首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that regulates inflammatory responses to injury and infection. IL-1β secretion requires the protease caspase-1, which is activated following recruitment to inflammasomes. Endogenous danger-associated molecular patterns (DAMPs) released from necrotic cells activate caspase-1 through an NLRP3-inflammasome. Here, we show that the endogenous lipid metabolite sphingosine (Sph) acts as a DAMP by inducing the NLRP3-inflammasome-dependent secretion of IL-1β from macrophages. This process was dependent upon serine/threonine protein phosphatases since the PP1/PP2A inhibitors okadaic acid and calyculin A inhibited Sph-induced IL-1β release. IL-1β release induced by other well-characterized NLRP3-inflammasome activators, such as ATP and uric acid crystals, in addition to NLRC4 and AIM2 inflammasome activators was also blocked by these inhibitors. Thus, we propose Sph as a new DAMP, and that a serine/threonine phosphatase (PP1/PP2A)-dependent signal is central to the endogenous host mechanism through which diverse stimuli regulate inflammasome activation.  相似文献   

2.
Recognition of microbe‐associated molecular patterns or endogenous danger signals by a subset of cytosolic PRRs results in the assembly of multiprotein signaling complexes, the so‐called inflammasomes. Canonical inflammasomes are assembled by NOD‐like receptor (NLR) or PYHIN family members and activate caspase‐1, which promotes the induction of pyroptosis and the release of mature interleukin‐1β/‐18. Recently, a noncanonical inflammasome pathway was discovered that results in caspase‐11 activation in response to bacterial lipopolysaccharide (LPS) in the cytosol. Interestingly, caspase‐11 induces pyroptosis by itself, but requires NLRP3, the inflammasome adapter ASC, and caspase‐1 to promote cytokine secretion. Here, we have studied the mechanism by which caspase‐11 controls IL‐1β secretion. Investigating NLRP3/ASC complex formation, we find that caspase‐11 functions upstream of a canonical NLRP3 inflammasome. The activation of NLRP3 by caspase‐11 during LPS transfection is a cell‐intrinsic process and is independent of the release of danger signals. Furthermore, we show that active caspase‐11 leads to a drop of intracellular potassium levels, which is necessary to activate NLRP3. Our study, therefore, sheds new light on the mechanism of noncanonical inflammasome signaling.  相似文献   

3.
Aeromonas hydrophila is a Gram‐negative pathogen that causes serious infectious disease in humans. A. hydrophila induces apoptosis in infected macrophages, but the host proinflammatory responses triggered by macrophage death are largely unknown. Here, we demonstrate that the infection of mouse macrophages with A. hydrophila triggers the activation of caspase‐1 and release of IL‐1β. Caspase‐1 activation was abrogated in macrophages deficient in Nod‐like receptor family, pyrin domain containing 3 (NLRP3) and apoptosis‐associated speck‐like protein containing a caspase recruitment domain (ASC), but not NLR family, CARD domain containing 4 (NLRC4). The activation of the NLRP3 inflammasome was mediated by three cytotoxins (aerolysin, hemolysin and multifunctional repeat‐in‐toxin) produced by A. hydrophila. Our results indicated that the NLRP3 inflammasome senses A. hydrophila infection through the action of bacterial cytotoxins.  相似文献   

4.
Inflammasomes are cytosolic multi‐protein complexes that form in response to infectious or injurious challenges. Inflammasomes control the activity of caspase‐1, which is essential for the maturation and release of IL‐1β family cytokines. The NLRP1, IPAF and AIM2 inflammasomes recognize specific substances, while the NLRP3 inflammasome responds to many structurally and chemically diverse triggers. Here, we discuss the critical roles of priming and lysosomal damage in NLRP3 inflammasome activation.  相似文献   

5.
6.
Murine caspase‐11 and its human orthologues, caspase‐4 and caspase‐5, activate an inflammatory response following cytoplasmic recognition of cell wall constituents from Gram‐negative bacteria, such as LPS. This inflammatory response involves pyroptotic cell death and the concomitant release of IL‐1α, as well as the production of IL‐1β and IL‐18 through the noncanonical NLR family, pyrin domain containing 3 (NLRP3) pathway. This commentary discusses three papers in this issue of the European Journal of Immunology that advance our understanding of the roles of caspase‐11, ‐4, and ‐5 in the noncanonical pathway. By utilizing the new gene editing technique, clustered regularly interspaced short palindromic repeats (CRISPR), as well as sensitive cell imaging techniques, these papers establish that cytoplasmic LPS‐dependent IL‐1β production requires the NLRP3 inflammasome and that its activation is dependent on K+ efflux, whereas IL‐1α release and pyroptotic cell death pathways are NLRP3‐independent. These findings expand on previous research implicating K+ efflux as the principal trigger for NLRP3 activation and suggest that canonical and noncanonical NLRP3 pathways are not as dissimilar as first thought.  相似文献   

7.
Aberrant inflammasome activation contributes to the pathogenesis of various human diseases, including atherosclerosis, gout, and metabolic disorders. Elucidation of the underlying mechanism involved in the negative regulation of the inflammasome is important for developing new therapeutic targets for these diseases. Here, we showed that Raf kinase inhibitor protein (RKIP) negatively regulates the activation of the NLRP1, NLRP3, and NLRC4 inflammasomes. RKIP deficiency enhanced caspase-1 activation and IL-1β secretion via NLRP1, NLRP3, and NLRC4 inflammasome activation in primary macrophages. The overexpression of RKIP in THP-1 cells inhibited NLRP1, NLRP3, and NLRC4 inflammasome activation. RKIP-deficient mice showed increased sensitivity to Alum-induced peritonitis and Salmonella typhimurium-induced inflammation, indicating that RKIP inhibits NLRP3 and NLRC4 inflammasome activation in vivo. Mechanistically, RKIP directly binds to apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and competes with NLRP1, NLRP3, or NLRC4 to interact with ASC, thus interrupting inflammasome assembly and activation. The depletion of RKIP aggravated inflammasome-related diseases such as monosodium urate (MSU)-induced gouty arthritis and high-fat diet (HFD)-induced metabolic disorders. Furthermore, the expression of RKIP was substantially downregulated in patients with gouty arthritis or type 2 diabetes (T2D) compared to healthy controls. Collectively, our findings suggest that RKIP negatively regulates NLRP1, NLRP3, and NLRC4 inflammasome activation and is a potential therapeutic target for the treatment of inflammasome-related diseases.  相似文献   

8.
Inflammasome signalling induces the processing and secretion of interleukin (IL)‐1β and IL‐18 which, coupled with pyroptosis, activate further the inflammatory response. In the present study we evaluated the expression of genes involved in inflammasome signalling pathways in septic patients, their interaction networks and the predicted functions modulated in survivors and non‐survivors. Twenty‐seven patients with sepsis secondary to community‐acquired pneumonia admitted to intensive care units from three general hospitals in São Paulo were included into the study. We performed a polymerase chain reaction (PCR) array encompassing 35 genes related to the nucleotide‐binding oligomerization domain and leucine‐rich repeat‐containing (NLR)‐inflammasome in peripheral blood mononuclear cells obtained at admission and after 7 days of follow‐up. Eleven healthy volunteers were used as the reference group. Increased NLRC4 and NLRP3 and decreased nucleotide‐binding oligomerization domain (NOD1), and NLRP1 expression was observed in septic patients compared to healthy individuals; the IL‐1β and IL‐18 expression levels were also high in the patients. The gene expression changes followed the same patterns in surviving and non‐surviving patients, with higher magnitudes observed in non‐survivors. Functional analyses revealed, however, that activation and inhibition intensity for representing functions were different in survivors and non‐survivors, as for production of reactive oxygen species, synthesis of nitric oxide and for the control of bacterial infections. Our results showed that the genes involved in the activation of the NLR‐inflammasome cascades were altered substantially in septic patients, with a higher number of altered genes and a higher intensity in the disturbance of gene expression found among patients dying of sepsis.  相似文献   

9.
Sterile cell death mediated inflammation is linked to several pathological disorders and involves danger recognition of intracellular molecules released by necrotic cells that activate different groups of innate pattern recognition receptors. Toll‐like receptors directly interact with their extrinsic or intrinsic agonists and induce multiple proinflammatory mediators. In contrast, the NLRP3 inflammasome is rather thought to represent a downstream element integrating various indirect stimuli into proteolytic cleavage of interleukin (IL)–1β and IL‐18. Here, we report that histones released from necrotic cells induce IL‐1β secretion in an NLRP3–ASC‐caspase‐1‐dependent manner. Genetic deletion of NLRP3 in mice significantly attenuated histone‐induced IL‐1β production and neutrophil recruitment. Furthermore, necrotic cells induced neutrophil recruitment, which was significantly reduced by histone‐neutralizing antibodies or depleting extracellular histones via enzymatic degradation. These results identify cytosolic uptake of necrotic cell‐derived histones as a triggering mechanism of sterile inflammation, which involves NLRP3 inflammasome activation and IL‐1β secretion via oxidative stress.  相似文献   

10.
The aptly named inflammasomes are powerful signaling complexes that sense inflammatory signals under a myriad of conditions, including those from infections and endogenous sources. The inflammasomes promote inflammation by maturation and release of the pro‐inflammatory cytokines, IL‐1β and IL‐18. Several inflammasomes have been identified so far, but this review focuses mainly on the NLRP3 inflammasome. By still ill‐defined activation mechanisms, a sensor molecule, NLRP3 (NACHT, LRR and PYD domains‐containing protein 3), responds to danger signals and rapidly recruits ASC (apoptosis‐associated speck‐like protein containing a CARD) and pro‐caspase‐1 to form a large oligomeric signaling platform—the inflammasome. Involvement of the NLRP3 inflammasome in infections, metabolic disorders, autoinflammation, and autoimmunity, underscores its position as a central player in sensing microbial and damage signals and coordinating pro‐inflammatory immune responses. Indeed, evidence in patients with multiple sclerosis (MS) suggests inflammasome activation occurs during disease. Experiments with the mouse model of MS, experimental autoimmune encephalomyelitis (EAE), specifically describe the NLRP3 inflammasome as critical and necessary to disease development. This review discusses recent studies in EAE and MS which describe associations of inflammasome activation with promotion of T cell pathogenicity, infiltration of cells into the central nervous system (CNS) and direct neurodegeneration during EAE and MS.  相似文献   

11.
Studies show that the Th17/IL ‐17A axis plays an important role in the pathogenesis of kidney diseases. Previously, we also showed that IL ‐17A may play a role in the pathogenesis of primary nephrotic syndrome; however, the underlying mechanism(s) is unclear. The aim of this study was to explore the molecular mechanism of IL ‐17A‐inducing podocyte injury in vitro. In this study, the NLRP 3 inflammasome activation and the morphology of podocytes were detected by Western blot and immunofluorescence. The results showed that podocytes persistently expressed IL ‐17A receptor and that NLRP 3 inflammasome in these cells was activated upon exposure to IL ‐17A. Also, activity of caspase‐1 and secretion of IL ‐1β increased in the presence of IL ‐17A. In addition, IL ‐17A disrupted podocyte morphology by decreasing expression of podocin and increasing expression of desmin. Blockade of intracellular ROS or inhibition of caspase‐1 prevented activation of the NLRP 3 inflammasome, thereby restoring podocyte morphology. Taken together, the results suggest that IL ‐17A induces podocyte injury by activating the NLRP 3 inflammasome and IL ‐1β secretion and contributes to disruption of the kidney's filtration system.  相似文献   

12.
The inflammasome pathway functions to regulate caspase‐1 activation in response to a broad range of stimuli. Caspase‐1 activation is required for the maturation of the pivotal pro‐inflammatory cytokines of the pro‐IL‐1β family. In addition, caspase‐1 activation leads to a certain type of cell death known as pyroptosis. Activation of the inflammasome has been shown to play a critical role in the recognition and containment of various microbial pathogens, including the intracellularly replicating Listeria monocytogenes; however, the inflammasome pathways activated during L. monocytogenes infection are only poorly defined. Here, we demonstrate that L. monocytogenes activates both the NLRP3 and the AIM2 inflammasome, with a predominant involvement of the AIM2 inflammasome. In addition, L. monocytogenes‐triggered cell death was diminished in the absence of both AIM2 and NLRP3, and is concomitant with increased intracellular replication of L. monocytogenes. Altogether, these data establish a role for DNA sensing through the AIM2 inflammasome in the detection of intracellularly replicating bacteria.  相似文献   

13.
The NLRP3 inflammasome plays a critical role in regulating inflammatory and cell death pathways in response to a diverse array of stimuli. Activation of the NLRP3 inflammasome results in activation of the cysteine protease caspase‐1 and the subsequent processing and secretion of the proinflammatory cytokines IL‐1β and IL‐18. In this issue of the European Journal of Immunology, Licandro et al. [Eur. J. Immunol. 2013. 43, 2126–2137] show that the NLRP3 inflammasome contributes to oxidative DNA damage. In addition, activation of the NLRP3 inflammasome modulates a number of pathways involved in DNA damage repair, cell cycle, and apoptosis, suggesting a novel role for the NLRP3 inflammasome in DNA damage responses following cellular stress.  相似文献   

14.
Inflammasomes are multiprotein complexes that activate caspase-1, which leads to maturation of the proinflammatory cytokines interleukin 1β (IL-1β) and IL-18 and the induction of pyroptosis. Members of the Nod-like receptor (NLR) family, including NLRP1, NLRP3 and NLRC4, and the cytosolic receptor AIM2 are critical components of inflammasomes and link microbial and endogenous danger signals to the activation of caspase-1. In response to microbial infection, activation of the inflammasomes contributes to host protection by inducing immune responses that limit microbial invasion, but deregulated activation of inflammasomes is associated with autoinflammatory syndromes and other pathologies. Thus, understanding inflammasome pathways may provide insight into the mechanisms of host defense against microbes and the development of inflammatory disorders.  相似文献   

15.
Members of the Nod‐like receptor family and the adaptor ASC assemble into multiprotein platforms, termed inflammasomes, to mediate the activation of caspase‐1 and subsequent secretion of IL‐1β and IL‐18. Recent studies have identified microbial and endogenous molecules as well as possible mechanisms involved in inflammasome activation.  相似文献   

16.
Infection with Listeria monocytogenes can cause meningitis and septicemia in newborn, elderly, or immunocompromised individuals. Pregnant women are particularly susceptible to Listeria, leading to a potentially fatal infection. Cytosolic Listeria activates the proinflammatory caspase-1 and induces the processing and secretion of interleukins IL-1β and IL-18 as well as caspase-1-dependent pyroptosis. This study elucidates the role of various inflammasome components of host macrophages in the proinflammatory response to infection with Listeria. Here, we have used macrophages from AIM2-, NLRC4-, NLRP3-, and ASC-deficient mice to demonstrate that AIM2, NLRC4, and NLRP3 inflammasomes as well as the adaptor protein ASC all contribute to activation of caspase-1 in Listeria-infected macrophages. We show that Listeria DNA, which escapes into the cytosol of infected macrophages, triggers AIM2 oligomerization, caspase-1 activation, and pyroptosis. Interestingly, we found that flagellin-deficient Listeria, like Francisella tularensis, is recognized primarily by the AIM2 inflammasome, as no caspase-1 activation or cell death was observed in AIM2-deficient macrophages infected with this Listeria mutant. We further show that prior priming of NLRC4-deficient macrophages with LPS is sufficient for Listeria-induced caspase-1 activation in these macrophages, suggesting that TLR4 signaling is important for activation of the AIM2 and NLRP3 inflammasomes by Listeria in the absence of NLRC4. Taken together, our results indicate that Listeria infection is sensed by multiple inflammasomes that collectively orchestrate a robust caspase-1 activation and proinflammatory response.  相似文献   

17.
18.
19.
NLRP3 inflammasome is a protein complex crucial to caspase‐1 activation and IL‐1β and IL‐18 maturation. This receptor participates in innate immune responses to different pathogens, including the bacteria of genus Brucella. Our group recently demonstrated that Brucella abortus‐induced IL‐1β secretion involves NLRP3 inflammasome and it is partially dependent on mitochondrial ROS production. However, other factors could be involved, such as P2X7‐dependent potassium efflux, membrane destabilization, and cathepsin release. Moreover, there is increasing evidence that nitric oxide acts as a modulator of NLRP3 inflammasome. The aim of this study was to unravel the mechanism of NLRP3 inflammasome activation induced by B. abortus, as well as the involvement of bacterial nitric oxide (NO) as a modulator of this inflammasome pathway. We demonstrated that NO produced by B. abortus can be used by the bacteria to modulate IL‐1β secretion in infected murine macrophages. Additionally, our results suggest that B. abortus‐induced IL‐1β secretion depends on a P2X7‐independent potassium efflux, lysosomal acidification, cathepsin release, mechanisms clearly associated to NLRP3 inflammasome. In summary, our results help to elucidate the molecular mechanisms of NLRP3 activation and regulation during an intracellular bacterial infection.  相似文献   

20.
The NACHT, LRR and PYD domains containing protein (NALP3) inflammasome is a key regulator of interleukin‐1β (IL‐1β) secretion. As there is strong evidence for a pro‐inflammatory role of IL‐1β in rheumatoid arthritis (RA) and in murine models of arthritis, we explored the expression of the different components of the NALP3 inflammasome as well as other nucleotide oligomerization domain (NOD)‐like receptors (NLRs) in synovium obtained from patients with RA. The expression of NLRs was also studied in fibroblast lines derived from joint tissue. By immunohistology, NALP3 and apoptosis‐associated speck‐like protein containing a CARD domain (ASC) were expressed in myeloid and endothelial cells and B cells. T cells expressed ASC but lacked NALP3. In synovial fibroblast lines, NALP3 expression was not detected at the RNA and protein levels and stimulation with known NALP3 agonists failed to induce IL‐1β secretion. Interestingly, we were unable to distinguish RA from osteoarthritis synovial samples on the basis of their basal level of RNA expression of known NLR proteins, though RA samples contained higher levels of caspase‐1 assayed by enzyme‐linked immunsorbent assay. These results indicate that myeloid and endothelial cells are the principal sources of inflammasome‐mediated IL‐1β production in the synovium, and that synovial fibroblasts are unable to activate caspase‐1 because they lack NALP3. The NALP3 inflammasome activity does not account for the difference in level of inflammation between RA and osteoarthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号