首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Small molecules are attractive therapeutics to amplify and direct differentiation of stem cells. They also can be used to understand the regulation of their fate by interfering with specific signaling pathways. Mesenchymal stem cells (MSCs) have the potential to proliferate and differentiate into several cell types, including osteoblasts. Activation of canonical Wnt signaling by inhibition of glycogen synthase kinase 3 (GSK‐3) has been shown to enhance bone mass, possibly by involving a number of mechanisms ranging from amplification of the mesenchymal stem cell pool to the commitment and differentiation of osteoblasts. Here we have used a highly specific novel inhibitor of GSK‐3, AR28, capable of inducing β‐catenin nuclear translocation and enhanced bone mass after 14 days of treatment in BALB/c mice. We have shown a temporally regulated increase in the number of colony‐forming units–osteoblast (CFU‐O) and –adipocyte (CFU‐A) but not colony‐forming units–fibroblast (CFU‐F) in mice treated for 3 days. However, the number of CFU‐O and CFU‐A returned to normal levels after 14 days of treatment, and the number of CFU‐F was decreased significantly. In contrast, the number of osteoblasts increased significantly only after 14 days of treatment, and this was seen together with a significant decrease in bone marrow adiposity. These data suggest that the increased bone mass is the result of an early temporal wave of amplification of a subpopulation of MSCs with both osteogenic and adipogenic potential, which is driven to osteoblast differentiation at the expense of adipogenesis. © 2011 American Society for Bone and Mineral Research.  相似文献   

2.
3.
Previous reports have identified a role for the tyrosine kinase receptor EphB4 and its ligand, ephrinB2, as potential mediators of both bone formation by osteoblasts and bone resorption by osteoclasts. In the present study, we examined the role of EphB4 during bone repair after traumatic injury. We performed femoral fractures with internal fixation in transgenic mice that overexpress EphB4 under the collagen type 1 promoter (Col1‐EphB4) and investigated the bone repair process up to 12 weeks postfracture. The data indicated that Col1‐EphB4 mice exhibited stiffer and stronger bones after fracture compared with wild‐type mice. The fractured bones of Col1‐EphB4 transgenic mice displayed significantly greater tissue and bone volume 2 weeks postfracture compared with that of wild‐type mice. These findings correlated with increased chondrogenesis and mineral formation within the callus site at 2 weeks postfracture, as demonstrated by increased safranin O and von Kossa staining, respectively. Interestingly, Col1‐EphB4 mice were found to possess significantly greater numbers of clonogenic mesenchymal stromal progenitor cells (CFU‐F), with an increased capacity to form mineralized nodules in vitro under osteogenic conditions, when compared with those of the wild‐type control mice. Furthermore, Col1‐EphB4 mice had significantly lower numbers of TRAP‐positive multinucleated osteoclasts within the callus site. Taken together, these observations suggest that EphB4 promotes endochondral ossification while inhibiting osteoclast development during callus formation and may represent a novel drug target for the repair of fractured bones. © 2013 American Society for Bone and Mineral Research.  相似文献   

4.
The cytotherapeutic potential of mesenchymal stem cells (MSCs) has been evaluated in various disorders including those involving inflammation, autoimmunity, bone regeneration, and cancer. Multiple myeloma (MM) is a systemic malignancy associated with induction of osteolytic lesions that often are not repaired even after prolonged remission. The aims of this study were to evaluate the effects of intrabone and systemic injections of MSCs on MM bone disease, tumor growth, and tumor regrowth in the severe combined immunodeficiency (SCID)-rab model and to shed light on the exact localization of systemically injected MSCs. Intrabone injection of MSCs, but not hematopoietic stem cells, into myelomatous bones prevented MM-induced bone disease, promoted bone formation, and inhibited MM growth. After remission was induced with melphalan treatment, intrabone-injected MSCs promoted bone formation and delayed myeloma cell regrowth in bone. Most intrabone or systemically injected MSCs were undetected 2 to 4 weeks after injection. The bone-building effects of MSCs were mediated through activation of endogenous osteoblasts and suppression of osteoclast activity. Although a single intravenous injection of MSCs had no effect on MM, sequential weekly intravenous injections of MSCs prevented MM-induced bone disease but had no effect on tumor burden. MSCs expressed high levels of anti-inflammatory (eg, HMOX1) and bone-remodeling (eg, Decorin, CYR61) mediators. In vitro, MSCs promoted osteoblast maturation and suppressed osteoclast formation, and these effects were partially prevented by blocking decorin. A subset of intravenously or intracardially injected MSCs trafficked to myelomatous bone in SCID-rab mice. Although the majority of intravenously injected MSCs were trapped in lungs, intracardially injected MSCs were mainly localized in draining mesenteric lymph nodes. This study shows that exogenous MSCs act as bystander cells to inhibit MM-induced bone disease and tumor growth and that systemically injected MSCs are attracted to bone by myeloma cells or conditions induced by MM and inhibit bone disease.  相似文献   

5.
Stem cell depletion and compromised bone marrow resulting from radiation exposure fosters long‐term deterioration of numerous physiologic systems, with the degradation of the skeletal system ultimately increasing the risk of fractures. To study the interrelationship of damaged bone marrow cell populations with trabecular microarchitecture, 8‐ and 16‐week‐old C57BL/6 male mice were sublethally irradiated with 5 Gy of 137Cs γ‐rays, and adult stem cells residing in the bone marrow, as well as bone quantity and quality, were evaluated in the proximal tibia after 2 days, 10 days, and 8 weeks compared with age‐matched controls. Total extracted bone marrow cells in the irradiated 8‐week, young adult mice, including the hematopoietic cell niches, collapsed by 65% ± 11% after 2 days, remaining at those levels through 10 days, only recovering to age‐matched control levels by 8 weeks. As early as 10 days, double‐labeled surface was undetectable in the irradiated group, paralleled by a 41% ± 12% and 33% ± 4% decline in bone volume fraction (BV/TV) and trabecular number (Tb.N), respectively, and a 50% ± 10% increase in trabecular separation (Tb.Sp) compared with the age‐matched controls, a compromised structure that persisted to 8 weeks postirradiation. Although the overall collapse of the bone marrow population and devastation of bone quality was similar between the “young adult” and “mature” mice, the impact of irradiation—and the speed of recovery—on specific hematopoietic subpopulations was dependent on age, with the older animals slower to restore key progenitor populations. These data indicate that, independent of animal age, complications arising from irradiation extend beyond the collapse of the stem cell population and extend toward damage to key organ systems. It is reasonable to presume that accelerating the recovery of these stem cell pools will enable the prompt repair of the skeletal system and ultimately reduce the susceptibility to fractures. © 2012 American Society for Bone and Mineral Research.  相似文献   

6.
7.
Parathyroid hormone (PTH) stimulates bone remodeling and induces differentiation of bone marrow mesenchymal stromal/stem cells (MSCs) by orchestrating activities of local factors such as bone morphogenetic proteins (BMPs). The activity and specificity of different BMP ligands are controlled by various extracellular antagonists that prevent binding of BMPs to their receptors. Low-density lipoprotein receptor-related protein 6 (LRP6) has been shown to interact with both the PTH and BMP extracellular signaling pathways by forming a complex with parathyroid hormone 1 receptor (PTH1R) and sharing common antagonists with BMPs. We hypothesized that PTH-enhanced differentiation of MSCs into the osteoblast lineage through enhancement of BMP signaling occurs by modifying the extracellular antagonist network via LRP6. In vitro studies using multiple cell lines, including Sca-1+CD45CD11bMSCs, showed that a single injection of PTH enhanced phosphorylation of Smad1 and could also antagonize the inhibitory effect of noggin. PTH treatment induced endocytosis of a PTH1R/LRP6 complex and resulted in enhancement of phosphorylation of Smad1 that was abrogated by deletion of PTH1R, β-arrestin, or chlorpromazine. Deletion of LRP6 alone led to enhancement of pSmad1 levels that could not be further increased with PTH treatment. Finally, knockdown of LRP6 increased the exposure of endogenous cell-surface BMP receptor type II (BMPRII) significantly in C2C12 cells, and PTH treatment significantly enhanced cell-surface binding of 125I-BMP2 in a dose- and time-dependent manner, implying that LRP6 organizes an extracellular network of BMP antagonists that prevent access of BMPs to BMP receptors. In vivo studies in C57BL/6J mice and of transplanted green fluorescent protein (GFP)-labeled Sca-1+CD45CD11bMSCs into the bone marrow cavity of Rag2−/− immunodeficient mice showed that PTH enhanced phosphorylation of Smad1 and increased commitment of MSCs to osteoblast lineage, respectively. These data demonstrate that PTH enhancement of MSC differentiation to the osteoblast lineage occurs through a PTH- and LRP6-dependent pathway by endocytosis of the PTH1R/LRp6 complex, allowing enhancement of BMP signaling. © 2012 American Society for Bone and Mineral Research.  相似文献   

8.
9.
Sclerostin is a potent inhibitor of osteoblastogenesis. Interestingly, newly diagnosed multiple myeloma (MM) patients have high levels of circulating sclerostin that correlate with disease stage and fractures. However, the source and impact of sclerostin in MM remains to be defined. Our goal was to determine the role of sclerostin in the biology of MM and its bone microenvironment as well as investigate the effect of targeting sclerostin with a neutralizing antibody (scl‐Ab) in MM bone disease. Here we confirm increased sclerostin levels in MM compared with precursor disease states like monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM. Furthermore, we found that a humanized MM xenograft mouse model bearing human MM cells (NOD‐SCID.CB17 male mice injected intravenously with 2.5 million of MM1.S‐Luc‐GFP cells) demonstrated significantly higher concentrations of mouse‐derived sclerostin, suggesting a microenvironmental source of sclerostin. Associated with the increased sclerostin levels, activated β‐catenin expression levels were lower than normal in MM mouse bone marrow. Importantly, a high‐affinity grade scl‐Ab reversed osteolytic bone disease in this animal model. Because scl‐Ab did not demonstrate significant in vitro anti‐MM activity, we combined it with the proteasome inhibitor carfilzomib. Our data demonstrated that this combination therapy significantly inhibited tumor burden and improved bone disease in our in vivo MM mouse model. In agreement with our in vivo data, sclerostin expression was noted in marrow stromal cells and osteoblasts of MM patient bone marrow samples. Moreover, MM cells stimulated sclerostin expression in immature osteoblasts while inhibiting osteoblast differentiation in vitro. This was in part regulated by Dkk‐1 secreted by MM cells and is a potential mechanism contributing to the osteoblast dysfunction noted in MM. Our data confirm the role of sclerostin as a potential therapeutic target in MM bone disease and provides the rationale for studying scl‐Ab combined with proteasome inhibitors in MM. © 2016 American Society for Bone and Mineral Research.  相似文献   

10.
11.
Neurofibromatosis type I (NF1) is an autosomal dominant disease with an incidence of 1/3000, caused by mutations in the NF1 gene, which encodes the RAS/GTPase‐activating protein neurofibromin. Non‐bone union after fracture (pseudarthrosis) in children with NF1 remains a challenging orthopedic condition to treat. Recent progress in understanding the biology of neurofibromin suggested that NF1 pseudarthrosis stems primarily from defects in the bone mesenchymal lineage and hypersensitivity of hematopoietic cells to TGFβ. However, clinically relevant pharmacological approaches to augment bone union in these patients remain limited. In this study, we report the generation of a novel conditional mutant mouse line used to model NF1 pseudoarthrosis, in which Nf1 can be ablated in an inducible fashion in osteoprogenitors of postnatal mice, thus circumventing the dwarfism associated with previous mouse models where Nf1 is ablated in embryonic mesenchymal cell lineages. An ex vivo–based cell culture approach based on the use of Nf1flox/flox bone marrow stromal cells showed that loss of Nf1 impairs osteoprogenitor cell differentiation in a cell‐autonomous manner, independent of developmental growth plate–derived or paracrine/hormonal influences. In addition, in vitro gene expression and differentiation assays indicated that chronic ERK activation in Nf1‐deficient osteoprogenitors blunts the pro‐osteogenic property of BMP2, based on the observation that only combination treatment with BMP2 and MEK inhibition promoted the differentiation of Nf1‐deficient osteoprogenitors. The in vivo preclinical relevance of these findings was confirmed by the improved bone healing and callus strength observed in Nf1osx?/? mice receiving Trametinib (a MEK inhibitor) and BMP2 released locally at the fracture site via a novel nanoparticle and polyglycidol‐based delivery method. Collectively, these results provide novel evidence for a cell‐autonomous role of neurofibromin in osteoprogenitor cells and insights about a novel targeted approach for the treatment of NF1 pseudoarthrosis. © 2014 American Society for Bone and Mineral Research.  相似文献   

12.
13.
Growth hormone (GH) is usually released by somatotrophs in the anterior pituitary in response to the GH-releasing hormone and plays an important role in skeleton development and postnatal growth. However, it is unclear if extrapituitary GH exerts any effect on murine multilineage cells (MMCs). MMCs are multipotent progenitors that give rise to several lineages, including bone, cartilage, and fat. We have identified bone morphogenic protein 9 (BMP9) as one of the most osteogenic BMPs in MMCs by regulating a distinct set of downstream mediators. In this study, we find that GH is one of the most significantly upregulated genes by BMP9 in mouse MMCs through expression-profiling analysis. We confirm that GH is a direct early target of and upregulated by BMP9 signaling. Exogenous GH synergizes with BMP9 on inducing early and late osteogenic markers in MMCs. Furthermore, BMP9 and GH costimulation leads to a significant expansion of growth plate in cultured limb explants. Although GH alone does not induce de novo bone formation in an ectopic bone formation model, BMP9 and GH costimulated MMCs form more mature bone, which can be inhibited by silencing GH expression. The synergistic osteogenic activity between BMP9 and GH can be significantly blunted by JAK/STAT inhibitors, leading to a decrease in GH-regulated insulin-like growth factor 1 (IGF1) expression in MMCs. Our results strongly suggest that BMP9 may effectively regulate extrapituitary GH expression in MMCs. Thus, it is conceivable that the BMP9-GH-IGF axis may be exploited as an innovative strategy to enhance osteogenesis in regenerative medicine.  相似文献   

14.
1,25‐Dihydroxyvitamin D3 [1,25(OH)2D3] has many noncalcemic actions that rest on inhibition of proliferation and promotion of differentiation in malignant and normal cell types. 1,25(OH)2D3 stimulates osteoblast differentiation of human marrow stromal cells (hMSCs), but little is known about the effects of 25‐hydroxyvitamin D3 [25(OH)D3] on these cells. Recent evidence shows that hMSCs participate in vitamin D metabolism and can activate 25(OH)D3 by CYP27B1/1α‐hydroxylase. These studies test the hypothesis that antiproliferative and prodifferentiation effects of 25(OH)D3 in hMSCs depend on CYP27B1. We studied hMSCs that constitutively express high (hMSCshi‐1α) or low (hMSCslo‐1α) levels of CYP27B1 with equivalent expression of CYP24A1 and vitamin D receptor. In hMSCshi‐1α, 25(OH)D3 reduced proliferation, downregulated proliferating cell nuclear antigen (PCNA), upregulated p21Waf1/Cip1, and decreased cyclin D1. Unlike 1,25(OH)2D3, the antiapoptotic effects of 25(OH)D3 on Bax and Bcl‐2 were blocked by the P450 inhibitor ketoconazole. The antiproliferative effects of 25(OH)D3 in hMSCshi‐1α and of 1,25(OH)2D3 in both samples of hMSCs were explained by cell cycle arrest, not by increased apoptosis. Stimulation of osteoblast differentiation in hMSCshi‐1α by 25(OH)D3 was prevented by ketoconazole and upon transfection with CYP27B1 siRNA. These data indicate that CYP27B1 is required for 25(OH)D3's action in hMSCs. Three lines of evidence indicate that CYP27B1 is required for the antiproliferative and prodifferentiation effects of 25(OH)D3 on hMSCs: Those effects were not seen (1) in hMSCs with low constitutive expression of CYP27B1, (2) in hMSCs treated with ketoconazole, and (3) in hMSCs in which CYP27B1 expression was silenced. Osteoblast differentiation and skeletal homeostasis may be regulated by autocrine/paracrine actions of 25(OH)D3 in hMSCs. © 2011 American Society for Bone and Mineral Research.  相似文献   

15.
16.
Bone remodeling is a dynamic process based on a fine‐tuned balance between formation and degradation of bone. Osteoblasts (OBLs) are responsible for bone formation and bone resorption is mediated by osteoclasts (OCLs). The mechanisms regulating the OBL‐OCL balance are critical in health and disease; however, they are still far from being understood. We reported recently that the multifunctional urokinase receptor (uPAR) mediates osteogenic differentiation of mesenchymal stem cells (MSCs) to OBLs and vascular calcification in atherosclerosis. Here, we address the question of whether uPAR may also be engaged in regulation of osteoclastogenesis. We show that uPAR mediates this process in a dual fashion. Thus, uPAR affected OBL‐OCL interplay. We observed that osteoclastogenesis was significantly impaired in co‐culture of monocyte‐derived OCLs and in OBLs derived from MSCs lacking uPAR. We show that expression and release, from OBLs, of macrophage colony‐stimulating factor (M‐CSF), which is indispensable for OCL differentiation, was inhibited by uPAR loss. We further found that uPAR, on the other hand, controlled formation, differentiation, and functional properties of macrophage‐derived OCLs. Expression of osteoclastogenic markers, such as tartrate‐resistant acid phosphatase (TRAP) and cathepsin K, was impaired in OCLs derived from uPAR‐deficient macrophages. The requirement of uPAR for osteoclastogenesis was further confirmed by immunocytochemistry and in bone resorption assay. We provide evidence that the underlying signaling mechanisms involve uPAR association with the M‐CSF binding receptor c‐Fms followed by c‐Fms phosphorylation and activation of the PI3K/Akt/NF‐κB pathway in OCLs. We further show that uPAR uses this pathway to regulate a balance between OCL differentiation, apoptosis, and cell proliferation. Our study identified uPAR as an important and multifaceted regulator of OBL‐OCL molecular interplay that may serve as an attractive target in bone disease and ectopic calcification. © 2014 American Society for Bone and Mineral Research.  相似文献   

17.
H1 calponin (CNN1) is known as a smooth muscle‐specific, actin‐binding protein which regulates smooth muscle contractive activity. Although previous studies have shown that CNN1 has effect on bone, the mechanism is not well defined. To investigate the role of CNN1 in maintaining bone homeostasis, we generated transgenic mice overexpressing Cnn1 under the control of the osteoblast‐specific 3.6‐kb Col1a1 promoter. Col1a1‐Cnn1 transgenic mice showed delayed bone formation at embryonic stage and decreased bone mass at adult stage. Morphology analyses showed reduced trabecular number, thickness and defects in bone formation. The proliferation and migration of osteoblasts were decreased in Col1a1‐Cnn1 mice due to alterations in cytoskeleton. The early osteoblast differentiation of Col1a1‐Cnn1 mice was increased, but the late stage differentiation and mineralization of osteoblasts derived from Col1a1‐Cnn1 mice were significantly decreased. In addition to impaired bone formation, the decreased bone mass was also associated with enhanced osteoclastogenesis. Tartrate‐resistant acid phosphatase (TRAP) staining revealed increased osteoclast numbers in tibias of 2‐month‐old Col1a1‐Cnn1 mice, and increased numbers of osteoclasts co‐cultured with Col1a1‐Cnn1 osteoblasts. The ratio of RANKL to OPG was significantly increased in Col1a1‐Cnn1 osteoblasts. These findings reveal a novel function of CNN1 in maintaining bone homeostasis by coupling bone formation to bone resorption. © 2013 American Society for Bone and Mineral Research.  相似文献   

18.
19.
20.
Angiogenesis and osteogenesis are critically linked, although the role of angiogenesis is not well understood in osteogenic mechanical loading. In this study, either damaging or non‐damaging cyclic axial compression was used to generate woven bone formation (WBF) or lamellar bone formation (LBF), respectively, at the mid‐diaphysis of the adult rat forelimb. αvβ3 integrin–targeted nanoparticles or vehicle was injected intravenously after mechanical loading. β3 integrin subunit expression on vasculature was maximal 7 days after damaging mechanical loading, but was still robustly expressed 14 days after loading. Accordingly, targeted nanoparticle delivery in WBF‐loaded limbs was increased compared with non‐loaded limbs. Vascularity was dramatically increased after WBF loading (+700% on day 14) and modestly increased after LBF loading (+50% on day 14). This increase in vascularity was inhibited by nanoparticle treatment in both WBF‐ and LBF‐loaded limbs at days 7 and 14 after loading. Decreased vascularity led to diminished woven, but not lamellar, bone formation. Decreased woven bone formation resulted in impaired structural properties of the skeletal repair, particularly in post‐yield behavior. These results demonstrate that αvβ3 integrin–mediated angiogenesis is critical for recovering fracture resistance after bone injury but is not required for bone modeling after modest mechanical strain. © 2014 American Society for Bone and Mineral Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号