首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Candida albicans remains the fungus most frequently associated with nosocomial bloodstream infection. In disseminated candidiasis, the role of Foxp3+ regulatory T (Treg) cells remains largely unexplored. Our aims were to characterize Foxp3+ Treg‐cell activation in a murine intravenous challenge model of disseminated C. albicans infection, and determine the contribution to disease. Flow cytometric analyses demonstrated that C. albicans infection drove in vivo expansion of a splenic CD4+Foxp3+ population that correlated positively with fungal burden. Depletion from Foxp3hCD2 reporter mice in vivo confirmed that Foxp3+ cells exacerbated fungal burden and inflammatory renal disease. The CD4+Foxp3+ population expanded further after in vitro stimulation with C. albicans antigens (Ags), and included at least three cell types. These arose from proliferation of the natural Treg‐cell subset, together with conversion of Foxp3? cells to the induced Treg‐cell form, and to a cell type sharing effector Th17‐cell characteristics, expressing ROR‐γt, and secreting IL‐17A. The expanded Foxp3+ T cells inhibited Th1 and Th2 responses, but enhanced Th17‐cell responses to C. albicans Ags in vitro, and in vivo depletion confirmed their ability to enhance the Th17‐cell response. These data lead to a model for disseminated candidiasis whereby expansion of Foxp3+ T cells promotes Th17‐cell responses that drive pathology.  相似文献   

2.
C5a is a proinflammatory mediator that has recently been shown to regulate adaptive immune responses. Here we demonstrate that C5a receptor (C5aR) signaling in DC affects the development of Treg and Th17 cells. Genetic ablation or pharmacological targeting of the C5aR in spleen‐derived DC results in increased production of TGF‐β leading to de novo differentiation of Foxp3+ Treg within 12 h after co‐incubation with CD4+ T cells from DO11.10/RAG2?/? mice. Stimulation of C5aR?/? DC with OVA and TLR2 ligand Pam3CSK4 increased TGF‐β production and induced high levels of IL‐6 and IL‐23 but only minor amounts of IL‐12 leading to differentiation of Th cells producing IL‐17A and IL‐21. Th17 differentiation was also found in vivo after adoptive transfer of CD4+ Th cell into C5aR?/? mice immunized with OVA and Pam3CSK4. The altered cytokine production of C5aR?/? DC was associated with low steady state MHC class II expression and an impaired ability to upregulate CD86 and CD40 in response to TLR2. Our data suggest critical roles for C5aR in Treg and Th17‐cell differentiation through regulation of DC function.  相似文献   

3.
4.
Here, we show that Treg limit intestinal pathology during nematode infection and that they control the onset and magnitude of the anti‐parasitic Th Th2 response. Using mice expressing the diptheria toxin receptor under the control of the foxp3 locus, we removed Foxp3+ Treg during the early phase of infection with Heligmosomoides polygyrus bakeri. Depletion of Treg in infected animals did not affect adult worm burden, but led to increased pathology at the site of infection. Infected, depleted mice displayed higher frequencies of activated CD4+ T cells and increased levels of the Th2 cytokines IL‐4 and IL‐13. The stronger parasite‐specific Th2 response was accompanied by higher levels of IL‐10. Only a moderate change in Th1 (IFN‐γ) reactivity was detected in worm‐infected, Treg‐depleted mice. Furthermore, we detected an accelerated onset of parasite‐specific Th2 and IL‐10 responses in the transient absence of Foxp3+ Treg. However, adult worm burdens were not affected by the increased Th2‐reactivity in Treg‐depleted mice. Hence, our data show that Treg restrict the onset and strength of Th2 responses during intestinal worm infection, while increasing primary Th2 responses does not necessarily lead to killing of larvae or accelerated expulsion of adult worms.  相似文献   

5.
Foxp3+ regulatory T (Treg) cells are key immune regulators during helminth infections, and identifying the mechanisms governing their induction is of principal importance for the design of treatments for helminth infections, allergies and autoimmunity. Little is yet known regarding the co‐stimulatory environment that favours the development of Foxp3+ Treg‐cell responses during helminth infections. As recent evidence implicates the co‐stimulatory receptor ICOS in defining Foxp3+ Treg‐cell functions, we investigated the role of ICOS in helminth‐induced Foxp3+ Treg‐cell responses. Infection of ICOS?/? mice with Heligmosomoides polygyrus or Schistosoma mansoni led to a reduced expansion and maintenance of Foxp3+ Treg cells. Moreover, during H. polygyrus infection, ICOS deficiency resulted in increased Foxp3+ Treg‐cell apoptosis, a Foxp3+ Treg‐cell specific impairment in IL‐10 production, and a failure to mount putatively adaptive Helios?Foxp3+ Treg‐cell responses within the intestinal lamina propria. Impaired lamina propria Foxp3+ Treg‐cell responses were associated with increased production of IL‐4 and IL‐13 by CD4+ T cells, demonstrating that ICOS dominantly downregulates Type 2 responses at the infection site, sharply contrasting with its Type 2‐promoting effects within lymphoid tissue. Thus, ICOS regulates Type 2 immunity in a tissue‐specific manner, and plays a key role in driving Foxp3+ Treg‐cell expansion and function during helminth infections.  相似文献   

6.
Immune disorders are linked to the development of type 2 diabetes (T2D) and its complications. The relationship of CD4+CD25hi T regulatory cells (Treg) and pro-inflammatory Th17 and Th1 subsets in T2D patients with metabolic disorders and complications need to be determined. The ratios of CD4+CD25hi Treg/Th17 cells and CD4+CD25hi Treg/Th1 cells, but not Th17/Th1 cells, were significantly decreased in T2D patients. The thymic output CD4+Foxp3+Helios+ Tregs were normal but peripheral induced CD4+Foxp3+Helios Tregs were decreased in T2D patients. The Bcl-2/Bax ratio decreased in CD4+CD25hi Tregs in T2D patients, supporting the increased sensitivity to cell death of these cells in T2D. CD4+CD25hiCD127 Tregs in T2D patients with microvascular complications were significantly less than T2D patients with macrovascular complications. Importantly, CD4+CD25hiCD127 Tregs were positively correlated with plasma IL-6, whereas IL-17+CD4+cells were negatively related to high-density lipoprotein (HDL). Our data offered evidence for the skewed balance of anti- and pro-inflammatory T cell subsets in T2D patients and identified that HDL closely modulate T cell polarization. These results opened an alternative explanation for the substantial activation of immune cells as well as the development of T2D and complications, which may have significant impacts on the prevention and treatment of T2D patients.  相似文献   

7.
8.
Pneumoconiosis is caused by the accumulation of airborne dust in the lung, which stimulates a progressive inflammatory response that ultimately results in lung fibrosis and respiratory failure. It is possible that regulatory cells in the immune system could function to suppress inflammation and possibly slow or reverse disease progression. However, results in this study suggest that in pneumoconiosis patients, the regulatory T cells (Tregs) and B cells are functionally impaired. First, we found that pneumoconiosis patients presented an upregulation of CD4+CD25+ T cells compared to controls, whereas the CD4+CD25+ and CD4+CD25hi T cells were enriched with Th1‐ and Th17‐like cells but not Foxp3‐expressing Treg cells and evidenced by significantly higher T‐bet, interferon (IFN)‐γ, and interleukin (IL)‐17 expression but lower Foxp3 and transforming growth factor (TGF)‐β expression. Regarding the CD4+CD25hi T‐cell subset, the frequency of this cell type in pneumoconiosis patients was significantly reduced compared to controls, together with a reduction in Foxp3 and TGF‐β and an enrichment in T‐bet, RORγt, IFN‐γ, and IL‐17. This skewing toward Th1 and Th17 types of inflammation could be driven by monocytes and B cells, since after depleting CD14+ monocytes and CD19+ B cells, the levels of IFN‐γ and IL‐17 were significantly decreased. Whole peripheral blood mononuclear cells and isolated monocytes and B cells in pneumoconiosis patients also presented reduced capacity of TGF‐β secretion. Furthermore, monocytes and B cells from pneumoconiosis patients presented reduced capacity in inducing Foxp3 upregulation, a function that could be rescued by exogenous TGF‐β. Together, these data indicated a potential pathway for the progression of pneumoconiosis through a loss of Foxp3+ Treg cells associated with impaired TGF‐β secretion.  相似文献   

9.
Breast cancer is a leading cause of neoplasia‐associated death in women worldwide. Regulatory T (Treg) and Th17 cells are enriched within some tumors, but the role these cells play in invasive ductal carcinoma (IDC) of the breast is unknown. We show that CD25+CD4+ T cells from PBMCs and tumor express high levels of Foxp3, GITR, CTLA‐4, and CD103, indicating that tumor‐infiltrating Treg cells are functional and possibly recruited by CCL22. Additionally, we observed upregulation of Th17‐related molecules (IL‐17A, RORC, and CCR6) and IL‐17A produced by tumor‐infiltrating CD4+ and CD8+ T lymphocytes. The angiogenic factors CXCL8, MMP‐2, MMP‐9, and vascular endothelial growth factor detected within the tumor are possibly induced by IL‐17 and indicative of poor disease prognosis. Treg and Th17 cells were synchronically increased in IDC patients, with positive correlation between Foxp3, IL‐17A, and RORC expression, and associated with tumor aggressiveness. Therefore, Treg and Th17 cells can affect disease progression by Treg‐cell‐mediated suppression of the effector T‐cell response, as indicated by a decrease in the proliferation of T cells isolated from PBMCs of IDC patients and induction of angiogenic factors by IL‐17‐producing Th17. The understanding of regulation of the Treg/Th17 axis may result in novel perspectives for the control of invasive tumors.  相似文献   

10.
IL‐6 plays a pivotal role in favoring T‐cell commitment toward a Th17 cell rather than Treg‐cell phenotype, as established through in vitro model systems. We predicted that in the absence of IL‐6, mice infected with the gastrointestinal helminth Heligmosomoides polygyrus would show reduced Th17‐cell responses, but also enhanced Treg‐cell activity and consequently greater susceptibility. Surprisingly, worm expulsion was markedly potentiated in IL‐6‐deficient mice, with significantly stronger adaptive Th2 responses in both IL‐6?/? mice and BALB/c recipients of neutralizing anti‐IL‐6 monoclonal Ab. Although IL‐6‐deficient mice showed lower steady‐state Th17‐cell levels, IL‐6‐independent Th17‐cell responses occurred during in vivo infection. We excluded the Th17 response as a factor in protection, as Ab neutralization did not modify immunity to H. polygyrus infection in BALB/c mice. Resistance did correlate with significant changes to the associated Treg‐cell phenotype however, as IL‐6‐deficient mice displayed reduced expression of Foxp3, Helios, and GATA‐3, and enhanced production of cytokines within the Treg‐cell population. Administration of an anti‐IL‐2:IL‐2 complex boosted Treg‐cell proportions in vivo, reduced adaptive Th2 responses to WT levels, and fully restored susceptibility to H. polygyrus in IL‐6‐deficient mice. Thus, in vivo, IL‐6 limits the Th2 response, modifies the Treg‐cell phenotype, and promotes host susceptibility following helminth infection.  相似文献   

11.
Although Treg‐cell‐mediated suppression during infection or autoimmunity has been described, functions of Treg cells during highly pathogenic avian influenza virus infection remain poorly characterized. Here we found that in Foxp3‐GFP transgenic mice, CD8+ Foxp3+ Treg cells, but not CD4+ Foxp3+ Treg cells, were remarkably induced during H5N1 infection. In addition to expressing CD25, the CD8+ Foxp3+ Treg cells showed a high level of GITR and produced IL‐10. In an adoptive transfer model, CD8+ Treg cells suppressed CD8+ T‐cell responses and promoted H5N1 virus infection, resulting in enhanced mortality and increased virus load in the lung. Furthermore, in vitro neutralization of IL‐10 and studies with IL‐10R‐deficient mice in vitro and in vivo demonstrated an important role for IL‐10 production in the capacity of CD8+ Treg cells to inhibit CD8+ T‐cell responses. Our findings identify a previously unrecognized role of CD8+ Treg cells in the negative regulation of CD8+ T‐cell responses and suggest that modulation of CD8+ Treg cells may be a therapeutic strategy to control H5N1 viral infection.  相似文献   

12.
The Src family kinase Lck is thought to facilitate Th2 differentiation; however, its role in Th1 cells has not been well explored. Using mice that lack Lck in mature T cells, we find that lck−/− Th1 skewed cells have normal expression of T‐bet and produce IFN‐γ at WT levels. However, there is a 3‐fold increase in IL‐10 producing cells in the mutant cultures. These cells do not have elevated levels of IL‐4, GATA3, IL‐17 or Foxp3, indicating that they are not Th2, Th17, or Foxp3+ T regulatory cells (Treg). Nor do these cells behave in a similar manner as the type 1 Treg. Most of the IL‐10 in the lck−/− Th1 cultures is derived from the memory/activated subset, as the cytokine profile from Th1 cultures established from purified CD62L+ (naïve) cells are similar to WT cells. Furthermore, this IL‐10 expression appears to be dependent on IL‐12 and correlates with elevated c‐Maf. These data highlight a previously unappreciated role for Lck in regulating IL‐10 in Th1 cells.  相似文献   

13.
14.
B cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B‐cell population is defined as IL‐10‐producing CD19+CD1dhi cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19+CD1dhi B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19+CD1dhi B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL‐10 reporter, Il10?/? and Tlr7?/‐ mice, we formally demonstrate that TLR7 ligation of CD19+CD1dhi B cells increases their capacity to produce IL‐10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7‐elicited CD19+CD1dhi B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3+ T regulatory cells in allergen‐sensitized mice, we show that that TLR7‐elicited CD19+CD1dhi B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL‐10‐producing CD19+CD1dhi B cells, which can suppress allergic lung inflammation via T regulatory cells.  相似文献   

15.
Immune responses to protein antigens involve CD4+ and CD8+ T cells, which follow distinct programs of differentiation. Naïve CD8 T cells rapidly develop cytotoxic T‐cell (CTL) activity after T‐cell receptor stimulation, and we have previously shown that this is accompanied by suppressive activity in the presence of specific cytokines, i.e. IL‐12 and IL‐4. Cytokine‐induced CD8+ regulatory T (Treg) cells are one of several Treg‐cell phenotypes and are Foxp3? IL‐10+ with contact‐dependent suppressive capacity. Here, we show they also express high level CD39, an ecto‐nucleotidase that degrades extracellular ATP, and this contributes to their suppressive activity. CD39 expression was found to be upregulated on CD8+ T cells during peripheral tolerance induction in vivo, accompanied by release of IL‐12 and IL‐10. CD39 was also upregulated during respiratory tolerance induction to inhaled allergen and on tumor‐infiltrating CD8+ T cells. Production of IL‐10 and expression of CD39 by CD8+ T cells was independently regulated, being respectively blocked by extracellular ATP and enhanced by an A2A adenosine receptor agonist. Our results suggest that any CTL can develop suppressive activity when exposed to specific cytokines in the absence of alarmins. Thus negative feedback controls CTL expansion under regulation from both nucleotide and cytokine environment within tissues.  相似文献   

16.
CD4+ CD25+ regulatory T (Treg) cells expressing Foxp3+ play a critical role in maintaining immune homoeostasis and controlling excessive immune responses. However, controversy about the immunoregulatory role of Treg cells exists in malaria studies. Given the role of maintenance of Foxp3 expression in Treg cells’ activities, we investigated whether anti‐CD25 mAb (7D4 clone) treatment affects Foxp3 expression in CD4+ T cells in DBA/2 mice infected with Plasmodium chabaudi chabaudi AS (P. c. chabaudi AS). We found that DBA/2 mice succumbed to P. c. chabaudi AS infection, which was accompanied by increased expression of Foxp3 in CD4+ T cells at the peak parasitemia. In contrast, Foxp3 expression was impaired in CD25‐depleted mice with 7D4 mAb treatment, leading to delayed parasitemia and extended survival of infected mice. Production of IFN‐γ, TNF‐α and IL‐6, as well as NO was significantly enhanced in CD25‐depleted mice. The majority of CD4+ CTLA‐4+ cells expressed high levels of Foxp3 (Foxp3hi cells) in control mice with P. c. chabaudi AS infection. However, the number of CD4+ Foxp3hiCTLA‐4+ cells was reduced in CD25‐depleted mice. Together, these data suggest that CD4+ Foxp3hiCTLA‐4+ cells may be involved in regulating the intensity of pro‐inflammatory responses via CTLA‐4.  相似文献   

17.
Forkhead box P3 (Foxp3)+ regulatory T (Treg) cells maintain the immune tolerance and prevent inflammatory responses in the periphery. However, the presence of Treg cells in the CNS under steady state has not been studied. Here, for the first time, we show a substantial TCRαβ+CD4+Foxp3+ T‐cell population (cerebral Treg cells) in the rat cerebrum, constituting more than 15% of the cerebral CD4+ T‐cell compartment. Cerebral Treg cells showed an activated/memory phenotype and expressed many Treg‐cell signature genes at higher levels than peripheral Treg cells. Consistent with their activated/memory phenotype, cerebral Treg cells robustly restrained the LPS‐induced inflammatory responses of brain microglia/macrophages, suggesting a role in maintaining the cerebral homeostasis by inhibiting the neuroinflammation. In addition, brain astrocytes were the helper cells that sustained Foxp3 expression in Treg cells through IL‐2/STAT5 signaling, showing that the interaction between astrocytes and Treg cells contributes to the maintenance of Treg‐cell identity in the brain. Taken together, our work represents the first study to characterize the phenotypic and functional features of Treg cells in the rat cerebrum. Our data have provided a novel insight for the contribution of Treg cells to the immunosurveillance and immunomodulation in the cerebrum under steady state.  相似文献   

18.
Allergy is a Th2‐mediated disease that involves the formation of specific IgE antibodies against innocuous environmental substances. The prevalence of allergic diseases has dramatically increased over the past decades, affecting up to 30% of the population in industrialized countries. The understanding of mechanisms underlying allergic diseases as well as those operating in non‐allergic healthy responses and allergen‐specific immunotherapy has experienced exciting advances over the past 15 years. Studies in healthy non‐atopic individuals and several clinical trials of allergen‐specific immunotherapy have demonstrated that the induction of a tolerant state in peripheral T cells represent a key step in healthy immune responses to allergens. Both naturally occurring thymus‐derived CD4+CD25+FOXP3+ Treg and inducible type 1 Treg inhibit the development of allergy via several mechanisms, including suppression of other effector Th1, Th2, Th17 cells; suppression of eosinophils, mast cells and basophils; Ab isotype change from IgE to IgG4; suppression of inflammatory DC; and suppression of inflammatory cell migration to tissues. The identification of the molecules involved in these processes will contribute to the development of more efficient and safer treatment modalities.  相似文献   

19.
Reciprocal induction of the Th1 and Th17 immune responses is essential for optimal protection against Mycobacterium tuberculosis (Mtb); however, only a few Mtb antigens are known to fulfill this task. A functional role for resuscitation‐promoting factor (Rpf) E, a latency‐associated member of the Rpf family, in promoting naïve CD4+ T‐cell differentiation toward both Th1 and Th17 cell fates through interaction with dendritic cells (DCs) was identified in this study. RpfE induces DC maturation by increasing expression of surface molecules and the production of IL‐6, IL‐1β, IL‐23p19, IL‐12p70, and TNF‐α but not IL‐10. This induction is mediated through TLR4 binding and subsequent activation of ERK, p38 MAPKs, and NF‐κB signaling. RpfE‐treated DCs effectively caused naïve CD4+ T cells to secrete IFN‐γ, IL‐2, and IL‐17A, which resulted in reciprocal expansions of the Th1 and Th17 cell response along with activation of T‐bet and RORγt but not GATA‐3. Furthermore, lung and spleen cells from Mtb‐infected WT mice but not from TLR4?/? mice exhibited Th1 and Th17 polarization upon RpfE stimulation. Taken together, our data suggest that RpfE has the potential to be an effective Mtb vaccine because of its ability to activate DCs that simultaneously induce both Th1‐ and Th17‐polarized T‐cell expansion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号