首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Small non‐coding microRNAs (miRNAs) contribute to cancer development and progression, and are differentially expressed in normal tissues and cancers. However, the specific role of miRNAs in the metastatic process is still unknown. To seek a specific miRNA expression signature characterizing the metastatic phenotype of solid tumours, we performed a miRNA microarray analysis on 43 paired primary tumours (ten colon, ten bladder, 13 breast, and ten lung cancers) and one of their related metastatic lymph nodes. We identified a metastatic cancer miRNA signature comprising 15 overexpressed and 17 underexpressed miRNAs. Our results were confirmed by qRT‐PCR analysis. Among the miRNAs identified, some have a well‐characterized association with cancer progression, eg miR‐10b, miR‐21, miR‐30a, miR‐30e, miR‐125b, miR‐141, miR‐200b, miR‐200c, and miR‐205. To further support our data, we performed an immunohistochemical analysis for three well‐defined miRNA gene targets (PDCD4, DHFR, and HOXD10 genes) on a small series of paired colon, breast, and bladder cancers, and one of their metastatic lymph nodes. We found that the immunohistochemical expression of these targets significantly follows the corresponding miRNA deregulation. Our results suggest that specific miRNAs may be directly involved in cancer metastasis and that they may represent a novel diagnostic tool in the characterization of metastatic cancer gene targets. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

2.
Tumor choline metabolites have potential for use as diagnostic indicators of breast cancer phenotype and can be non‐invasively monitored in vivo by MRS. Extract studies have determined that the principle diagnostic component of these peaks is phosphocholine (PCho), the biosynthetic precursor to the membrane phospholipid, phosphatidylcholine (PtdCho). The ability to resolve and quantify PCho in vivo would improve the accuracy of this putative diagnostic tool. In addition, determining the biochemical mechanisms underlying these metabolic perturbations will improve the understanding of breast cancer and may suggest potential molecular targets for drug development. Reported herein is the in vivo resolution and quantification of PCho and glycerophosphocholine (GPC) in breast cancer xenografts in SCID mice via image‐guided 31P MRS, localized to a single voxel. Tumor metabolites are also detected using ex vivo extracts and high‐resolution NMR spectroscopy and are quantified in the metastatic tumor line, MDA‐mb‐231. Also reported is the quantification of cytosolic and lipid metabolites in breast cells of differing cancer phenotype, and the identification of metabolites that differ among these cell lines. In cell extracts, PCho and the PtdCho breakdown products, lysophosphatidylcholine, GPC and glycerol 3‐phosphate, are all raised in breast cancer lines relative to an immortalized non‐malignant line. These metabolic differences are in direct agreement with differences in expression of genes encoding enzymes in the choline metabolic pathway. Results of this study are consistent with previous studies, which have concluded that increased choline uptake, increased choline kinase activity, and increased phosholipase‐mediated turnover of PtdCho contribute to the observed increase in PCho in breast cancer. In addition, this study presents evidence suggesting a specific role for phospholipase A2‐mediated PtdCho catabolism. Gene expression changes following taxane therapy are also reported and are consistent with previously reported changes in choline metabolites after the same therapy in the same tumor model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Hereditary breast cancer comprises a minor but clinically meaningful breast cancer (BC) subgroup. Mutations in the major BC‐susceptibility genes are important prognostic and predictive markers; however, their carriers represent only 25% of high‐risk BC patients. To further characterize variants influencing BC risk, we performed SOLiD sequencing of 581 genes in 325 BC patients (negatively tested in previous BRCA1/BRCA2/PALB2 analyses). In 105 (32%) patients, we identified and confirmed 127 truncating variants (89 unique; nonsense, frameshift indels, and splice site), 19 patients harbored more than one truncation. Forty‐six (36 unique) truncating variants in 25 DNA repair genes were found in 41 (12%) patients, including 16 variants in the Fanconi anemia (FA) genes. The most frequent variant in FA genes was c.1096_1099dupATTA in FANCL that also show a borderline association with increased BC risk in subsequent analysis of enlarged groups of BC patients and controls. Another 81 (53 unique) truncating variants were identified in 48 non‐DNA repair genes in 74 patients (23%) including 16 patients carrying variants in genes coding proteins of estrogen metabolism/signaling. Our results highlight the importance of mutations in the FA genes' family, and indicate that estrogen metabolism genes may reveal a novel candidate genetic component for BC susceptibility.  相似文献   

4.
5.
6.
Functional genetic polymorphisms of DNA repair genes are good candidates for cancer susceptibility markers. We studied two genes coding for proteins removing small DNA adducts by direct repair (MGMT), or mispaired DNA bases by base excision repair (TDG). The non‐silent polymorphisms of MGMT (84:Phe, 143:Val, 178:Arg) and TDG (199:Ser, 367:Met), and the functional MGMT enhancer polymorphism, did not show any statistically significant association with lung cancer risk in our case‐control analysis, but due to the relatively small number of individuals, strong conclusions on cancer risk association or lack thereof cannot be made. Sequencing of the TDG cDNA has not revealed any novel polymorphism, but did find an alternatively spliced mRNA missing exon 2. Our search for polymorphisms within the promoter‐enhancer region of MGMT revealed three novel sequence variants. The functional significance of the previously published MGMT enhancer polymorphism (1099C‐>T) was assessed. The less frequent sequence variant of the enhancer was associated with a modest (16–64%), but statistically significant, increase of MGMT promoter‐enhancer activity in the studied cell lines. This work points to the importance of studying the expression‐regulating elements of genes, as they may contain functional polymorphisms with the potential for modulating risk of various diseases, including cancer.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Microglandular adenosis (MGA) is a rare proliferative lesion of the breast composed of small glands lacking myoepithelial cells and lined by S100‐positive, oestrogen receptor (ER)‐negative, progesterone receptor (PR)‐negative, and HER2‐negative epithelial cells. There is evidence to suggest that MGA may constitute a non‐obligate precursor of triple‐negative breast cancer (TNBC). We sought to define the genomic landscape of pure MGA and of MGA, atypical MGA (AMGA) and associated TNBCs, and to determine whether synchronous MGA, AMGA, and TNBCs would be clonally related. Two pure MGAs and eight cases of MGA and/or AMGA associated with in situ or invasive TNBC were collected, microdissected, and subjected to massively parallel sequencing targeting all coding regions of 236 genes recurrently mutated in breast cancer or related to DNA repair. Pure MGAs lacked clonal non‐synonymous somatic mutations and displayed limited copy number alterations (CNAs); conversely, all MGAs (n = 7) and AMGAs (n = 3) associated with TNBC harboured at least one somatic non‐synonymous mutation (range 3–14 and 1–10, respectively). In all cases where TNBCs were analyzed, identical TP53 mutations and similar patterns of gene CNAs were found in the MGA and/or AMGA and in the associated TNBC. In the MGA/AMGA associated with TNBC lacking TP53 mutations, somatic mutations affecting PI3K pathway‐related genes (eg PTEN, PIK3CA, and INPP4B) and tyrosine kinase receptor signalling‐related genes (eg ERBB3 and FGFR2) were identified. At diagnosis, MGAs associated with TNBC were found to display subclonal populations, and clonal shifts in the progression from MGA to AMGA and/or to TNBC were observed. Our results demonstrate the heterogeneity of MGAs, and that MGAs associated with TNBC, but not necessarily pure MGAs, are genetically advanced, clonal, and neoplastic lesions harbouring recurrent mutations in TP53 and/or other cancer genes, supporting the notion that a subset of MGAs and AMGAs may constitute non‐obligate precursors of TNBCs. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

14.
The heterogeneity of multiple case breast cancer families that do not carry mutations in BRCA1 or BRCA2 (non‐BRCA1/2 families) poses a challenge to the identification of breast cancer susceptibility genes. The aim of this study was to determine whether intrafamilial concordance in breast cancer pathology could identify subgroups of non‐BRCA1/2 families with consistent genotypic features. Invasive breast cancers were reviewed from 84 individuals belonging to 30 multiple‐case families; BRCA1 (n = 9), BRCA2 (n = 10), and non‐BRCA1/2 (n = 11). Hierarchical cluster analysis based on histopathology and age at first diagnosis was then used to specify three subgroups designated Clusters 1–3. The genomic features of non‐BRCA1/2 families were examined by genome wide linkage and FGFR2 SNP genotyping, according to whether they showed cluster‐concordant or cluster‐mixed familial pathology. The majority of pathogenic BRCA1 mutation carriers (80%) fell into a single cluster. In contrast pathogenic BRCA2 mutation carriers were distributed across all three clusters and within families, cluster groups were also generally mixed. Most non‐BRCA1/2 mutation carriers belonged to Cluster 3 (71%). Genome wide linkage data from five non‐BRCA1/2 Cluster 3‐concordant families were compared with four mixed cluster non‐BRCA1/2 families. This revealed a number of distinct linkage peaks, including some regions previously associated with breast cancer susceptibility. The distribution of low risk alleles in FGFR2 was not different between these two subgroups (P = 0.237). The pattern of breast cancer pathology concordance amongst family members may assist the investigation of breast cancer susceptibility in multiple case families. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
16.
17.
18.
19.
20.
In this study, a customized amplicon‐based target sequencing panel was designed to enrich the whole exon regions of six genes associated with the risk of breast cancer. Targeted next‐generation sequencing (NGS) was performed for 146 breast cancer patients (BC), 71 healthy women with a family history of breast cancer (high risk), and 55 healthy women without a family history of cancer (control). Sixteen possible disease‐causing mutations on four genes were identified in 20 samples. The percentages of possible disease‐causing mutation carriers in the BC group (8.9%) and in the high‐risk group (8.5%) were higher than that in the control group (1.8%). The BRCA1 possible disease‐causing mutation group had a higher prevalence in family history and triple‐negative breast cancer, while the BRCA2 possible disease‐causing mutation group was younger and more likely to develop axillary lymph node metastasis (< 0.05). Among the 146 patients, 47 with a family history of breast cancer were also sequenced with another 14 moderate‐risk genes. Three additional possible disease‐causing mutations were found on PALB2, CHEK2, and PMS2 genes, respectively. The results demonstrate that the six‐gene targeted NGS panel may provide an approach to assess the genetic risk of breast cancer and predict the clinical prognosis of breast cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号