by endogenous inhibitors, such as sclerostin (SOST). Mice heterozygous for a knockin allele (Lrp5p.A214V) that is orthologous to a human HBM‐causing mutation have increased bone mass and strength. Osteogenesis imperfecta (OI) is a skeletal fragility disorder predominantly caused by mutations that affect type I collagen. We tested whether the LRP5 pathway can be used to improve bone properties in animal models of OI. First, we mated Lrp5+/p.A214V mice to Col1a2+/p.G610C mice, which model human type IV OI. We found that Col1a2+/p.G610C;Lrp5+/p.A214V offspring had significantly increased bone mass and strength compared to Col1a2+/p.G610C;Lrp5+/+ littermates. The improved bone properties were not a result of altered mRNA expression of type I collagen or its chaperones, nor were they due to changes in mutant type I collagen secretion. Second, we treated Col1a2+/p.G610C mice with a monoclonal antibody that inhibits sclerostin activity (Scl‐Ab). We found that antibody‐treated mice had significantly increased bone mass and strength compared to vehicle‐treated littermates. These findings indicate increasing bone formation, even without altering bone collagen composition, may benefit patients with OI. © 2014 American Society for Bone and Mineral Research.  相似文献   

2.
Certain missense mutations affecting LRP5 cause high bone mass (HBM) in humans. Based on in vitro evidence, HBM LRP5 receptors are thought to exert their effects by providing resistance to binding/inhibition of secreted LRP5 inhibitors such as sclerostin (SOST) and Dickkopf homolog‐1 (DKK1). We previously reported the creation of two Lrp5 HBM knock‐in mouse models, in which the human p.A214V or p.G171V missense mutations were knocked into the endogenous Lrp5 locus. To determine whether HBM knock‐in mice are resistant to SOST‐ or DKK1‐induced osteopenia, we bred Lrp5 HBM mice with transgenic mice that overexpress human SOST in osteocytes (8kbDmp1SOST) or mouse DKK1 in osteoblasts and osteocytes (2.3kbCol1a1Dkk1). We observed that the 8kbDmp1SOST transgene significantly lowered whole‐body bone mineral density (BMD), bone mineral content (BMC), femoral and vertebral trabecular bone volume fraction (BV/TV), and periosteal bone‐formation rate (BFR) in wild‐type mice but not in mice with Lrp5 p.G171V and p.A214V alleles. The 2.3kbCol1a1‐Dkk1 transgene significantly lowered whole‐body BMD, BMC, and vertebral BV/TV in wild‐type mice and affected p.A214V mice more than p.G171V mice. These in vivo data support in vitro studies regarding the mechanism of HBM‐causing mutations, and imply that HBM LRP5 receptors differ in their relative sensitivity to inhibition by SOST and DKK1. © 2015 American Society for Bone and Mineral Research.  相似文献   

3.
It has recently been suggested that the low‐density lipoprotein receptor‐related protein 5 (LRP5) regulates bone mass by suppressing secretion of serotonin from duodenal enterochromaffin cells. In mice with targeted expression of a high bone mass–causing (HBM‐causing) LRP5 mutation and in humans with HBM LRP5 mutations, circulating serotonin levels have been reported to be lower than in controls whereas individuals with loss‐of‐function mutations in LRP5 have high blood serotonin. In contrast, others have reported that conditionally activating a knock‐in allele of an HBM‐causing LRP5 mutation in several tissues, or genetic deletion of LRP5 in mice has no effect on serum serotonin levels. To further explore the possible association between HBM‐causing LRP5 mutations and circulating serotonin, levels of the hormone were measured in the platelet poor plasma (PPP), serum, and platelet pellet (PP) of 16 affected individuals from 2 kindreds with HBM‐causing LRP5 mutations (G171V and N198S) and 16 age‐matched controls. When analyzed by HPLC, there were no differences in levels of serotonin in PPP and PP between affected individuals and age‐matched controls. Similarly, when analyzed by ELISA, there were no differences in PPP or PP between these two groups. By ELISA, serum levels of serotonin were higher in the affected individuals when compared to age‐matched controls. A subgroup analysis of only the G171V subjects (n = 14) demonstrated that there were no differences in PPP and PP serotonin between affected individuals and controls when analyzed by HPLC. PP serotonin was lower in the affected individuals when measured by ELISA but serum serotonin levels were not different. We conclude that there is no change in PPP serotonin in individuals with HBM‐causing mutations in LRP5. © 2014 American Society for Bone and Mineral Research.  相似文献   

4.
The bone formation inhibitor sclerostin encoded by SOST binds in vitro to low‐density lipoprotein receptor‐related protein (LRP) 5/6 Wnt co‐receptors, thereby inhibiting Wnt/β‐catenin signaling, a central pathway of skeletal homeostasis. Lrp5/LRP5 deficiency results in osteoporosis‐pseudoglioma (OPPG), whereas Sost/SOST deficiency induces lifelong bone gain in mice and humans. Here, we analyzed the bone phenotype of mice lacking Sost (Sost?/?), Lrp5 (Lrp5?/?), or both (Sost?/?;Lrp5?/?) to elucidate the mechanism of action of Sost in vivo. Sost deficiency–induced bone gain was significantly blunted in Sost?/?;Lrp5?/? mice. Yet the Lrp5 OPPG phenotype was fully rescued in Sost?/?;Lrp5?/? mice and most bone parameters were elevated relative to wild‐type. To test whether the remaining bone increases in Sost?/?;Lrp5?/? animals depend on Lrp6, we treated wild‐type, Sost?/?, and Sost?/?;Lrp5?/? mice with distinct Lrp6 function blocking antibodies. Selective blockage of Wnt1 class–mediated Lrp6 signaling reduced cancellous bone mass and density in wild‐type mice. Surprisingly, it reversed the abnormal bone gain in Sost?/? and Sost?/?;Lrp5?/? mice to wild‐type levels irrespective of enhancement or blockage of Wnt3a class‐mediated Lrp6 activity. Thus, whereas Sost deficiency–induced bone anabolism partially requires Lrp5, it fully depends on Wnt1 class–induced Lrp6 activity. These findings indicate: first, that OPPG syndrome patients suffering from LRP5 loss‐of‐function should benefit from principles antagonizing SOST/sclerostin action; and second, that therapeutic WNT signaling inhibitors may stop the debilitating bone overgrowth in sclerosing disorders related to SOST deficiency, such as sclerosteosis, van Buchem disease, and autosomal dominant craniodiaphyseal dysplasia, which are rare disorders without viable treatment options. © 2014 American Society for Bone and Mineral Research.  相似文献   

5.
Niziolek PJ  Warman ML  Robling AG 《BONE》2012,51(3):459-465
Mechanotransduction in bone requires components of the Wnt signaling pathway to produce structurally adapted bone elements. In particular, the Wnt co-receptor LDL-receptor-related protein 5 (LRP5) appears to be a crucial protein in the mechanotransduction cascades that translate physical tissue deformation into new bone formation. Recently discovered missense mutations in LRP5 are associated with high bone mass (HBM), and the altered function of these proteins provide insight into LRP5 function in many skeletal processes, including mechanotransduction. We further investigated the role of LRP5 in bone cell mechanotransduction by applying mechanical stimulation in vivo to two different mutant mouse lines, which harbor HBM-causing missense mutations in Lrp5. Axial tibia loading was applied to mature male Lrp5 G171V and Lrp5 A214V knock-in mice, and to their wild type controls. Fluorochrome labeling revealed that 3days of loading resulted in a significantly enhanced periosteal response in the A214V knock in mice, whereas the G171V mice exhibited a lowered osteogenic threshold on the endocortical surface. In summary, our data further highlight the importance of Lrp5 in bone cell mechanotransduction, and indicate that the HBM-causing mutations in Lrp5 can alter the anabolic response to mechanical stimulation in favor of increased bone gain.  相似文献   

6.
Sclerosteosis is a rare autosomal recessive bone disorder marked by hyperostosis of the skull and tubular bones. Initially, we and others reported that sclerosteosis was caused by loss‐of‐function mutations in SOST, encoding sclerostin. More recently, we identified disease‐causing mutations in LRP4, a binding partner of sclerostin, in three sclerosteosis patients. Upon binding to sclerostin, LRP4 can inhibit the canonical WNT signaling that is known to be an important pathway in the regulation of bone formation. To further investigate the role of LRP4 in the bone formation process, we generated an Lrp4 mutated sclerosteosis mouse model by introducing the p.Arg1170Gln mutation in the mouse genome. Extensive analysis of the bone phenotype of the Lrp4R1170Q/R1170Q knock‐in (KI) mouse showed the presence of increased trabecular and cortical bone mass as a consequence of increased bone formation by the osteoblasts. In addition, three‐point bending analysis also showed that the increased bone mass results in increased bone strength. In contrast to the human sclerosteosis phenotype, we could not observe syndactyly in the forelimbs or hindlimbs of the Lrp4 KI animals. Finally, we could not detect any significant changes in the bone formation and resorption markers in the serum of the mutant mice. However, the serum sclerostin levels were strongly increased and the level of sclerostin in the tibia was decreased in Lrp4R1170Q/R1170Q mice, confirming the role of LRP4 as an anchor for sclerostin in bone. In conclusion, the Lrp4R1170Q/R1170Q mouse is a good model for the human sclerosteosis phenotype caused by mutations in LRP4 and can be used in the future for further investigation of the mechanism whereby LRP4 regulates bone formation. © 2017 American Society for Bone and Mineral Research.  相似文献   

7.
Niziolek PJ  Farmer TL  Cui Y  Turner CH  Warman ML  Robling AG 《BONE》2011,49(5):1010-1019
Mutations among genes that participate in the canonical Wnt signaling pathway can lead to drastically different skeletal phenotypes, ranging from severe osteoporosis to severe osteosclerosis. Many high-bone-mass (HBM) causing mutations that occur in the LRP5 gene appear to impart the HBM phenotype, in part, by increasing resistance to soluble Wnt signaling inhibitors, including sclerostin. Sost loss-of-function mutant mice (Sost knock-out) and Lrp5 gain-of-function mutant mice (Lrp5 HBM knock-in) have high bone mass. These mutants potentially would be predicted to be phenocopies of one another, because in both cases, the sclerostin-Lrp5 interaction is disrupted. We measured bone mass, size, geometry, architecture, and strength in bones from three different genetic mouse models (Sost knock-out, Lrp5 A214V knock-in, and Lrp5 G171V knock-in) of HBM. We found that all three mouse lines had significantly elevated bone mass in the appendicular skeleton and in the cranium. Sost mutants and Lrp5 A214V mutants were statistically indistinguishable from one another in most endpoints, whereas both were largely different from the Lrp5 G171V mutants. Lrp5 G171V mutants preferentially added bone endocortically, whereas Lrp5 A214V and Sost mutants preferentially added bone periosteally. Cranial thickness and cranial nerve openings were similarly altered in all three HBM models. We also assessed serum serotonin levels as a possible mechanism accounting for the observed changes in bone mass, but no differences in serum serotonin were found in any of the three HBM mouse lines. The skeletal dissimilarities of the Lrp5 G171V mutant to the other mutants suggest that other, non-sclerostin-associated mechanisms might account for the changes in bone mass resulting from this mutation.  相似文献   

8.
Patients with an activation mutation of the Lrp5 gene exhibit high bone mass (HBM). Limited information is available regarding compartment‐specific changes in bone. The relationship between the phenotype and serum serotonin is not well documented. To evaluate bone, serotonin, and bone turnover markers (BTM) in Lrp5‐HBM patients, we studied 19 Lrp5‐HBM patients (T253I) and 19 age‐ and sex‐matched controls. DXA and HR‐pQCT were used to assess BMD and bone structure. Serum serotonin, sclerostin, dickkopf‐related protein 1 (DKK1), and BTM were evaluated. Z‐scores for the forearm, total hip, lumbar spine, forearm, and whole body were significantly increased (mean ± SD) between 4.94 ± 1.45 and 7.52 ± 1.99 in cases versus ?0.19 ± 1.19 to 0.58 ± 0.84 in controls. Tibial and radial cortical areas, thicknesses, and BMD were significantly higher in cases. In cases, BMD at the lumbar spine and forearm and cortical thickness were positively associated and trabecular area negatively associated with age (r = 0.49, 0.57, 0.74, and ?0.61, respectively, p < .05). Serotonin was lowest in cases (69.5 [29.9–110.4] ng/mL versus 119.4 [62.3–231.0] ng/mL, p < .001) and inversely associated with tibial cortical density (r = ?0.49, p < .05) and directly with osteocalcin (OC), bone‐specific alkaline phosphatase (B‐ALP), and procollagen type 1 amino‐terminal propeptide (PINP) (r = 0.52–0.65, p < .05) in controls only. OC and S‐CTX were lower and sclerostin higher in cases, whereas B‐ALP, PINP, tartrate‐resistant acid phosphatase (TRAP), and dickkopf‐related protein 1 (DKK1) were similar in cases and controls. In conclusion, increased bone mass in Lrp5‐HBM patients seems to be caused primarily by changes in trabecular and cortical bone mass and structure. The phenotype appeared to progress with age, but BTM did not suggest increased bone formation. © 2011 American Society for Bone and Mineral Research  相似文献   

9.
The Lrp5 gene is a major determinant of bone mass accrual. It has been demonstrated recently to achieve this function by hampering the synthesis of gut‐derived serotonin, which is a powerful inhibitor of bone formation. In this study we analyzed plasma serotonin levels in patients with a high‐bone‐mass (HBM) phenotype owing to gain‐of‐function mutation of Lrp5 (T253I). A total of 9 HBM patients were compared with 18 sex‐ and age‐matched controls. In HBM patients, the serotonin concentrations in platelet‐poor plasma were significantly lower than in the controls (mean ± SEM: 2.16 ± 0.28 ng/mL versus 3.51 ± 0.49 ng/mL, respectively, p < .05). Our data support the hypothesis that circulating serotonin levels mediate the increased bone mass resulting from gain‐of‐function mutations in Lrp5 in humans. © 2010 American Society for Bone and Mineral Research.  相似文献   

10.
High fracture rate and high circulating levels of the Wnt inhibitor, sclerostin, have been reported in diabetic patients. We studied the effects of Wnt signaling activation on bone health in a mouse model of insulin-deficient diabetes. We introduced the sclerostin-resistant Lrp5A214V mutation, associated with high bone mass, in mice carrying the Ins2Akita mutation (Akita), which results in loss of beta cells, insulin deficiency, and diabetes in males. Akita mice accrue less trabecular bone mass with age relative to wild type (WT). Double heterozygous Lrp5A214V/Akita mutants have high trabecular bone mass and cortical thickness relative to WT animals, as do Lrp5A214V single mutants. Likewise, the Lrp5A214V mutation prevents deterioration of biomechanical properties occurring in Akita mice. Notably, Lrp5A214V/Akita mice develop fasting hyperglycemia and glucose intolerance with a delay relative to Akita mice (7 to 8 vs. 5 to 6 weeks, respectively), despite lack of insulin production in both groups by 6 weeks of age. Although insulin sensitivity is partially preserved in double heterozygous Lrp5A214V/Akita relative to Akita mutants up to 30 weeks of age, insulin-dependent phosphorylated protein kinase B (pAKT) activation in vitro is not altered by the Lrp5A214V mutation. Although white adipose tissue depots are equally reduced in both compound and Akita mice, the Lrp5A214V mutation prevents brown adipose tissue whitening that occurs in Akita mice. Thus, hyperactivation of Lrp5-dependent signaling fully protects bone mass and strength in prolonged hyperglycemia and improves peripheral glucose metabolism in an insulin independent manner. Wnt signaling activation represents an ideal therapeutic approach for diabetic patients at high risk of fracture. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

11.
N‐cadherin inhibits osteogenic cell differentiation and canonical Wnt/β‐catenin signaling in vitro. However, in vivo both conditional Cdh2 ablation and overexpression in osteoblasts lead to low bone mass. We tested the hypothesis that N‐cadherin has different effects on osteolineage cells depending upon their differentiation stage. Embryonic conditional osteolineage Cdh2 deletion in mice results in defective growth, low bone mass, and reduced osteoprogenitor number. These abnormalities are prevented by delaying Cdh2 ablation until 1 month of age, thus targeting only committed and mature osteoblasts, suggesting they are the consequence of N‐cadherin deficiency in osteoprogenitors. Indeed, diaphyseal trabecularization actually increases when Cdh2 is ablated postnatally. The sclerostin‐insensitive Lrp5A214V mutant, associated with high bone mass, does not rescue the growth defect, but it overrides the low bone mass of embryonically Cdh2‐deleted mice, suggesting N‐cadherin interacts with Wnt signaling to control bone mass. Finally, bone accrual and β‐catenin accumulation after administration of an anti‐Dkk1 antibody are enhanced in N‐cadherin–deficient mice. Thus, although lack of N‐cadherin in embryonic and perinatal age is detrimental to bone growth and bone accrual, in adult mice loss of N‐cadherin in osteolineage cells favors bone formation. Hence, N‐cadherin inhibition may widen the therapeutic window of osteoanabolic agents. © 2017 American Society for Bone and Mineral Research.  相似文献   

12.
Low‐density lipoprotein receptor‐related protein 5 (LRP5) regulates bone acquisition by controlling bone formation. Because roles of LRP6, another co‐receptor for Wnts, in postnatal bone metabolism have not been fully elucidated, we studied bone phenotype in mice harboring an Lrp6 hypomorphic mutation, ringelschwanz (rs), and characterized the mutant protein. First, we performed pQCT, bone histomorphometry, and immunohistochemistry on tibias of Lrp6rs/rs and Lrp6+/+ mice and determined biochemical parameters for bone turnover. Lrp6rs/rs mice exhibited reduced trabecular BMD in pQCT. Bone histomorphometry showed low bone volume and decreased trabecular number, which were associated with increased eroded surface. Urinary deoxypyridinoline excretion was increased in Lrp6rs/rs mice, whereas levels of serum osteocalcin were comparable between Lrp6rs/rs mice and wildtype littermates. Increase in cell number and mineralization of calvariae‐derived osteoblasts were not impaired in Lrp6rs/rs osteoblasts. Rankl expression was increased in Lrp6rs/rs osteoblasts both in vivo and in vitro, and osteoclastogenesis and bone‐resorbing activity in vitro were accelerated in Lrp6rs/rs cells. Treatment with canonical Wnt suppressed Rankl expression in both in primary osteoblasts and ST2 cells. Overexpression of Lrp6 also suppressed Rankl expression, whereas the Lrp6 rs mutant protein did not. Functional analyses of the Lrp6 rs mutant showed decreased targeting to plasma membrane because of reduced interaction with Mesoderm development (Mesd), a chaperone for Lrp6, leading to impaired Wnt/β‐catenin signaling. These results indicate that Lrp6‐mediated signaling controls postnatal bone mass, at least partly through the regulation of bone resorption. It is also suggested that the interaction with Mesd is critical for Lrp6 to function.  相似文献   

13.
We previously isolated a low bone mass mouse, Gja1Jrt/ + , with a mutation in the gap junction protein, alpha 1 gene (Gja1), encoding for a dominant negative G60S Connexin 43 (Cx43) mutant protein. Similar to other Cx43 mutant mouse models described, including a global Cx43 deletion, four skeletal cell conditional‐deletion mutants, and a Cx43 missense mutant (G138R/ +), a reduction in Cx43 gap junction formation and/or function resulted in mice with early onset osteopenia. In contrast to other Cx43 mutants, however, we found that Gja1Jrt/+ mice have both higher bone marrow stromal osteoprogenitor numbers and increased appendicular skeleton osteoblast activity, leading to cell autonomous upregulation of both matrix bone sialoprotein (BSP) and membrane‐bound receptor activator of nuclear factor‐κB ligand (mbRANKL). In younger Gja1Jrt/+ mice, these contributed to increased osteoclast number and activity resulting in early onset osteopenia. In older animals, however, this effect was abrogated by increased osteoprotegerin (OPG) levels and serum alkaline phosphatase (ALP) so that differences in mutant and wild‐type (WT) bone parameters and mechanical properties lessened or disappeared with age. Our study is the first to describe a Cx43 mutation in which osteopenia is caused by increased rather than decreased osteoblast function and where activation of osteoclasts occurs not only through increased mbRANKL but an increase in a matrix protein that affects bone resorption, which together abrogate age‐related bone loss in older animals. © 2013 American Society for Bone and Mineral Research.  相似文献   

14.
Fibrodysplasia ossificans progressiva (FOP; MIM #135100) is a debilitating genetic disorder of dysregulated cellular differentiation characterized by malformation of the great toes during embryonic skeletal development and by progressive heterotopic endochondral ossification postnatally. Patients with these classic clinical features of FOP have the identical heterozygous single nucleotide substitution (c.617G > A; R206H) in the gene encoding ACVR1/ALK2, a bone morphogenetic protein (BMP) type I receptor. Gene targeting was used to develop an Acvr1 knock‐in model for FOP (Acvr1R206H/+). Radiographic analysis of Acvr1R206H/+ chimeric mice revealed that this mutation induced malformed first digits in the hind limbs and postnatal extraskeletal bone formation, recapitulating the human disease. Histological analysis of murine lesions showed inflammatory infiltration and apoptosis of skeletal muscle followed by robust formation of heterotopic bone through an endochondral pathway, identical to that seen in patients. Progenitor cells of a Tie2+ lineage participated in each stage of endochondral osteogenesis. We further determined that both wild‐type (WT) and mutant cells are present within the ectopic bone tissue, an unexpected finding that indicates that although the mutation is necessary to induce the bone formation process, the mutation is not required for progenitor cell contribution to bone and cartilage. This unique knock‐in mouse model provides novel insight into the genetic regulation of heterotopic ossification and establishes the first direct in vivo evidence that the R206H mutation in ACVR1 causes FOP. © 2012 American Society for Bone and Mineral Research.  相似文献   

15.
Activating mutations of the putative Wnt co‐receptor Lrp5 or inactivating mutations of the secreted molecule Sclerostin cause excessive bone formation in mice and humans. Previous studies have suggested that Sclerostin functions as an Lrp5 antagonist, yet clear in vivo evidence was still missing, and alternative mechanisms have been discussed. Moreover, because osteoblast‐specific inactivation of β‐catenin, the major intracellular mediator of canonical Wnt signaling, primarily affected bone resorption, it remained questionable, whether Sclerostin truly acts as a Wnt signaling antagonist by interacting with Lrp5. In an attempt to address this relevant question, we generated a mouse model (Col1a1‐Sost) with transgenic overexpression of Sclerostin under the control of a 2.3‐kb Col1a1 promoter fragment. These mice displayed the expected low bone mass phenotype as a consequence of reduced bone formation. The Col1a1‐Sost mice were then crossed with two mouse lines carrying different high bone mass mutations of Lrp5 (Lrp5A170V and Lrp5G213V), both of them potentially interfering with Sclerostin binding. Using µCT‐scanning and histomorphometry we found that the anti‐osteoanabolic influence of Sclerostin overexpression was not observed in Lrp5A213V/A213V mice and strongly reduced in Lrp5A170V/A170V mice. As a control we applied the same strategy with mice overexpressing the transmembrane Wnt signaling antagonist Krm2 and found that the anti‐osteoanabolic influence of the Col1a1‐Krm2 transgene was not affected by either of the Lrp5 mutations. Taken together, our data support the concept that Sclerostin inhibits bone formation through Lrp5 interaction, yet their physiological relevance remains to be established. © 2015 American Society for Bone and Mineral Research.  相似文献   

16.
While the epidermal growth factor receptor (EGFR)–mediated signaling pathway has been shown to have vital roles in many developmental and pathologic processes, its functions in the development and homeostasis of the skeletal system has been poorly defined. To address its in vivo role, we constructed transgenic and pharmacologic mouse models and used peripheral quantitative computed tomography (pQCT), micro–computed tomography (µCT) and histomorphometry to analyze their trabecular and cortical bone phenotypes. We initially deleted the EGFR in preosteoblasts/osteoblasts using a Cre/loxP system (Col‐Cre Egfrf/f), but no bone phenotype was observed because of incomplete deletion of the Egfr genomic locus. To further reduce the remaining osteoblastic EGFR activity, we introduced an EGFR dominant‐negative allele, Wa5, and generated Col‐Cre EgfrWa5/f mice. At 3 and 7 months of age, both male and female mice exhibited a remarkable decrease in tibial trabecular bone mass with abnormalities in trabecular number and thickness. Histologic analyses revealed decreases in osteoblast number and mineralization activity and an increase in osteoclast number. Significant increases in trabecular pattern factor and structural model index indicate that trabecular microarchitecture was altered. The femurs of these mice were shorter and smaller with reduced cortical area and periosteal perimeter. Moreover, colony‐forming unit–fibroblast (CFU‐F) assay indicates that these mice had fewer bone marrow mesenchymal stem cells and committed progenitors. Similarly, administration of an EGFR inhibitor into wild‐type mice caused a significant reduction in trabecular bone volume. In contrast, EgfrDsk5/+ mice with a constitutively active EGFR allele displayed increases in trabecular and cortical bone content. Taken together, these data demonstrate that the EGFR signaling pathway is an important bone regulator and that it primarily plays an anabolic role in bone metabolism. © 2011 American Society for Bone and Mineral Research.  相似文献   

17.
High bone mass (HBM) can be an incidental clinical finding; however, monogenic HBM disorders (eg, LRP5 or SOST mutations) are rare. We aimed to determine to what extent HBM is explained by mutations in known HBM genes. A total of 258 unrelated HBM cases were identified from a review of 335,115 DXA scans from 13 UK centers. Cases were assessed clinically and underwent sequencing of known anabolic HBM loci: LRP5 (exons 2, 3, 4), LRP4 (exons 25, 26), SOST (exons 1, 2, and the van Buchem's disease [VBD] 52‐kb intronic deletion 3′). Family members were assessed for HBM segregation with identified variants. Three‐dimensional protein models were constructed for identified variants. Two novel missense LRP5 HBM mutations ([c.518C>T; p.Thr173Met], [c.796C>T; p.Arg266Cys]) were identified, plus three previously reported missense LRP5 mutations ([c.593A>G; p.Asn198Ser], [c.724G>A; p.Ala242Thr], [c.266A>G; p.Gln89Arg]), associated with HBM in 11 adults from seven families. Individuals with LRP5 HBM (~prevalence 5/100,000) displayed a variable phenotype of skeletal dysplasia with increased trabecular BMD and cortical thickness on HRpQCT, and gynoid fat mass accumulation on DXA, compared with both non‐LRP5 HBM and controls. One mostly asymptomatic woman carried a novel heterozygous nonsense SOST mutation (c.530C>A; p.Ser177X) predicted to prematurely truncate sclerostin. Protein modeling suggests the severity of the LRP5‐HBM phenotype corresponds to the degree of protein disruption and the consequent effect on SOST‐LRP5 binding. We predict p.Asn198Ser and p.Ala242Thr directly disrupt SOST binding; both correspond to severe HBM phenotypes (BMD Z‐scores +3.1 to +12.2, inability to float). Less disruptive structural alterations predicted from p.Arg266Cys, p.Thr173Met, and p.Gln89Arg were associated with less severe phenotypes (Z‐scores +2.4 to +6.2, ability to float). In conclusion, although mutations in known HBM loci may be asymptomatic, they only account for a very small proportion (~3%) of HBM individuals, suggesting the great majority are explained by either unknown monogenic causes or polygenic inheritance. © 2015 The Authors Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

18.
Integrin‐associated protein (IAP/CD47) has been implicated in macrophage‐macrophage fusion. To understand the actions of CD47 on skeletal remodeling, we compared Cd47?/? mice with Cd47+/+ controls. Cd47?/? mice weighed less and had decreased areal bone mineral density compared with controls. Cd47?/? femurs were shorter in length with thinner cortices and exhibited lower trabecular bone volume owing to decreased trabecular number and thickness. Histomorphometry revealed reduced bone‐formation and mineral apposition rates, accompanied by decreased osteoblast numbers. No differences in osteoclast number were observed despite a nonsignificant but 40% decrease in eroded surface/bone surface in Cd47?/? mice. In vitro, the number of functional osteoclasts formed by differentiating Cd47?/? bone marrow cells was significantly decreased compared with wild‐type cultures and was associated with a decrease in bone‐resorption capacity. Furthermore, by disrupting the CD47–SHPS‐1 association, we found that osteoclastogenesis was markedly impaired. Assays for markers of osteoclast maturation suggested that the defect was at the point of fusion and not differentiation and was associated with a lack of SHPS‐1 phosphorylation, SHP‐1 phosphatase recruitment, and subsequent dephosphorylation of non–muscle cell myosin IIA. We also demonstrated a significant decrease in osteoblastogenesis in bone marrow stromal cells derived from Cd47?/? mice. Our finding of cell‐autonomous defects in Cd47?/? osteoblast and osteoclast differentiation coupled with the pronounced skeletal phenotype of Cd47?/? mice support the conclusion that CD47 plays an important role in regulating skeletal acquisition and maintenance through its actions on both bone formation and bone resorption. © 2011 American Society for Bone and Mineral Research  相似文献   

19.
Bone undergoes remodeling consisting of osteoclastic bone resorption followed by osteoblastic bone formation throughout life. Although the effects of bone morphogenetic protein (BMP) signals on osteoblasts have been studied extensively, the function of BMP signals in osteoclasts has not been fully elucidated. To delineate the function of BMP signals in osteoclasts during bone remodeling, we deleted BMP receptor type IA (Bmpr1a) in an osteoclast‐specific manner using a knock‐in Cre mouse line to the cathepsin K locus (CtskCre/+;Bmpr1aflox/flox, designated as Bmpr1aΔOc/ΔOc). Cre was specifically expressed in multinucleated osteoclasts in vivo. Cre‐dependent deletion of the Bmpr1a gene occurred at 4 days after cultivation of bone marrow macrophages obtained from Bmpr1aΔOc/ΔOc with RANKL. These results suggested that Bmpr1a was deleted after formation of osteoclasts in Bmpr1aΔOc/ΔOc mice. Expression of bone‐resorption markers increased, thus suggesting that BMPRIA signaling negatively regulates osteoclast differentiation. Trabeculae in tibia and femurs were thickened in 3.5‐, 8‐, and 12‐week‐old Bmpr1aΔOc/ΔOc mice. Bone histomorphometry revealed increased bone volume associated with increased osteoblastic bone‐formation rates (BFR) in the remodeling bone of the secondary spongiosa in Bmpr1aΔOc/ΔOc tibias at 8 weeks of age. For comparison, we also induced an osteoblast‐specific deletion of Bmpr1a using Col1a1‐Cre. The resulting mice showed increased bone volume with marked decreases in BFR in tibias at 8 weeks of age. These results indicate that deletion of Bmpr1a in differentiated osteoclasts increases osteoblastic bone formation, thus suggesting that BMPR1A signaling in osteoclasts regulates coupling to osteoblasts by reducing bone‐formation activity during bone remodeling. © 2011 American Society for Bone and Mineral Research  相似文献   

20.
Failure to achieve optimal bone mineral accretion during childhood and adolescence results in subsequent suboptimal peak bone mass, contributing to osteoporosis risk later in life. To identify novel genetic factors that influence pediatric bone mass at discrete skeletal sites, we performed a sex‐stratified genomewide association study of areal bone mineral density (BMD) measured by dual‐energy X‐ray absorptiometry at the 1/3 distal radius, spine, total hip, and femoral neck in a cohort of 933 healthy European American children. We took forward signals with p < 5 × 10?5 and minor allele frequency (MAF) >5% into an independent cohort of 486 European American children in search of replication. In doing so, we identified five loci that achieved genome wide significance in the combined cohorts (nearest genes: CPED1, IZUMO3, RBFOX1, SPBT, and TBPL2), of which the last four were novel and two were sex‐specific (SPTB in females and IZUMO3 in males), with all of them yielding associations that were particularly strong at a specific skeletal site. Annotation of potential regulatory function, expression quantitative trait loci (eQTL) effects and pathway analyses identified several potential target genes at these associated loci. This study highlights the importance of sex‐stratified analyses at discrete skeletal sites during the critical period of bone accrual, and identifies novel loci for further functional follow‐up to pinpoint key genes and better understand the regulation of bone development in children. © 2017 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号