首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterozygous mutations of COL2A1 create several clinical entities collectively termed type II collagenopathies. These disorders not only impair skeletal growth but also cause ocular and otolaryngological abnormalities. The classical phenotypes include the spondyloepiphyseal dysplasia (SED) spectrum with variable severity, Stickler dysplasia type I (STD-I), and Kniest dysplasia (KND). Most COL2A1 mutations occur in the triple helical region of alpha 1(II) chains: the SED spectrum is mostly attributed to missense mutations that substitute bulky amino acids for glycine residues, STD-I to haploinsufficiency of truncation mutations, and KND to exon skipping due to splice-site mutations. To further elucidate the genotype-phenotype relationship of type II collagenopathies, we examined COL2A1 mutations in 56 families that were suspected of having type II collagenopathies, and found 38 mutations in 41 families. Phenotypes for all 22 missense mutations and one in-frame deletion in the triple helical region fell along the SED spectrum. Glycine to serine substitutions resulted in alternating zones that produce severer and milder skeletal phenotypes. Glycine to nonserine residue substitutions exclusively created more severe phenotypes. The gradient of the SED spectrum did not necessarily correlate with the occurrence of extraskeletal manifestations. All nine truncation or splice-site mutations in the triple helical or N-propeptide region caused STD-I or KND, and extraskeletal changes were inevitable in both phenotypes. All six C-propeptide mutations produced a range of atypical skeletal phenotypes and created ocular, but not otolaryngological, changes.  相似文献   

2.
Skin hyperelasticity, tissue fragility with atrophic scars, and joint hypermobility are characteristic for the classical type of Ehlers‐Danlos syndrome (EDS). The disease is usually inherited as an autosomal dominant trait; however, recessive mode of inheritance has been documented in tenascin‐X‐deficient EDS patients. Mutations in the genes coding for collagen α1(V) chain (COL5A1), collagen α2(V) chain (COL5A2), tenascin‐X (TNX), and collagen α1(I) chain (COL1A1) have been characterized in patients with classical EDS, thus confirming the suspected genetic heterogeneity. Recently, we described a patient with severe classical EDS due to a Gly1489Glu substitution in the α1(V) triple‐helical domain who was, in addition, heterozygous for a disease‐modifying Gly530Ser substitution in the α1(V) NH2‐terminal domain [Giunta and Steinmann, 2000 : Am. J. Med. Genet. 90:72–79; Steinmann and Giunta, 2000 : Am. J. Med. Genet. 93:342]. Here, we report on a 4‐year‐old boy with mild classical EDS, born to healthy consanguineous Turkish parents; the mother presented a soft skin, while the father had a normal thick skin. Ultrastructural analysis of the dermis revealed in the patient the typical “cauliflower” collagen fibrils, while in both parents variable moderate aberrations were seen. Mutation revealed the presence of a homozygous Gly530Ser substitution in the α1(V) collagen chains in the patient, while both parents were heterozygous for the same substitution. An additional mutation in either the COL5A1 and COL5A2 genes was excluded. Furthermore, haplotype analysis with polymorphic microsatellite markers excluded linkage to the genes coding for α3(V) collagen (COL5A3), tenascin‐X (TNX), thrombospondin‐2 (THBS2), and decorin (DCN). These new findings support further our previous hypothesis that the heterozygous Gly530Ser substitution is disease modifying and now suggest that in the homozygous state it is disease causing. © 2002 Wiley‐Liss, Inc.  相似文献   

3.
Osteogenesis imperfecta (OI) is a heritable disease of bone characterized by low bone mass and bone fragility. Six different types of OI have been described to date, based on clinical phenotype and histological findings. The genetic defect in many patients with OI types I-IV is due to mutations in the genes encoding type I collagen, while patients with OI types V and VI show no evidence of mutations in the COL1A1/COL1A2 genes. Here we report thirty-three novel mutations in patients with types I-IV OI. Sixteen mutations were in COL1A1 and seventeen were in COL1A2. Most mutations resulted in substitutions for glycine: one of these, a doublet GG>CC transversion, created a unique Gly-->Pro missense mutation in the triple helical domain of COL1A2. Two rare triple helical Gly-->Glu substitutions in COL1A2 are also described. In addition, there were six single-base deletion mutations resulting in frameshifts, seven splice junction mutations, and a 9-bp triple helix insertion associated with a severe (OI II) phenotype. The variety of mutations described in the COL1A1/COL1A2 genes giving rise to an OI phenotype is in accordance with the clinical heterogeneity of the disease. Hum Mutat 17:434, 2001.  相似文献   

4.
5.
The Bethlem myopathy is a rare autosomal dominant proximal myopathy characterized by early childhood onset and joint contractures. Evidence for linkage and genetic heterogeneity has been established, with the majority of families linked to 21q22.3 and one large family linked to 2q37, implicating the three type VI collagen subunit genes, COL6A1 (chromosome 21), COL6A2 (chromosome 21) and COL6A3 (chromosome 2) as candidate genes. Mutations of the invariant glycine residues in the triple-helical domain-coding region of COL6A1 and COL6A2 have been reported previously in the chromosome 21-linked families. We report here the identification of a G-->A mutation in the N-terminal globular domain-coding region of COL6A3 in a large American pedigree (19 affected, 12 unaffected), leading to the substitution of glycine by glutamic acid in the N2 motif, which is homologous to the type A domains of the von Willebrand factor. This mutation segregated to all affected family members, to no unaffected family members, and was not identified in 338 unrelated Caucasian control chromosomes. Thus mutations in either the triple-helical domain or the globular domain of type VI collagen appear to cause Bethlem myopathy.   相似文献   

6.
Although virtually all mutations that result in osteogenesis imperfecta (OI) affect the genes that encode the chains of type I procollagen, the effects of mutations in the COL1A2 gene have received less attention than those in the COL1A1 gene. We have characterized mutations in 4 families that give rise to different OI phenotypes. In three families substitutions of glycine residues by cysteine in the triple helical domain (a single example at position 259 and 2 families in which substitution of glycine at 646 by cysteine) have been identified, and in the fourth a G for A transition at position + 4 in intron 33 led to use of an alternative splice site and inclusion of 6 amino acids (val-gly-arg-ile-leu-phe) between residues 585 and 586 of the normal triple helix. The relation between position of substitution of glycine by cysteine in the COL1A2 gene does not follow the pattern developed in the COL1A1 gene. To determine how COL1A2 mutations produce OI phenotypes, we have produced a full-length mouse cDNA into which we plan to place mutations and examine their effects in stably transfected osteogenic cells and in transgenic animals.  相似文献   

7.
We report on 12 patients with EDS IV in whom clinical diagnosis was confirmed by biochemical analysis of collagen type III, and further proven by mutation analysis of the COL3A1 gene. Four overlapping RT-PCR products covering the coding sequence for the triple-helical domain of type III collagen were analyzed by direct sequencing. So far, we have identified, 4 base changes at donor splice junctions, and 1 base change at an acceptor splice site, which all affect mRNA splicing; 1 genomic deletion, which removes exon 45; and 6 nucleotide changes, which cause substitutions of glycine residues within the triple helix. Eleven of the 12 identified mutations are newly recognized. Furthermore, we report a preliminary comparison of RNase cleavage, EMC and DHPLC assays in mutation detection in the COL3A1 gene.  相似文献   

8.
Schmid metaphyseal chondrodysplasia (SMCD) is a relatively common, heritable osteochondrodysplasia characterized by short-limbed short stature with normal facies, and generalized metaphyseal dysplasias of the long and short tubular bones. Several mutations of the type X collagen gene (COL10A1) have been reported in patients with SMCD, all in the C-terminal globular domain. To address whether mutations in other domains can cause SMCD, we examined the coding region of the COL10A1 gene in DNA samples from six Japanese families affected with SMCD, by direct sequencing. We detected novel mutations in three unrelated SMCD patients; one was a one-base deletion in the C-terminal globular domain and others were de novo missense mutations in the N-terminal globular domain. All three cases revealed a typical clinical phenotype for SMCD. Thus, we have demonstrated that mutations of COL10A1 in regions other than the C-terminal globular domain can cause SMCD, and the results suggest that the N-terminal globular domain also plays an important role in formation of type X collagen. Hum Mutat 9:131–135, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Stickler syndrome (hereditary arthro-ophthalmopathy) is the commonest inherited cause of retinal detachment and one of the commonest autosomal dominant connective tissue dysplasias. There is clinical and locus heterogeneity with about two thirds of families linked to the gene encoding type II procollagen (COL2A1). Families with Sticklers syndrome type 1 have a characteristic congenital vitreous anomaly and are linked without recombination to markers at the COL2A1 locus. In contrast families with the type 2 variety have a different vitreo- retinal phenotype and are not linked to the COL2A1 gene. Type XI collagen is a quantitatively minor fibrillar collagen related to type V collagen and associated with the more abundant type II collagen fibrils. A mutation in COL11A2, the gene for alpha 2 (XI) procollagen, has recently been found in a family described as having Stickler syndrome, although there was no ocular involvement. Here we show for the first time that a family with the full Type 2 Stickler syndrome including vitreous and retinal abnormalities is linked to the COL11A1 gene and characterise the mutation as a Glycine to Valine substitution at position 97 of the triple helical domain caused by a single base G-- >T mutation. These results are the first to provide confirmation that type XI collagen is an important structural component of human vitreous. They also support previous work suggesting that mutations in the genes encoding collagen XI can give rise to some manifestations of Stickler syndrome, but of these, only mutations in COL11A1 will give the full syndrome including the vitreo-retinal features.   相似文献   

10.
COL5A1 encodes for the α1 chain of type V collagen, an important regulator of fibril assembly in tendons, ligaments and other connective tissues. A polymorphism (rs12722) within the functional COL5A1 3′‐untranslated region (UTR) has been shown to associate with chronic Achilles tendinopathy and other exercise‐related phenotypes. The COL5A1 3′‐UTR contains several putative cis‐acting elements including a functional Hsa‐miR‐608 binding site. The aim of this study was to determine whether previously uncharacterized polymorphisms within a functional region of the COL5A1 3′‐UTR or the MIR608 gene are associated with chronic Achilles tendinopathy. The effect of these COL5A1 3′‐UTR polymorphisms on the 3′‐UTR predicted mRNA secondary structure was also investigated. One hundred and sixty Caucasian chronic Achilles tendinopathic and 342 control participants were genotyped for the COL5A1 3′‐UTR markers rs71746744, rs16399 and rs1134170, as well as marker rs4919510 within MIR608. All four genetic markers were independently associated with chronic Achilles tendinopathy. The COL5A1 polymorphisms appear to alter the predicted secondary structure of the 3′‐UTR. We propose that the secondary structure plays a role in the regulation of the COL5A1 mRNA stability and by implication type V collagen production.  相似文献   

11.
COL7A1 glycine substitution (GS) mutations result in dominant and recessive dystrophic epidermolysis bullosa (DDEB and RDEB). Here, we report a DDEB family in which retention of type VII collagen by epidermal keratinocytes was observed for a female proband. Mutational analysis detected a GS mutation, G2037E, in the proband and her affected father. To demonstrate direct association of G2037E and type VII collagen retention we introduced this mutated COL7A1 gene into cultured keratinocytes using retroviral methods. This mutation was dominant, so we transferred a 1:1 mixture of wild-type (unaffected) and G2037E-mutated COL7A1, together, in addition to the unaffected gene or the mutated gene alone. The increase in type VII collagen cytoplasmic staining in the G2037E/wild transfectant cell samples was compared with that for control/wild-type cells. Intracellular collagen VII staining in the G2037E (alone)-transfected cells was even stronger than for the G2037E/wild transfection sample. These results indicate that the G2037E COL7A1 mutation leads to increased epidermal retention of type VII collagen in vivo, and also suggests that homozygotes carrying this dominant GS mutation may have more severe phenotypes than heterozygotes. This study furthers our understanding of GS COL7A1 mutations in DEB.  相似文献   

12.
Ehlers-Danlos syndrome (EDS) is a heterogeneous group of connective tissue disorders. Recently mutations have been found in the genes for type V collagen in a small number of people with the most common forms of EDS, types I and II. Here we characterise a COL5A2 mutation in an EDS II family. Cultured dermal fibroblasts obtained from an affected subject synthesised abnormal type V collagen. Haplotype analysis excluded COL5A1 but was concordant with COL5A2 as the disease locus. The entire open reading frame of the COL5A2 cDNA was directly sequenced and a single base mutation detected. It substituted a glycine residue within the triple helical domain (G934R) of alpha2(V) collagen, typical of the dominant negative changes in other collagens, which cause various other inherited connective tissue disorders. All three affected family members possessed the single base change, which was absent in 50 normal chromosomes.  相似文献   

13.

Background

The majority of COL2A1 missense mutations are substitutions of obligatory glycine residues in the triple helical domain. Only a few non‐glycine missense mutations have been reported and among these, the arginine to cysteine substitutions predominate.

Objective

To investigate in more detail the phenotype resulting from arginine to cysteine mutations in the COL2A1 gene.

Methods

The clinical and radiographic phenotype of all patients in whom an arginine to cysteine mutation in the COL2A1 gene was identified in our laboratory, was studied and correlated with the abnormal genotype. The COL2A1 genotyping involved DHPLC analysis with subsequent sequencing of the abnormal fragments.

Results

Six different mutations (R75C, R365C, R519C, R704C, R789C, R1076C) were found in 11 unrelated probands. Each mutation resulted in a rather constant and site‐specific phenotype, but a perinatally lethal disorder was never observed. Spondyloarthropathy with normal stature and no ocular involvement were features of patients with the R75C, R519C, or R1076C mutation. Short third and/or fourth toes was a distinguishing feature of the R75C mutation and brachydactyly with enlarged finger joints a key feature of the R1076C substitution. Stickler dysplasia with brachydactyly was observed in patients with the R704C mutation. The R365C and R789C mutations resulted in classic Stickler dysplasia and spondyloepiphyseal dysplasia congenita (SEDC), respectively.

Conclusions

Arginine to cysteine mutations are rather infrequent COL2A1 mutations which cause a spectrum of phenotypes including classic SEDC and Stickler dysplasia, but also some unusual entities that have not yet been recognised and described as type II collagenopathies.  相似文献   

14.
Schmid metaphyseal chondrodysplasia (SMCD) is an autosomal dominant disorder affecting the growth plate cartilage of long bones caused by heterozygous mutations in the gene for collagen X (COL10A1), a short-chain collagen expressed by hypertrophic chondrocytes of growth plate cartilage. In this paper we analyzed six unrelated patients clinically determined as affected by SMCD, and characterized four missense mutations, c.52G>A (p.G18R), c.1744T>G (p.Y582D), c.1792T>G (p.Y598D) and c.1958A>C (p.Q653P). These mutations were clustered in the two regions of the collagen X protein shown to contain all previous SMCD mutations; the signal sequence cleavage site (p.G18R), or the C-terminal NC1 trimerization domain (p.Y582D, p.Y598D and p.Q653P). To determine the functional effect of the mutations we produced engineered p.Y582D, p.Y598D and p.Q653P cDNA and expressed these in vitro. Our data showed that while the wild-type collagen X assembled in vitro into trimers that were stable to SDS-PAGE analysis, p.Y582D (the most N-terminal of the SMCD NC1 mutations described), p.Q653P, and the previously analyzed p.Y598D impair collagen X trimerization. However, in two patients no mutations were detected despite complete sequence analysis of the COL10A1 coding region, the exon-intron splice consensus sequences and the 500bp gene promoter region. Heterozygosity for known polymorphisms ruled out major COL10A1 gene deletions and Southern analysis excluded major rearrangements. The data suggest that in these two patients, SMCD results from mutations at another gene locus. No mutations were detected in RMRP, the gene for cartilage-hair hypoplasia that has phenotypic overlap with SMCD.  相似文献   

15.
Pathogenic mutations in genes COL4A3/COL4A4 are responsible for autosomal Alport syndrome (AS) and thin basement membrane nephropathy (TBMN). We used Sanger sequencing to analyze all exons and splice site regions of COL4A3/COL4A4, in 40 unrelated Portuguese probands with clinical suspicion of AS/TBMN. To assess genotype–phenotype correlations, we compared clinically relevant phenotypes/outcomes between homozygous/compound heterozygous and apparently heterozygous patients. Seventeen novel and four reportedly pathogenic COL4A3/COL4A4 mutations were identified in 62.5% (25/40) of the probands. Regardless of the mutated gene, all patients with ARAS manifested chronic renal failure (CRF) and hearing loss, whereas a minority of the apparently heterozygous patients had CRF or extrarenal symptoms. CRF was diagnosed at a significantly younger age in patients with ARAS. In our families, the occurrence of COL4A3/COL4A4 mutations was higher, while the prevalence of XLAS was lower than expected. Overall, a pathogenic COL4A3/COL4A4/COL4A5 mutation was identified in >50% of patients with fewer than three of the standard diagnostic criteria of AS. With such a population background, simultaneous next‐generation sequencing of all three genes may be recommended as the most expedite approach to diagnose collagen IV‐related glomerular basement membrane nephropathies.  相似文献   

16.
17.
We report a unique glycine substitution in type I collagen and highlight the clinical and biochemical consequences. The proband is a 9 year old Turkish boy with severely deforming osteogenesis imperfecta (OI). Biochemical analysis of (pro) collagen type I from a skin fibroblast culture showed both normal and overmodified α chains. Molecular analysis showed a G>T transversion in the COL1A2 gene, resulting in the substitution of glycine by tryptophan at position 277 of the α2(I) collagen chain. Glycine substitutions in type I collagen are the most frequent cause of the severe and lethal forms of OI. The phenotypic severity varies according to the nature and localisation of the mutation. Substitutions of glycine by tryptophan, which is the most voluminous amino acid, have not yet been identified in type I collagen or any other fibrillar collagen. The severe, though non-lethal OI phenotype associated with this mutation may appear surprising in view of the huge size of the tryptophan residue. The fact that the mutation resides within a so called "non-lethal" region of the α2(I) collagen chain supports a regional model in phenotypic severity for α2(I) collagen mutations, in which the phenotype is determined primarily by the nature of the collagen domain rather than the type of glycine substitution involved.


Keywords: osteogenesis imperfecta; COL1A2; tryptophan; collagen  相似文献   

18.
In six index cases/families referred for Marfan syndrome (MFS) molecular diagnosis, we identified six novel mutations in the FBN1 gene: c.1753G>C (p.Gly585Arg), c.2456G>A (p.Gly819Glu), c.4981G>A (p.Gly1661Arg), c.5339G>A (p.Gly1780Glu), c.6418G>A (p.Gly2140Arg) and c.6419G>A (p.Gly2140Glu). These variants, predicted to result in Glycine substitutions are located at the third position of a 4 amino acids loop‐region of calcium‐binding Epidermal Growth Factor‐like (cb‐EGF) fibrillin‐1 domains 5, 9, 24, 25 and 32. Familial segregation studies showing cosegregation with MFS manifestations or de novo inheritance in addition to in silico analyses (conservation, 3D modeling) suggest evidence for a crucial role of the respective Glycine positions. Extending these analyses to all Glycine residue at position 3 of this 4 residues loop in fibrillin‐1 cb‐EGF with the UMD predictor tool and alignment of 2038 available related sequences strongly support a steric strain that only allows Glycine or even Alanine residues for domain structure maintenance and for the fibrillin functions. Our data compared with those of the literature strongly suggest the existence of a cb‐EGF domain subtype with implications for related diseases. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
We have identified a novel missense transition (362G→A) in exon 3 of the COL4A5 gene in a male patient with late-onset Alport syndrome. We used non-isotopic single strand conformation polymorphism, heteroduplex analysis, and automated DNA sequencing. The mutation changes a conserved glycine at codon 54 for an aspartic acid (Gly54Asp), which abolishes a BstNI site. Using restriction analysis, we identified the heterozygous carrier status in the two daughters of the proband. Our findings are in keeping with the hypothesis that slower progressive forms of Alport syndrome are more often associated with missense mutations rather than large deletions or frameshifts. This is the first mutation described in the N-terminus triple helical 7S domain of the COL4A5 gene in an Alport syndrome patient.  相似文献   

20.
The Schmid type of metaphyseal chondrodyplasia (MCDS) is characterized by short stature, widened growth plates, and bowing of the long bones. It results from autosomal dominant mutations of COL10A1, the gene which encodes alpha1(X) chains of type X collagen. We report the clinical and radiographic findings in 10 patients with MCDS and COL10A1 mutations. Six patients had lower limb deformities, which necessitated orthopedic surgeries in all of them. One patient demonstrated no deformities and normal stature at age 11 years (height -1.2 SDS) while the others manifested severe short stature (<-3.5 SDS). Radiographs showed metaphyseal changes which were most pronounced at the hips and knees. Five of the identified 10 mutations in COL10A1 were novel. Six mutations resulted in truncation of the NC1 domain while four mutations were single amino-acid substitutions. Our findings suggest that COL10A1 mutations result in a uniform pattern of growth plate abnormalities. However, the clinical variability in severity among affected individuals is greater than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号