首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The multidrug resistance‐associated protein1 (MRP1/ABCC1) is a member of the ABCC transporter subfamily that mediates the efflux of pharmaceuticals, xenobiotics and steroid hormones, typically as glutathione, glucuronide or sulfate conjugates. Since loss of one transporter can be compensated by increasing the expression of other transporters and conjugation enzymes, we sought to examine compensatory changes in phase I, II and III enzyme expression in extrahepatic tissues, including the kidney, lungs and small intestine of intact or castrated Mrp1?/? male mice. In the kidney, the expression of several P450s, sulfotransferase 1a1 (Sult), glucuronosyltransferases (Ugt) and Mrps2–4, were significantly changed owing to castration alone. The only time genotype mattered was between the castrated FVB and Mrp1 knockout mice. In contrast, expression of the Ugts, Sult 1a1 and Mrp3 in the lungs was significantly downregulated in the Mrp1 knockout mice, so based exclusively on genotype. In the small intestine, there were interactions between steroid hormone levels and genotype, as the expression differences were only found in mice lacking Mrp1, and were changed between intact and castrated animals. The mechanism behind this pattern of expression may be to due to Nrf2 regulation, as its expression mirrors that of the phase II and phase III enzymes. These results indicate that compensatory responses owing to the loss of Mrp1 vary dramatically, depending on the particular tissue. This information will aid in the understanding of how drug uptake, disposition and elimination can be influenced by both hormone status and the presence and magnitude of transporter expression. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Purpose Recent research has identified gene expression of several types of xenobiotic transporters in the skin. The aim of this study was to investigate whether multidrug resistance–associated protein 1 (MRP1) functions in the skin.Methods The distribution of [14C]grepafloxacin in vivo and the transport of 1-[2-amino-5-(2,7-dichloro-6-hydroxy-3-oxo-9-xanthenyl)phenoxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N,N-tetraacetic acid (fluo 3) were examined in the skin of Mrp1 knockout mice [FVB/Mrp1(–/–)] and normal mice [FVB/Mrp1(+/+)].Results The tissue-to-plasma concentration ratio of [14C]grepafloxacin was higher in the skin of FVB/Mrp1(–/–) mice than that of FVB/Mrp1(+/+) mice. In skin slices of hairless mouse incubated with fluo 3 pentaacetoxymethyl ester, the accumulation of fluo 3 was significantly increased in the presence of probenecid (2 mM) and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (5 M) in a time-dependent manner but did not change in the presence of tetraethylammonium (2 mM). In FVB/Mrp1(–/–) mouse skin, the accumulation of fluo 3 increased time-dependently, while no increase was observed in FVB/Mrp1(+/+) mouse skin.Conclusions These findings suggest that Mrp1 is involved in the efflux of [14C]grepafloxacin and fluo 3 in the skin, possibly acting as part of a barrier system against xenobiotic compounds.  相似文献   

3.
The intestinal absorption of the flavonoid quercetin in rats is limited by the secretion of glucuronidated metabolites back into the gut lumen. The objective of this study was to determine the role of the intestinal efflux transporters breast cancer resistance protein (Bcrp1)/Abcg2 and multidrug resistance-associated protein 2 (Mrp2)/Abcc2. To study the possible involvement of Mrp2, we compared intestinal uptake of quercetin-3-glucoside between control and Mrp2-deficient rats, using an in situ intestinal perfusion system. The contribution of Bcrp1 was determined using the specific inhibitor fumitremorgin C (FTC) in Mrp2-deficient rats. Furthermore, vectorial transport of quercetin was studied in Madin-Darby canine kidney (MDCK)II cells transfected with either human MRP2 or murine Bcrp1. In these MDCKII cells, we showed an efficient efflux-directed transport of quercetin by mouse Bcrp1, whereas in control and MRP2-transfected cells no vectorial transport of quercetin was observed. In Mrp2-deficient rats, intestinal uptake of quercetin from quercetin-3-glucoside, efflux of quercetin glucuronides to the gut lumen, and plasma concentration of quercetin were similar to that in control rats. When intestinal Bcrp1 was inhibited by FTC in Mrp2-deficient rats, total plasma concentrations of quercetin and its methylated metabolite isorhamnetin after 30 min of perfusion were more than twice that of controls (12.3 +/- 1.5 versus 5.6 +/- 1.3 muM; p < 0.01), whereas uptake of free quercetin from the intestinal lumen was not affected. Instead, inhibition of Bcrp1 lowered the efflux of quercetin glucuronides into the perfusion fluid by approximately 4-fold. In conclusion, Bcrp1 limits net intestinal absorption of quercetin by pumping quercetin glucuronides back into the lumen.  相似文献   

4.
The in vitro metabolic stability and transport mechanism of TM‐25659, a novel TAZ modulator, was investigated in human hepatocytes and human liver microsomes (HLMs) based on the preferred hepatobiliary elimination in rats. In addition, the in vitro transport mechanism and transporter‐mediated drug–drug interactions were evaluated using oocytes and MDCKII cells overexpressing clinically important drug transporters. After a 1 h incubation in HLMs, 92.9 ± 9.5% and 95.5 ± 11.6% of the initial TM‐25659 remained in the presence of NADPH and UDPGA, respectively. Uptake of TM‐25659 readily accumulated in human hepatocytes at 37 ºC (i.e. 6.7‐fold greater than that at 4 ºC), in which drug transporters such as OATP1B1 and OATP1B3 were involved. TM‐25659 had a significantly greater basal to apical transport rate (5.9‐fold) than apical to basal transport rate in the Caco‐2 cell monolayer, suggesting the involvement of an efflux transport system. Further studies using inhibitors of efflux transporters and overexpressing cells revealed that MRP2 was involved in the transport of TM‐25659. These results, taken together, suggested that TM‐25659 can be actively influxed into hepatocytes and undergo biliary excretion without substantial metabolism. Additionally, TM‐25659 inhibited the transport activities of OATP1B1 and OATP1B3 with IC50 values of 36.3 and 25.9 μm , respectively. TM‐25659 (100 μm ) increased the accumulation of the probe substrate by 160% and 213%, respectively, through the inhibition of efflux function of P‐gp and MRP2. In conclusion, OATP1B1, OATP1B3, P‐gp and MRP2 might be major transporters responsible for the pharmacokinetics and drug–drug interaction of TM‐25659, although their contribution to in vivo pharmacokinetics needs to be further investigated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.

Purpose

The expression levels of several efflux drug transporters in the liver and kidney were evaluated across species to address potential roles of the transporters in species dependent excretion of drugs and their metabolites.

Methods

Four efflux transporters, namely MDR1/P-gp, BCRP/Bcrp, MRP2/Mrp2 and MRP3/Mrp3 in liver and kidney in three preclinical species and humans were quantified using targeted quantitative proteomics by isotope dilution nanoLC-MS/MS.

Results

In liver, the level of P-gp was highest in monkey and lowest in rat. The concentration of BCRP/Bcrp was highest in dog followed by monkey. MRP2/Mrp2 level was highest in monkey and rat, whereas MRP3/Mrp3 levels were similar in human, monkey and dog. In the kidney, the concentrations of MDR1/P-gp in human and monkey were roughly 2 to 3-fold higher than in rat and dog. In rat, BCRP/Bcrp concentrations were substantially higher than in any of the other species. MRP2/Mrp2 concentrations were similar across species, whereas expression of MRP3/Mrp3 was highest in rat.

Conclusion

Overall, the results indicated that the pattern of hepatic and renal expression of the transporters was quite species dependent. This information should be helpful in the estimation of transport mediated drug and metabolites excretion in liver and kidney across species.
  相似文献   

6.

Background and purpose:

P-glycoprotein (Pgp) efflux assays are widely used to identify Pgp substrates. The kidney cell lines Madin-Darby canine kidney (MDCK)-II and LLC-PK1, transfected with human MDR1 (ABCB1) are used to provide recombinant models of drug transport. Endogenous transporters in these cells may contribute to the activities of recombinant transporters, so that drug transport in MDR1-transfected cells is often corrected for the transport obtained in parental (wildtype) cells. However, expression of endogenous transporters may vary between transfected and wildtype cells, so that this correction may cause erroneous data. Here, we have measured the expression of endogenous efflux transporters in transfected and wildtype MDCK-II or LLC cells and the consequences for Pgp-mediated drug transport.

Experimental approach:

Using quantitative real-time RT-PCR, we determined the expression of endogenous Mdr1 mRNA and other efflux transporters in wildtype and MDR1-transfected MDCK-II and LLC cells. Transcellular transport was measured with the test substrate vinblastine.

Key results:

In MDR1-transfected MDCK cells, expression of endogenous (canine) Mdr1 and Mrp2 (Abcc2) mRNA was markedly lower than in wildtype cells, whereas MDR1-transfected LLC cells exhibited comparable Mdr1 but strikingly higher Mrp2 mRNA levels than wildtype cells. As a consequence, transport of vinblastine by human Pgp in efflux experiments was markedly underestimated when transport in MDR1-transfected MDCK cells was corrected for transport obtained in wildtype cells. This problem did not occur in LLC cells.

Conclusions and implications:

Differences in the expression of endogenous efflux transporters between transfected and wildtype MDCK cells provide a potential bias for in vitro studies on Pgp-mediated drug transport.  相似文献   

7.
1. Intestinal xenobiotic transporters are a significant barrier to the absorption of many orally administered drugs. P-glycoprotein (PGP) is the best known, but several others, including members of the multidrug resistance-associated protein (MRP) family, are also expressed. Definitive information on their precise effect on intestinal drug permeability is scarce due to a lack of specific inhibitors and the difficulty of studying non-PGP activity in the presence of high PGP expression. 2. We have investigated the in vitro use of intestinal tissues from PGP knockout (mdr1a (-/-)) mice as a tool for dissecting the mechanisms of intestinal drug efflux. The permeability characteristics of digoxin (DIG), paclitaxel (TAX) and etoposide (ETOP) were measured in ileum from mdr1a (-/-) and wild-type (FVB) mice mounted in Ussing chambers. 3. DIG and TAX exhibited marked efflux across FVB tissues (B-A : A-B apparent permeability (P(app)) ratio 10 and 17 respectively) which was absent in mdr1a (-/-) tissues, confirming that PGP is the sole route of intestinal efflux for these compounds. The A-B P(app) of both compounds was 3 - 5 fold higher in mdr1a (-/-) than in FVB. 4. Polarized transport of ETOP in FVB tissues was reduced but not abolished in mdr1a (-/-) tissues. Residual ETOP efflux in mdr1a (-/-) tissues was abolished by the MRP inhibitor MK571, indicating involvement of both PGP and MRP. 5. MK571 abolished calcein efflux in mdr1a (-/-) tissues, while quinidine had no parallel effect in FVB tissues, suggesting involvement of MRP but not PGP. 6. Tissues from mdr1a (-/-) mice provide a novel approach for investigating the influence of PGP ablation on intestinal permeability and for resolving PGP and non-PGP mechanisms that modulate drug permeability.  相似文献   

8.
The large interspecies differences of hepatobiliary transport present a challenge for the allometric prediction of human biliary excretion for drug candidates primarily cleared via hepatobiliary secretion. In the present study, we determined the metabolic stabilities of common fluorescent substrates of hepatobiliary efflux transporters and developed a rapid efflux assay to determine the functional activities of MRP/Mrp, BCRP/Bcrp and P-gp in hepatocytes of four species. The specificities of transporter-mediated dye efflux were confirmed by selective transporter inhibitors. Among tested species, transporter-specific dye efflux kinetics was consistent between freshly isolated and cryopreserved hepatocytes. Hepatocyte elimination half-lives of MRP/Mrp substrates GS-MF and calcein were observed in the rank order of human>monkey>dog>rat. The fourfold higher MRP/Mrp substrate efflux rate of rat hepatocytes compared to human is likely due to the species-specific functional differences of MRP2/Mrp2 expressed on the canalicular membrane. We also observed efficient BCRP-mediated pheophorbide A (PhA) efflux by human and dog hepatocytes, while PhA extrusion in monkey and rat hepatocytes appeared limited. P-gp function measured by DiOC2(3) efflux was minimal in hepatocytes of all origins and no significant species differences were detected. Our results demonstrated marked differences in hepatocyte MRP/Mrp and BCRP/Bcrp activities across species, indicating that they may contribute to the species differences of in vivo hepatobiliary excretion. These results also suggest the potential utility of primary hepatocytes, either fresh or cryopreserved, as an in vitro model to predict interspecies differences in the biliary transport of MRP/Mrp and BCRP/Bcrp substrates.  相似文献   

9.
10.
11.
Purpose  The objectives were (i) to test in vivo functional activity of MRP2 on rabbit corneal epithelium and (ii) to evaluate modulation of P-gp and MRP2 mediated efflux of erythromycin when co-administered with corticosteroids. Methods  Cultured rabbit primary corneal epithelial cells (rPCECs) was employed as an in vitro model for rabbit cornea. Cellular accumulation and bi-directional transport studies were conducted across Madin-Darby Canine Kidney (MDCK) cells overexpressing MDR1 and MRP2 proteins to delineate transporter specific interaction of steroids. Ocular pharmacokinetic studies were conducted in rabbits following a single-dose infusion of erythromycin in the presence of specific inhibitors and steroids. Results  Bi-directional transport of erythromycin across MDCK-MDR1 and MDCK-MRP2 cells showed significant difference between BL-AP and AP-BL permeability, suggesting that erythromycin is a substrate for P-gp and MRP2. Cellular accumulation of erythromycin in rPCEC was inhibited by steroids in a dose dependent manner. MK571, a specific MRP inhibitor, modulated the aqueous humor concentration of erythromycin in vivo. Even, steroids inhibited P-gp and MRP2 mediated efflux with maximum increase in k a, AUC0 − ∞, C max and C last values of erythromycin, observed with 6α-methyl prednisolone. Conclusion  MRP2 is functionally active along with P-gp in effluxing drug molecules out of corneal epithelium. Steroids were able to significantly inhibit both P-gp and MRP2 mediated efflux of erythromycin.  相似文献   

12.
The present study examined the interaction of four 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (atorvastatin, lovastatin, and simvastatin in acid and lactone forms, and pravastatin in acid form only) with multidrug resistance gene 1 (MDR1, ABCB1) P-glycoprotein, multidrug resistance-associated protein 2 (MRP2, ABCC2), and organic anion-transporting polypeptide 1B1 (OATP1B1, SLCO21A6). P-glycoprotein substrate assays were performed using Madin-Darby canine kidney (MDCK) cells expressing MDR1, and the efflux ratios [the ratio of the ratio of basolateral-to-apical apparent permeability and apical-to-basolateral permeability between MDR1 and MDCK] were 1.87, 2.32/4.46, 2.17/3.17, and 0.93/2.00 for pravastatin, atorvastatin (lactone/acid), lovastatin (lactone/acid), and simvastatin (lactone/acid), respectively, indicating that these compounds are weak or moderate substrates of P-glycoprotein. In the inhibition assays (MDR1, MRP2, Mrp2, and OATP1B1), the IC50 values for efflux transporters (MDR1, MRP2, and Mrp2) were >100 microM for all statins in acid form except lovastatin acid (>33 microM), and the IC50 values were up to 10-fold lower for the corresponding lactone forms. In contrast, the IC50 values for the uptake transporter OATP1B1 were 3- to 7-fold lower for statins in the acid form compared with the corresponding lactone form. These data demonstrate that lactone and acid forms of statins exhibit differential substrate and inhibitor activities toward efflux and uptake transporters. The interconversion between the lactone and acid forms of most statins exists in the body and will potentially influence drug-transporter interactions, and may ultimately contribute to the differences in pharmacokinetic profiles observed between statins.  相似文献   

13.
Diclofenac is an important analgesic and anti-inflammatory drug, widely used for treatment of postoperative pain, rheumatoid arthritis, and chronic pain associated with cancer. Consequently, diclofenac is often used in combination regimens and undesirable drug-drug interactions may occur. Because many drug-drug interactions may occur at the level of drug transporting proteins, we studied interactions of diclofenac with apical ATP-binding cassette (ABC) multidrug efflux transporters. Using Madin-Darby canine kidney (MDCK)-II cells transfected with human P-glycoprotein (P-gp; MDR1/ABCB1), multidrug resistance protein 2 (MRP2/ABCC2), and breast cancer resistance protein (BCRP/ABCG2) and murine Bcrp1, we found that diclofenac was efficiently transported by murine Bcrp1 and moderately by human BCRP but not by P-gp or MRP2. Furthermore, in Sf9-BCRP membrane vesicles diclofenac inhibited transport of methotrexate in a concentration-dependent manner. We next used MDCK-II-MRP2 cells to study interactions of diclofenac with MRP2-mediated drug transport. Diclofenac stimulated paclitaxel, docetaxel, and saquinavir transport at only 50 microM. We further found that the uricosuric drug benzbromarone stimulated MRP2 at an even lower concentration, having maximal stimulatory activity at only 2 microM. Diclofenac and benzbromarone stimulated MRP2-mediated transport of amphipathic lipophilic drugs at 10- and 250-fold lower concentrations, respectively, than reported for other MRP2 stimulators. Because these concentrations are readily achieved in patients, adverse drug-drug interactions may occur, for example, during cancer therapy, in which drug concentrations are often critical and stimulation of elimination via MRP2 may result in suboptimal chemotherapeutic drug concentrations. Moreover, stimulation of MRP2 activity in tumors may lead to increased efflux of chemotherapeutic drugs and thereby drug resistance.  相似文献   

14.
Purpose. To investigate whether Madin-Darby canine kidney cells transfected with the human MRP2 gene (MDCK-MRP2) are a good model of the human intestinal mucosa. Methods. MRP2 expression in Caco-2 cells was compared with the expression of this efflux transporter in MDCK-wild type (MDCK-WT) and MDCK-MRP2 cells using Western blotting methods. The polarized efflux activities of MRP2 in the MDCK-MRP2, MDCK-WT, MDCK cells transfected with the human MDR1 gene (MDCK-MDR1), and Caco-2 cells were compared using vinblastine as a substrate. Apparent Michaelis-Menten constants (KM, Vmax) for the efflux of vinblastine in Caco-2 and MDCK-MRP2 cells were determined in the presence of GF120918 (2 M), which inhibits P-glycoprotein but does not affect MRP2. Apparent inhibitory constants (KI) of known substrates/inhibitors of MRP2 were determined by measuring their effects on the efflux of vinblastine in these cell lines. Results. MDCK-MRP2 cells expressed higher levels of MRP2 than MDCK-WT and Caco-2 cells as measured by Western blotting technique. Two isoforms of MRP2 expressed in Caco-2 and MDCK cells migrated at molecular weights of 150 kD and 190 kD. In MDCK-MRP2 cells, the 150 kD isoform appeared to be overexpressed. MDCK-MRP2 cell monolayers exhibited higher polarized efflux of vinblastine than Caco-2 and MDCK-WT cell monolayers. KM values for vinblastine in Caco-2 and MDCK-MRP2 cells were determined to be 71.8 ± 11.6 and 137.3 ± 33.6 M, respectively, and Vmax values were determined to be 0.54 ± 0.03 and 2.45 ± 0.31 pmolcm–2s–1, respectively. Known substrates/inhibitors of MRP2 showed differences in their ability to inhibit vinblastine efflux in Caco-2 cells as compared to MDCK-MRP2 cells Conclusions. These data suggest that MDCK-MRP2 cells overexpress only the 150 kD isoform of MRP2. The 190 kD isoform, which was also found in Caco-2 cells and MDCK-WT cells, was present in MDCK-MRP2 cells but not over expressed. The apparent kinetics constants and affinities of some MRP2 substrates were different in Caco-2 cells and MDCK-MRP2 cells. These differences in substrate activity could result from differences in the relative expression levels of the MRP2 isoforms present in Caco-2 cells and MDCK-MRP2 cells and/or differences in the partitioning of substrates in these two cell membrane bilayers.  相似文献   

15.
The activity of P-glycoprotein (Pgp/MDR1/ABCB1) and multidrug resistance proteins (MRP/ABCC) influence the pharmacokinetics and bioavailability of many drugs. Few suitable cell lines for the study of drug transport exist. Additional non-human cell lines may help clarify species differences and contribute to the current knowledge of drug transport. The aim of the present study was to characterize three rat epithelial cell lines for transporter expression and activity. Transporter expression was assessed in intestinal IEC-6 and renal GERP and NRK-52E cells using RT-PCR and Western blot analysis. Pgp and Mrp transport activity were analyzed by measuring calcein accumulation and glutathione-S-bimane efflux, respectively. The three cell lines showed Pgp expression and Pgp-dependent transport, both decreasing with culture time after reaching confluency. Besides Pgp, cells expressed Mrp1, Mrp3, Mrp4, and Mrp5, while Mrp2 and Mrp6 were absent. In addition, they showed temperature- and Mrp-dependent efflux of glutathione-S-bimane. Exposure to a panel of different inhibitors showed that this efflux was probably mediated by Mrp4. In conclusion, the three rat epithelial cell lines investigated showed Pgp and Mrp expression and transport. Mrp dependent transport was most likely mediated by Mrp4. In future, these cell lines may be used as in vitro models to study drug transport.  相似文献   

16.
1. The multidrug resistance protein 2 (MRP2) has been shown to play an important role in the transport of glutathione conjugates in the liver. Its importance in renal excretion, however, is still uncertain and other organic anion transporters may be involved. The objective of the present study was to characterize glutathione conjugate efflux from rat kidney proximal tubule cells (PTC), and to determine the contribution of Mrp2. 2. We used isolated PTC in suspension, as well as grown to monolayer density. For comparison, transport characteristics were also determined in the human intestinal epithelial cell line Caco-2, an established model to study MRP2-mediated transport. The cells were loaded with monochlorobimane (MCB) at 10 degrees C. MCB enters the cells by simple diffusion and is conjugated with glutathione to form the fluorescent glutathione-bimane (GS-B). 3. In primary cultures of rat PTC, no indications for a transporter-mediated mechanism were found. The efflux of GS-B from Caco-2 cells and freshly isolated PTC was time- and temperature-dependent. Furthermore, GS-B transport in both models was inhibited by chlorodinitrobenzene (CDNB), with an inhibitory constant of 46.8+/-0.9 microM in freshly isolated PTC. In Caco-2 cells, the inhibitory potency of CDNB was approximately 20 fold higher. Finally, efflux of GS-B from freshly isolated PTC from Mrp2-deficient (TR(-)) rats was studied. As compared to normal rat PTC, transport characteristics were not different. 4. We conclude that in freshly isolated rat PTC glutathione conjugate excretion is mediated by other organic anion transporters rather than by Mrp2.  相似文献   

17.
MRP1 (ABCC1) is known to be localized in lipid rafts. Here we show in two different cell lines that localization of Mrp1/MRP1 (Abcc1/ABCC1) in lipid rafts and its function as an efflux pump are dependent on cortical actin. Latrunculin B disrupts both cortical actin and actin stress fibers. This results in partial loss of actin and Mrp1/MRP1 (Abcc1/ABCC1) from detergent-free lipid raft fractions, partial internalization of Mrp1/MRP1 (Abcc1/ABCC1), and reduction of Mrp1/MRP1 (Abcc1/ABCC1)-mediated efflux. Pretreatment with nocodazole prevents latrunculin B-induced loss of cortical actin and all effects of latrunculin B on Mrp1 (Abcc1) localization and activity. However, pretreatment with tyrphostin A23 does not prevent latrunculin B-induced loss of cortical actin, lipid raft association, and efflux activity, but it does prevent latrunculin B-induced internalization of Mrp1 (Abcc1). Cytochalasin D disrupts actin stress fibers but not cortical actin and this inhibitor much less affects Mrp1/MRP1 (Abcc1/ABCC1) localization in lipid rafts, internalization, and efflux activity. In conclusion, cortical actin disruption results in reduced Mrp1/MRP1 (Abcc1/ABCC1) activity concomitant with a partial shift of Mrp1/MRP1 (Abcc1/ABCC1) out of lipid raft fractions and partial internalization of the ABC transporter. The results suggest that reduced Mrp1 (Abcc1) function is correlated to the loss of lipid raft association but not internalization of Mrp1 (Abcc1).  相似文献   

18.
1.?Hesperetin (HDND) possesses extensive bioactivities, however, its poor solubility and low bioavailability limit its application. HDND-7, a derivative of HDND, has better solubility and high bioavailability. In this study, we investigated the intestinal absorption mechanisms of HDND-7.

2.?MDCK cells were used to examine the transport mechanisms of HDND-7 in vitro, and a rat in situ intestinal perfusion model was used to characterize the absorption of HDND-7. The concentration of HDND-7 was determined by HPLC.

3.?In MDCK cells, HDND-7 was effectively absorbed in a concentration-dependent manner in both directions. Moreover, HDND-7 showed pH-dependent and TEER-independent transport in both directions. The transport of HDND-7 was significantly reduced at 4?°C or in the presence of NaN3. Furthermore, the efflux of HDND-7 was apparently reduced in the presence of MRP2 inhibitors MK-571 or probenecid. However, P-gp inhibitor verapamil had no effect on the transport of HDND-7. The in situ intestinal perfusion study indicated HDND-7 was well-absorbed in four intestinal segments. Furthermore, MRP2 inhibitors may slightly increase the absorption of HDND-7 in jejunum.

4.?In summary, all results indicated that HDND-7 might be absorbed mainly by passive diffusion via transcellular pathway, MRP2 but P-gp may participate in the efflux of HDND-7.  相似文献   

19.
Multidrug resistance-associated protein 1 (MRP1) was originally shown to confer resistance of human tumor cells to a broad range of natural product anticancer drugs. MRP1 has also been shown to mediate efflux transport of glutathione and glucuronide conjugates of drugs and endogenous substrates. An ortholog of MRP1 in the mouse has been cloned and characterized. Significant functional differences between murine and human MRP1 have been noted. Since drug disposition and pharmacology studies often are conducted in rats, there is a need to clone and characterize the rat ortholog of MRP1. We isolated a rat MRP1 (rMRP1) cDNA from rat brain astrocytes, characterized its coding sequences, and verified the transport activity of the protein expressed in MRP1 cDNA-transfected Madin-Darby canine kidney (MDCK) cells. Our results showed that rMRP1 has a coding sequence of 4599 bp, which predicts a polypeptide of 1533 amino acids with an apparent molecular weight of 190 kd by Western immunoblot analysis. rMRP1-transfected MDCK cells are capable of efflux transport of a fluorescent MRP1 marker-calcein-that is inhibitable by known MRP1 inhibitors, indomethacin, and MK571. Sequence analysis indicates that rMRP1 is more closely related to mouse MRP1 than human MRP1.  相似文献   

20.
Multidrug resistance protein 2 (MRP2) is an ATP-dependent transporter of anionic drugs and conjugates. It functions as an efflux pump in the apical membranes of liver and kidney cells, but its membrane localization in small intestine has not yet been defined. The present study demonstrates exclusive localization of Mrp2 to the brush-border (apical) membrane of villi, decreasing in intensity from the villus tip to the crypts. In immunoblot analysis of crude membranes of various rabbit tissues, Mrp2 was only found in small intestine, kidney and liver. These results are in-line with the supposed function of Mrp2 in drug excretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号