首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Background : In the vertebrate embryo, skeletal muscle and the axial skeleton arise from the somites. Patterning of the somites into the respective somite compartments, namely dermomyotome, myotome, and sclerotome, depends on molecular signals from neighboring structures, including surface ectoderm, neural tube, notochord, and lateral plate mesoderm. A potential role of the intermediate mesoderm, notably the Wolffian or nephric duct, in somite development is poorly understood. Results : We studied somite compartmentalization as well as muscular and skeletal development after surgical ablation of the early Wolffian duct anlage, which lead to loss of the Wolffian duct and absence of the mesonephros, whereas Pax2 expression in the nephrogenic mesenchyme was temporarily maintained. We show that somite compartments, as well as the somite derivatives, skeletal muscle and the cartilaginous skeleton, develop normally in the absence of the Wolffian duct. Conclusions : Our results indicate that development of the musculoskeletal system is independent of the Wolffian duct as a signaling center. Developmental Dynamics 242:941–948, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
The vertebrate mid‐hindbrain boundary (MHB) is a crucial morphological structure required for patterning and neural differentiation of the midbrain and anterior hindbrain. We isolated a novel zebrafish mutant, MHB gone (mgo), that exhibited a defective MHB. Expression of engrailed3 in the prospective MHB was absent at the 1‐somite stage, suggesting that initiation of the isthmic organizer was disrupted in mgo mutants. Complementation test with mgo and noi, in which the pax2a gene is mutated, infer that the mgo mutant may represent a novel noi allele. However, pronephric, otic vesicle, and commissural axonal defects described in noi mutants were not associated with mgo mutants. Genetic mapping revealed that the mgo mutation is linked to the Pax2a locus, but no mutation was detected in pax2a exons or within intron‐exon boundaries. Based on these findings, we propose that the mgo mutation genetically interacts with pax2a required for the initiation of MHB formation. Developmental Dynamics 238:899–907, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
4.
The dorso-ventral pattern formation of the somites becomes manifest by the formation of the epithelially organized dorsal dermomyotome and the mesenchymal ventrally situated sclerotome. While the dermomyotome gives rise to dermis and muscle, the sclerotome differentiates into cartilage and bone of the axial skeleton. The onset of muscle differentiation can be visualized by immunohistochemistry for proteins associated with muscle contractility, e.g. desmin. The sclerotome cells and the epithelial ventral half of the somite express Pax-1, a member of a gene family with a sequence similarity to Drosophila paired-box-containing genes. In the present study, changes of Pax-1 expression were studied after grafting an additional notochord into the paraxial mesoderm region. The influence of the notochord and the floor-plate on dermomyotome formation and myotome differentiation has also been investigated. The notochord is found to exert a ventralizing effect on the establishment of the dorso-ventral pattern in the somites. Notochord grafts lead to a suppression of the formation and differentiation of the dorsal somitic derivatives. Simultaneously, a widening of the Pax-1-expressing domain in the sclerotome can be observed. In contrast, grafted roof-plate and aorta do not interfere with dorso-ventral patterning of the somitic derivatives.  相似文献   

5.
6.
In amniotes, BMP signaling from lateral plate and dorsal neural tube inhibits differentiation of muscle precursors in the dermomyotome. Here, we show that BMPs are expressed adjacent to the dermomyotome during and after segmentation in zebrafish. In addition, downstream BMP pathway members are expressed within the somite during dermomyotome development. We also show that zebrafish dermomyotome is responsive to BMP throughout its development. Ectopic overexpression of Bmp2b increases expression of the muscle precursor marker pax3, and changes the time course of myoD expression. At later stages, overexpression increases the number of Pax7+ myogenic precursors, and delays muscle differentiation, as indicated by decreased numbers of MEF2+ nuclei, decreased number of multi‐nucleated muscle fibers, and an increased myotome angle. In addition, we show that while BMP overexpression is sufficient to delay myogenic differentiation, inhibition of BMP does not detectably affect this process, suggesting that other factors redundantly inhibit myogenic differentiation. Developmental Dynamics 239:806–817, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
The development of the avian vertebral column   总被引:5,自引:0,他引:5  
Segmentation of the paraxial mesoderm leads to somite formation. The underlying molecular mechanisms involve the oscillation of ”clock-genes” like c-hairy-1 and lunatic fringe indicative of an implication of the Notch signaling pathway. The cranio-caudal polarity of each segment is already established in the cranial part of the segmental plate and accompanied by the expression of genes like Delta1, Mesp1, Mesp2, Uncx-1, and EphA4 which are restricted to one half of the prospective somite. Dorsoventral compartmentalization of somites leads to the development of the dermomyotome and the sclerotome, the latter forming as a consequence of an epithelio-to-mesenchymal transition of the ventral part of the somite. The sclerotome cells express Pax-1 and Pax-9, which are induced by notochordal signals mediated by sonic hedgehog (Shh) and noggin. The craniocaudal somite compartmentalization that becomes visible in the sclerotomes is the prerequisite for the segmental pattern of the peripheral nervous system and the formation of the vertebrae and ribs, whose boundaries are shifted half a segment compared to the sclerotome boundaries. Sclerotome development is characterized by the formation of three subcompartments giving rise to different parts of the axial skeleton and ribs. The lateral sclerotome gives rise to the laminae and pedicles of the neural arches and to the ribs. Its development depends on signals from the notochord and the myotome. The ventral sclerotome giving rise to the vertebral bodies and intervertebral discs is made up of Pax-1 expressing cells that have invaded the perinotochordal space. The dorsal sclerotome is formed by cells that migrate from the dorso-medial angle of the sclerotome into the space between the roof plate of the neural tube and the dermis. These cells express the genes Msx1 and Msx2, which are induced by BMP-4 secreted from the roof plate, and they later form the dorsal part of the neural arch and the spinous process. The formation of the ventral and dorsal sclerotome requires directed migration of sclerotome cells. The regionalization of the paraxial mesoderm occurs by a combination of functionally Hox genes, the Hox code, and determines the segment identity. The development of the vertebral column is a consequence of a segment-specific balance between proliferation, apoptosis and differentiation of cells. Accepted: 25 May 2000  相似文献   

8.
 The segmental character of the vertebrate body wall is reflected by metamerically arranged tissues that are patterned during embryonic life as a consequence of somite formation, compartmentalization and differentiation. The somites bud off the paraxial mesoderm in a cranio-caudal sequence and are compartmentalized by local signals from adjacent structures. These signals may be mediated by diffusible substances such as Sonic hedgehog (Shh), Wnts and Bone morphogenetic protein (BMPs) or by cell–cell interactions via membrane-bound receptors and ligands such as Delta and Notch. Compartmentalization of the somites and their derivatives is reflected by the differential expression of developmental regulatory genes such as Pax-1, 3, 7 and 9, MyoD, paraxis, twist and others. Secondary segmentation is imposed upon other tissues, such as blood vessels and nerves, by the rearrangement and regionalization of the somitic derivatives, especially the sclerotome. Early cranio-caudal identity is determined by the expression of different Hox genes. Finally, fusion of segmental anlagen occurs to form segment-overbridging skeletal elements and muscles. The expression of homologous genes indicates that the process of segmentation in vertebrates and invertebrates is homologous, derived by descent from a common ancestor. Accepted: 7 August 1997  相似文献   

9.
After lentectomy, larval Xenopus laevis can regenerate a new lens by transdifferentiation of the outer cornea and pericorneal epidermis (lentogenic area). This process is promoted by retinal factor(s) accumulated into the vitreous chamber. To understand the molecular basis of the lens-regenerating competence (i.e. the capacity to respond to the retinal factor forming a new lens) in the outer cornea and epidermis, we analysed the expression of otx2, pax6, sox3, pitx3, prox1, betaB1-cry (genes all involved in lens development) by Real-time RT-PCR in the cornea and epidermis fragments dissected from donor larvae. The same fragments were also implanted into the vitreous chamber of host larvae to ascertain their lens-regenerating competence using specific anti-lens antibodies. The results demonstrate that there is a tight correlation between lens-regenerating competence and pax6 expression. In fact, (1) pax6 is the only one of the aforesaid genes to be expressed in the lentogenic area; (2) pax6 expression is absent in head epidermis outside the lentogenic area and in flank epidermis, both incapable of transdifferentiating into lens after implantation into the vitreous chamber; (3) in larvae that have undergone eye transplantation under the head or flank epidermis, pax6 re-expression was observed only in the head epidermis covering the transplanted eye. This is consistent with the fact that only the head epidermis reacquires the lens-regenerating competence after eye transplantation, forming a lens following implantation into the vitreous chamber; and (4) in larvae that have undergone removal of the eye, the epidermis covering the orbit maintained pax6 expression. This is consistent with the fact that after the eye enucleation the lentogenic area maintains the lens-regenerating competence, giving rise to a lens after implantation into the vitreous chamber. Moreover, we observed that misexpression of pax6 is sufficient to promote the acquisition of the lens-regenerating competence in flank epidermis. In fact, flank epidermis fragments dissected from pax6 RNA injected embryos could form lenses when implanted into the vitreous chamber. The data indicate for the first time that pax6 is a pivotal factor of lens-regenerating competence in the outer cornea and epidermis of larval X. laevis.  相似文献   

10.
目的: 通过观察肾小管上皮细胞(TEC)胚胎分化/发育关键基因Wilm’s肿瘤基因(WT1)和pax2的序列启动,探讨TEC逆向分化的分子机制及病理生理学意义。方法:从胚胎肾、肾脏损伤模型及体外细胞培养3方面入手,通过RT-PCR、免疫组织化学等技术,研究TEC逆向分化时,胚胎期控制TEC分化/发育的关键基因pax2和WT1的表达、pax2和WT1之间的关系以及它们与TEC逆向分化间的关系。结果:(1)胚胎期:pax2和WT1 mRNA先后在胚胎11.5 d及14 d时开始出现表达并逐渐增强,出生14 d后仅有痕量表达。免疫组化显示,成年大鼠中仅肾小球足突细胞表达WT1,TEC中pax2和WT1表达阴性。(2)5/6慢性肾损伤模型:损伤第2周,部分TEC重新出现pax2和WT1的表达,第4周达高峰,两者表达趋势相吻合。pax2在第10周尚有一个新的表达高峰,随后逐渐下降至痕量。(3)TEC体外培养:经炎性因子IL-1α(10 μg/L)、AngII(10-9 mol/L)掺入培养后,TEC分别在0.5、24 h内重新表达pax2 和WT1,随后α-SMA出现高表达,细胞呈现间充质样细胞特征。以WT1中和抗体、AngII 受体阻断剂封闭WT1和pax2基因的作用后,α-SMA表达水平明显降低,细胞基本保持原有特征不变。结论:控制胚胎肾分化/发育的关键基因pax2和WT1在成年肾遭受损伤时,可获得重新表达,呈现序列启动现象,TEC同时出现胚胎间充质细胞特征;pax2和WT1的重新表达与细胞浸浴环境(高浓度细胞因子)密切相关,可能作为内在启动机制参与TEC的逆向分化。  相似文献   

11.
《Journal of anatomy》2017,230(2):290-296
Segmentation of the vertebrate body axis is established in the embryo by formation of somites, which give rise to the axial muscles (myotome) and vertebrae (sclerotome). To allow a muscle to attach to two successive vertebrae, the myotome and sclerotome must be repositioned by half a segment with respect to each other. Two main models have been put forward: ‘resegmentation’ proposes that each half‐sclerotome joins with the half‐sclerotome from the next adjacent somite to form a vertebra containing cells from two successive somites on each side of the midline. The second model postulates that a single vertebra is made from a single somite and that the sclerotome shifts with respect to the myotome. There is conflicting evidence for these models, and the possibility that the mechanism may vary along the vertebral column has not been considered. Here we use DiI and DiO to trace somite contributions to the vertebrae in different axial regions in the chick embryo. We demonstrate that vertebral bodies and neural arches form by resegmentation but that sclerotome cells shift in a region‐specific manner according to their dorsoventral position within a segment. We propose a ‘resegmentation‐shift’ model as the mechanism for amniote vertebral patterning.  相似文献   

12.
Early stages of chick somite development   总被引:17,自引:0,他引:17  
We report on the formation and early differentiation of the somites in the avian embryo. The somites are derived from the mesoderm which, in the body (excluding the head), is subdivided into four compartments: the axial, paraxial, intermediate and lateral plate mesoderm. Somites develop from the paraxial mesoderm and constitute the segmental pattern of the body. They are formed in pairs by epithelialization, first at the cranial end of the paraxial mesoderm, proceeding caudally, while new mesenchyme cells enter the paraxial mesoderm as a consequence of gastrulation. After their formation, which depends upon cell-cell and cell-matrix interactions, the somites impose segmental pattern upon peripheral nerves and vascular primordia. The newly formed somite consists of an epithelial ball of columnar cells enveloping mesenchymal cells within a central cavity, the somitocoel. Each somite is surrounded by extracellular matrix material connecting the somite with adjacent structures. The competence to form skeletal muscle is a unique property of the somites and becomes realized during compartmentalization, under control of signals emanating from surrounding tissues. Compartmentalization is accompanied by altered patterns of expression of Pax genes within the somite. These are believed to be involved in the specification of somite cell lineages. Somites are also regionally specified, giving rise to particular skeletal structures at different axial levels. This axial specification appears to be reflected in Hox gene expression. MyoD is first expressed in the dorsomedial quadrant of the still epithelial somite whose cells are not yet definitely committed. During early maturation, the ventral wall of the somite undergoes an epithelio-mesenchymal transition forming the sclerotome. The sclerotome later becomes subdivided into rostral and caudal halves which are separated laterally by von Ebner's fissure. The lateral part of the caudal half of the sclerotome mainly forms the ribs, neural arches and pedicles of vertebrae, whereas within the lateral part of the rostral half the spinal nerve develops. The medially migrating sclerotomal cells form the peri-notochordal sheath, and later give rise to the vertebral bodies and intervertebral discs. The somitocoel cells also contribute to the sclerotome. The dorsal half of the somite remains epithelial and is referred to as the dermomyotome because it gives rise to the dermis of the back and the skeletal musculature. The cells located within the lateral half of the dermomyotome are the precursors of the muscles of the hypaxial domain of the body, whereas those in the medial half are precursors of the epaxial (back) muscles. Single epithelial cells at the cranio-medial edge of the dermomyotome elongate in a caudal direction, beneath the dermomyotome, and become anchored at its caudal margin. These post-mitotic and muscle protein-expressing cells form the myotome. At limb levels, the precursors of hypaxial muscles undergo an epithelio-mesenchymal transition and migrate into the somatic mesoderm, where they replicate and later differentiate. These cells express the Pax-3 gene prior to, during and after this migration. All compartments of the somite contribute endothelial cells to the formation of vascular primordia. These cells, unlike all other cells of the somite, occasionally cross the midline of the developing embryo. We also suggest a method for staging somites according to their developmental age.  相似文献   

13.
Early events in the morphogenesis of the axial skeleton involve an epithelial-mesenchymal transformation of the somites. Cells of the ventromedial wall of the somite (the sclerotome) migrate to regions surrounding the notochord and neural tube and condense to form the cartilage model of the vertebrae. Urokinase activity in the axial region of the quail embryo trunk was found to increase during these stages. In situ hybridization localized urokinase mRNA expression in this region and suggests an important role for this protease in the process of cell migration and matrix remodeling during development of the axial skeleton.  相似文献   

14.
15.
The avian sclerotome forms by epitheliomesenchymal transition of the ventral half-somite. Sclerotome development is characterized by a craniocaudal polarization, resegmentation, and axial identity. Its formation is controlled by signals from the notochord, the neural tube, the lateral plate mesoderm, and the myotome. These signals and crosstalk between somite cells lead to the separation of various subdomains, such as the central and ventral sclerotomes that express Pax1 under the control of Sonic hedgehog and Noggin, and the dorsal and lateral sclerotome that do not express Pax1 and are controlled by Bmp-4. Further subdomains that give rise to specific derivatives are the syndetome, neurotome, meningotome, and arthrotome. The molecular control of subdomain formation and cell type specification is discussed.  相似文献   

16.
Dishevelled (Dvl) proteins are key transducers of Wnt signaling encoded by members of a multi‐gene family in vertebrates. We report here the divergent, tissue‐specific expression patterns for all three Dvl genes in Xenopus embryos, which contrast dramatically with their expression patterns in mice. Moreover, we find that the expression patterns of Dvl genes in the chick diverge significantly from those of Xenopus. In addition, in hemichordates, an outgroup to chordates, we find that the one Dvl gene is dynamically expressed in a tissue‐specific manner. Using knockdowns, we find that Dvl1 and Dvl2 are required for early neural crest specification and for somite segmentation in Xenopus. Most strikingly, we report a novel role for Dvl3 in the maintenance of gene expression in muscle and in the development of the Xenopus sclerotome. These data demonstrate that the expression patterns and developmental functions of specific Dvl genes have diverged significantly during chordate evolution. Developmental Dynamics 238:2044–2057, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
18.
19.
20.
Protease‐activated receptors (PARs) play critical roles in hemostasis in vertebrates including zebrafish. However, the zebrafish gene classification appears to be complex, and the expression patterns of par genes are not established. Based on analyses of genomic organization, phylogenetics, protein primary structure, and protein internalization, we report the identification of four zebrafish PARs: par1, par2a, par2b, and par3. This classification differs from one reported previously. We also show that these genes have distinct spatiotemporal expression profiles in embryos and larvae, with par1, par2a, and par2b expressed maternally and ubiquitously during gastrula stages and their expression patterns refined at later stages, and par3 expressed only in 3‐day‐old larvae. Notably, the expression patterns of zebrafish par1 and par2b resemble those of their mammalian counterparts, suggesting that receptor function is conserved among vertebrates. This conservation is supported by our findings that Par1 and Par2b are internalized following exposure to thrombin and trypsin, respectively. Developmental Dynamics, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号