首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was designed to assess whether cortical changes after peripheral nerve damage are related to the degree of death of primary sensory neurons in the damaged nerve. The cytotoxin ricin was injected into the sciatic nerves of adult rats to kill primary sensory neurons with axons through the injection site. Following periods of 6-101 days, the S-I hindpaw map was evaluated with neurophysiological techniques and compared with the hindpaw maps of previously studied normal adult rats and adult rats that had undergone adult or neonatal sciatic section at a comparable level of the nerve. These comparisons allowed evaluation of cortical functional organization following different degrees of sensory neuron loss after sciatic nerve injury. There were three main results. 1) The comparison of ricin-treated and normal adult rats indicated that ricin treatment interrupted inputs from the sciatic skin territory on the hindpaw and caused a limited increase in the size of the cortical area that was activated by stimulation of hindpaw skin innervated by the remaining saphenous nerve. 2) The cortical maps of rats that had undergone adult ricin treatment (relatively large primary neuron loss) or section during adulthood (small to moderate primary neuron loss) were similar. In both groups, only the saphenous hindpaw skin was represented in cortex, and the cortical area that was activated by stimulation of the saphenous hindpaw skin had undergone a comparable limited enlargement. 3) The comparison of ricin-treated adult rats (relatively large primary neuron loss) and adult rats that had undergone neonatal section (relatively large primary neuron loss) indicated that cortical organization differed after these treatments. In particular, after ricin treatment the cortical area that was activated by stimulation of the saphenous hindpaw skin was larger than the comparable area in neonatal denervates, and the topographical progressions between the hindpaw and adjacent body representations were not as variable as after neonatal section. These findings indicate that cortical maps are altered after injection of ricin into a nerve. The similarity in cortical organization after ricin treatment (relatively large sensory neuron loss) and nerve section in adults (relatively small sensory neuron loss) and the differences in cortical organization after ricin treatment and nerve section in neonates (both relatively large sensory neuron loss) indicate cortical changes do not covary as a simple function of the degree of peripheral neuron death.  相似文献   

2.
Several experimental protocols induce lasting changes in the excitability of motor cortex. Some involve direct cortical stimulation, others activate the somatosensory system and some combine motor and sensory stimulation. The effects usually are measured as changes in amplitude of the motor-evoked-potential (MEP) or short-interval intracortical inhibition (SICI) elicited by a single or paired pulses of transcranial magnetic stimulation (TMS). Recent work has also tested sensorimotor organization within the motor cortex by recording MEPs and SICI during short periods of vibration applied to single intrinsic hand muscles. Here sensorimotor organization is focal: MEPs increase and SICI decreases in the vibrated muscle, whilst the opposite occurs in neighbouring muscles. In six volunteers we compared the after effects of three protocols that lead to lasting changes in cortical excitability: (i) paired associative stimulation (PAS) between a TMS pulse and an electrical stimulus to the median nerve; (ii) motor practice of rapid thumb abduction; and (iii) sensory input produced by semicontinuous muscle vibration, on MEPs and SICI at rest and on the sensorimotor organization. PAS increased MEP amplitudes, whereas vibration changed sensorimotor organization. Motor practice had a dual effect and increased MEPs as well as affecting sensorimotor organization. The implication is that different protocols target different sets of cortical circuits. We speculate that protocols that involve repeated activation of motor cortical output lead to lasting changes in efficacy of synaptic connections in output circuits, whereas protocols that emphasize sensory inputs affect the strength of sensory inputs to motor circuits.  相似文献   

3.
Aged rats show a characteristic decline of the sensorimotor state, most strikingly expressed in an impairment of the hindlimbs leading to significantly reduced sensory stimulation on the hindpaw. We review recent studies using optical imaging and electrophysiological recordings to investigate the effects of aging on somatosensory cortex and to identify age-related changes in terms of degeneration or plastic adaptation. For the cortical hindpaw representation, reduction of map size, receptive field enlargement and reduced response strength were described. None of these changes were reported in the forepaw representation in the same individual, however, in both the fore-and hindpaw representations response latencies and cerebral blood flow were affected. Changes of latencies and blood flow are best explained by degeneration, but the regional and specific changes of maps, receptive fields and response strength by plastic phenomena arising from the reduced sensory inputs. While the degenerative changes are not modifiable by enriched environmental conditions or application of Ca(2+) blocker, the plastic changes were fully reversible under these conditions. We discuss the implications of these findings for cognitive functions at old age and possible treatments of age-related changes in human subjects.  相似文献   

4.
Transcranial magnetic stimulation was used to map hand muscle representations in the motor cortex of a patient in whom infarction of the sensory thalamus deprived the sensorimotor cortex of sensory input. The threshold for activation of the motor cortex on the affected side was higher and the cortical representational maps of individual muscles were less well defined than those on the normal side. It is concluded that electrophysiological changes in cortical organisation can be demonstrated following withdrawal of, or imbalance in sensory afferent activity to the cerebral cortex in humans.  相似文献   

5.
Stimuli that induce rhythmic firing in trigeminal neurons also increase astrocytic coupling and reveal networks that define the boundaries of this particular population. Rhythmic firing depends on astrocytic coupling which in turn depends on S100β. In many nervous functions that rely on the ability of neuronal networks to generate a rhythmic pattern of activity, coordination of firing is an essential feature. Astrocytes play an important role in some of these networks, but the contribution of astrocytic coupling remains poorly defined. Here we investigate the modulation and organization of astrocytic networks in the dorsal part of the trigeminal main sensory nucleus (NVsnpr), which forms part of the network generating chewing movements. Using whole‐cell recordings and the dye coupling approach by filling a single astrocyte with biocytin to reveal astrocytic networks, we showed that coupling is limited under resting conditions, but increases importantly under conditions that induce rhythmic firing in NVsnpr neurons. These are: repetitive electrical stimulation of the sensory inputs to the nucleus, local application of NMDA and decrease of extracellular Ca2+. We have previously shown that rhythmic firing induced in NVsnpr neurons by these stimuli depends on astrocytes and their Ca2+‐binding protein S100β. Here we show that extracellular blockade of S100β also prevents the increase in astrocytic coupling induced by local application of NMDA. Most of the networks were small and remained confined to the functionally distinct area of dorsal NVsnpr. Disrupting coupling by perfusion with the nonspecific gap junction blocker, carbenoxolone or with GAP26, a selective inhibitor of connexin 43, mostly expressed in astrocytes, abolished NMDA‐induced rhythmic firing in NVsnpr neurons. These results suggest that astrocytic coupling is regulated by sensory inputs, necessary for neuronal bursting, and organized in a region specific manner.  相似文献   

6.
A remarkable preservation of sensorimotor function is observed in patients with refractory epilepsy who were treated by hemispherectomy. Cortical regions in the remaining hemisphere or contralateral subcortical region contribute to the residual sensorimotor function. Somatosensory evoked field (SEF) is used to investigate the residual sensory function in hemispherectomized patients. The SEFs are usually recorded with magnetoencephalography (MEG). The objective is to investigate the ipsilateral cortical regions associated with residual sensory function in hemispherectomized patients using somatosensory evoked field techniques. Six patients with anatomical hemispherectomy were included. Ipsilateral and contralateral sensory functions were assessed by physical examination. Somatosensory evoked fields to electrical stimulation of the bilateral median nerves were recorded by MEG in the hemispherectomized patients and six control subjects. The stimulus intensity was adjusted to the minimum threshold that elicited a thumb twitch. The presumed neuronal source was identified as the equivalent current dipole. Six patients demonstrated different degrees of residual sensory function. Three patients had somatosensory evoked field activation in the ipsilateral cortex upon electrical stimulation of the hemiplegic hand. In these patients the locations of the ipsilateral sensorimotor cortex activation were in the primary somatosensory cortex (SI). The latency of the reliable somatosensory evoked field after stimulation of the median nerve was significantly longer for responses from the hemiplegic side compared with responses to stimulation of the median nerve from the normal side. In conclusion, ipsilateral sensory function has a time-locked relation to the cortical electromagnetic activation in the SI area of hemispherectomized patients.  相似文献   

7.
Single unit recordings were performed in the nucleus gracilis (Gr) of anesthetized rats to study the influences of the sensorimotor corticofugal projections on sensory responses of those cells. The effects of electrical stimulation of contralateral primary sensory cortex were studied in two conditions: when the receptive fields of the stimulated cortical area and the gracilis cells overlapped (matched) or when they were completely different (unmatched). Cortical stimulation at low intensities (<50 μA) evoked spike firing only in gracilis neurons with matched receptive fields. When the receptive fields were unmatched, the intensity of the stimulation had to be increased above 50 μA to elicit spike firing. To study the corticofugal actions on the responses of Gr neurons, the onset of peripheral stimulation was likened to a single cortical shock in the sensorimotor cortex. When receptive fields matched, cortical stimulation facilitated the cellular responses to the natural sensory stimulation of their RF in most of the Gr neurons (86%). In the unmatched receptive fields, cortical stimulation could either inhibit (66.7%), facilitate (20.8%) or did not modify (12.5%) the sensory response at all. Trains of cortical shocks during sensory stimulation demonstrated that the facilitatory and inhibitory effects on Gr neurons outlasted the period of stimulation by 30–60 s. Results indicate that the sensorimotor cortex exercises a very precise control of sensory transmission throughout the Gr nucleus and suggest that the corticofugal projection may play an important role in the plasticity of the sensorimotor system.  相似文献   

8.
Neurotrophins have been reported to play an important role in neuronal plasticity and to be regulated by neuronal activity and/or neurotransmitters. Recently, we have shown that hindpaw sensory restriction induces a cortical reorganisation in the hindpaw primary somatosensory cortex, and that acetylcholine plays a significant role in this process. Sensory restriction was obtained by hindlimb suspension for 14 days. In this study, we examined the effects of a long period of hindpaw sensory restriction on the NGF and BDNF mRNA and protein expressions in the hindpaw somatosensory cortex. mRNA and protein levels were assessed by RT-PCR and ELISA, respectively. First, we found that NGF and BDNF mRNA relative levels increased after hindpaw sensory restriction. Second, the level of NGF protein increased, whereas that of BDNF remained unchanged. This differential response of NGF and BDNF proteins to sensory restriction suggested different levels of gene regulation, i.e., at pretranslational or posttranslational states. Moreover, inasmuch as our results differ from other models of sensory restriction (dark rearing, whisker removal, etc.), we hypothesized that the regulation of neurotrophin expression is dependent on the type and duration of the sensory restriction. In conclusion, we argue that neuronal plasticity induced by hindpaw sensory restriction requires neurotrophin expression.  相似文献   

9.
The excitability of the motor cortex is a function of single cell excitability, synaptic strength, and the balance between excitatory cells and inhibitory cells. Sustained periods of sensory stimulation enhance the excitability in the motor cortex. This adaptation, which represents an early change in cortical network function effective in motor learning and recovery from a motor deficit, is followed by longer-lasting changes, such as modifications in cortical somatotopy, and by structural plasticity. Interventions aiming at increasing excitability also positively affect learning processes. Recent studies highlight that the cerebellum, especially the interpositus nucleus, plays a key function in the adaptation of the motor cortex to repeated trains of peripheral stimulation. Interpositus neurons, which receive inputs from the sensorimotor cortex and the spinal cord, are involved in somesthetic reflex behaviors and assist the cerebral cortex in transforming sensory signals to motor-oriented commands by acting via the cerebello-thalamo-cortical projections. Moreover, climbing fibers originating in the inferior olivary complex and innervating the nucleus interpositus mediate highly integrated sensorimotor information derived from spinal modules. The intermediate cerebellum allows the motor cortex to tune the gain of polysynaptic responses originating from the spinal cord after repetitive trains of peripheral stimulation, allowing an online calibration of cutaneo-muscular responses.  相似文献   

10.
Stimulation of peripheral nerves activates corresponding regions in sensorimotor cortex. We have applied functional magnetic resonance imaging (fMRI) techniques to monitor activated brain regions by means of measuring changes of blood oxygenation level-dependent contrast during electric stimulation of the forepaw, hindpaw, or tail in rats. During alpha-chloralose anesthesia, artificial respiration, and complete muscle relaxation, stimulations were delivered at 3 Hz via subcutaneous bipolar electrodes with 500-microseconds-current pulses of 0.2-2.0 mA. Single- or multislice gradient echo images were collected during recording sessions consisting of five alternating rest and stimulation periods. Stimulation of the right and left forepaws and hindpaws repeatedly led to robust activation of the contralateral sensorimotor cortex. There was a significant correlation (P < 0.05) between current pulse strength and amount of activation of the sensory cortex during forepaw stimulation. The center of the main cortical representation of the forepaw was situated 3.4 mm lateral to the midline and 5 mm posterior to the rhinal fissure. The main representation of the hindpaw was 2.0 mm lateral to the midline and 6 mm posterior to the rhinal fissure. Tail stimulation gave rise to a strikingly extended bilateral cortical activation, localized along the midline in medial parietal and frontal cortex 4 and 5 mm posterior to the rhinal fissure. In conclusion, the experiments provide evidence that peripheral nerve stimulation induces a fMRI signal in the respective division of the somatosensory cortex in a stimulus-related manner. The marked cortical activation elicited by tail stimulation underlines the key importance of the tail.  相似文献   

11.
Somatosensory evoked neuromagnetic activity of human cerebellum was recorded noninvasively with a 122-channel whole-scalp magnetometer. Cerebellar source areas activated 13–19 ms after unilateral electric stimulation of the median nerve. The first signals preceded those occurring in the primary sensorimotor cortex at around 20 ms and overlapped in time with the activation of thalamic sources. The orientation and location of most prominent cerebellar activation suggest that the detected signals represent synchronized postsynaptic activity of spinocerebellar cortex. These signals are probably elicited by the first afferent sensory volley from peripheral nerve endings and mediated by spinocerebellar (cuneocerebellar) tracts. The results imply strong coherent activation of cerebellar neuronal populations after purely sensory stimulation. Moreover, with presented methods the millisecond-scale temporal resolution of neurophysiological measurements can be more generally applied to the study of neuronal population activity in intact human cerebellum.  相似文献   

12.
Functional neuro-imaging studies of Parkinson's disease (PD) patients and animal models show inconsistent cortical responses to sensory stimulation: some present increased sensorimotor cortex activation contradicting classical basal ganglia-cortex circuitry models, whereas others show decreased activation. As functional neuro-imaging activation is defined as the signal difference between stimulation ON and stimulation OFF, reduced 'activation' can point to either increased neuronal activity during stimulation ON or to decreased basal neuronal activity during stimulation OFF. A unique non-invasive method that uses the temporal and the spatial variances of functional magnetic resonance imaging signal is employed here to compare basal neuronal activity levels and 'functional homogeneity' between groups. Based on the assumption that the temporal variance reflects average neuronal activity, the variance of activity within a predefined region is defined as the region's 'functional homogeneity', which is assumed to estimate neuronal synchronization. Comparison of temporal and spatial variances of the sensorimotor cortex and the striatum in the 6-hydroxydopamine (6-OHDA) PD rat model and a control rat group show bilaterally decreased temporal and spatial variances in the 6-OHDA rat group, suggesting bilateral reduction of basal neuronal activity levels together with an increase in local neuronal synchronization in line with classical basal ganglia-cortex circuit models.  相似文献   

13.
The excitability of cortical neurons in the motor cortex is determined by their membrane potential and by the level of intracortical inhibition. The excitability of the motor cortex as a whole is a function of single cell excitability, synaptic strength, and the balance between excitatory cells and inhibitory cells. It is now established that a sustained period of somatosensory stimulation increases the excitability of motor cortex areas controlling muscles in those body parts that received the stimulation prior to excitability testing. So far, it has been supposed that the sensorimotor cortex was the anatomical substrate of these excitability changes, which could represent an early change in cortical network function before structural plasticity occurs. Recent experimental studies highlight that the cerebellum, especially the interpositus nucleus, plays a key role in the adaptation of the motor cortex to repeated trains of stimulation. Interpositus neurons, which receive inputs from both sensorimotor cortex and the spinal cord, are involved in somesthetic reflex behaviors and assist the cerebral cortex in transforming sensory signals to motor-oriented commands by acting via the cerebello-thalamo-cortical projections. Moreover, climbing fibers originating in the inferior olivary complex and innervating the nucleus interpositus mediate highly integrated sensorimotor information derived from spinal modules. It appears that the interpositus nucleus is a main subcortical modulator of the excitability changes occurring in the motor cortex, which may be a substrate of early plasticity effective in motor learning and recovery from lesion.  相似文献   

14.
《Neurological research》2013,35(8):780-788
Abstract

This study assessed the behavioral and dendritic structural effects of combining subdural motor cortical electrical stimulation with motor skills training following unilateral sensorimotor cortex lesions in adult male rats. Rats were pre-operatively trained on a skilled forelimb reaching task, the Montoya staircase test, and then received endothelin-1 induced ischemic lesions of the sensorimotor cortex. Ten to 14 days later, electrodes were implanted over the peri-lesion cortical surface. Rats subsequently began 10 days of rehabilitative training on the reaching task in 1 of 3 conditions: 1. 50 Hz stimulation during training, 2. 250 Hz stimulation during training or 3. no stimulation. No significant difference in performance was found between the 250 Hz and no stimulation groups. The 50 Hz stimulation group had significantly greater rates of improvement with the impaired forelimb in comparison to 250 Hz and no stimulation groups combined. Fifty Hz stimulated animals also had a significant increase in the surface density of dendritic processes immunoreactive for the cytoskeletal protein, microtubule-associated protein 2, in the peri-lesion cortex compared to the other groups. These results support the efficacy of combining rehabilitative training with cortical electrical stimulation to improve functional outcome and cortical neuronal structural plasticity following sensorimotor cortical damage.  相似文献   

15.
This study assessed the behavioral and dendritic structural effects of combining subdural motor cortical electrical stimulation with motor skills training following unilateral sensorimotor cortex lesions in adult male rats. Rats were pre-operatively trained on a skilled forelimb reaching task, the Montoya staircase test, and then received endothelin-1 induced ischemic lesions of the sensorimotor cortex. Ten to 14 days later, electrodes were implanted over the peri-lesion cortical surface. Rats subsequently began 10 days of rehabilitative training on the reaching task in 1 of 3 conditions: 1. 50 Hz stimulation during training, 2. 250 Hz stimulation during training or 3. no stimulation. No significant difference in performance was found between the 250 Hz and no stimulation groups. The 50 Hz stimulation group had significantly greater rates of improvement with the impaired forelimb in comparison to 250 Hz and no stimulation groups combined. Fifty Hz stimulated animals also had a significant increase in the surface density of dendritic processes immunoreactive for the cytoskeletal protein, microtubule-associated protein 2, in the peri-lesion cortex compared to the other groups. These results support the efficacy of combining rehabilitative training with cortical electrical stimulation to improve functional outcome and cortical neuronal structural plasticity following sensorimotor cortical damage.  相似文献   

16.
《Trends in neurosciences》2023,46(6):418-425
The integration of external information with the internal state of the body is central to the survival of virtually every multicellular organism. However, a complete picture of the mechanisms that govern this process is lacking. In this opinion article, we synthesize evidence demonstrating that astrocytes sense the momentary arousal state – through neuromodulator release – as well as the sensory inputs – through local synaptic activity – and respond to them with changes in calcium (Ca2+) signaling. We hypothesize that astrocytes integrate sensory signals with the internal state and that this process is necessary to secure optimal behavior. Finally, we argue that dysfunctional astrocytic Ca2+ signaling could be an underlying factor in disorders characterized by disrupted sensory processing.  相似文献   

17.
Interactions between vagal afferent fibres and spontaneous electroencephalographic (EEG) activity, recorded on the sensorimotor cortex of the cat, were studied during the mechanical activation of pulmonary afferents. The interactions were compared to the cortical effects of the electrical stimulation of all vagal fibers or to the chemical activation of unmyelinated vagal afferents (C-fibers) by phenyldiguanide. The present study was performed on anesthetized cats, artificially ventilated with open chest. Over 60 locations were explored on the posterior sigmoid gyrus. Repetitive electrical stimulation (30 Hz, 0.8 ms shock duration) of the contralateral cervical vagus nerve or of both nerves induced within less than 5 s changes in the pattern and periodicity of EEG spindles, associated with depressed background rhythms or rhythmic EEG activities. Cortical responses were also observed after i.v. injection of phenyldiguanide. Changes in activity of pulmonary stretch receptors by lung hyperinflation or suppression of phasic lung inflations ('stop pump') had no effect on the EEG rhythms. On the other hand, expiratory threshold loading or passive hyperdeflation of the lungs elicited EEG changes similar to those obtained by electrical stimulation of all vagal fibers. After bilateral vagotomy, all these responses disappeared or were delayed. The present observations strongly suggest that sensory information carried by thin vagal fibers greatly influences cortical rhythms in the cat sensorimotor cortex.  相似文献   

18.
ABSTRACT: BACKGROUND: Nerve cells program the brain codes to manage well-organized cognitions and behaviors. It remains unclear how a population of neurons and astrocytes work coordinately to encode their spatial and temporal activity patterns in response to frequency and intensity signals from sensory inputs. RESULTS: With two-photon imaging and electrophysiology to record cellular functions in the barrel cortex in vivo, we analyzed the activity patterns of neurons and astrocytes in response to whisker stimuli with increasing frequency, an environmental stimulus pattern that rodents experience in the accelerated motion. Compared to the resting state, whisker stimulation caused barrel neurons and astrocytes to be activated more synchronously. An increased stimulus frequency up-regulated the activity strength of neurons and astrocytes as well as coordinated their interaction. The coordination among the barrel neurons and astrocytes was fulfilled by increasing their functional connections. CONCLUSIONS: Our study reveals that the nerve cells in the barrel cortex encode frequency messages in whisker tactile inputs through setting their activity coordination.  相似文献   

19.
The discharge patterns of pyramidal tract or nonpyramidal tract sensorimotor cortical neurons were investigated during stepping behavior of cats. Chronic intracortical microelectrodes, which allowed long-term recording from fully unrestrained, conscious animals were utilized. With these electrodes neural activity was studied for as long as a month from the same cat, and individual cells were held for more than 1 day. The units were classified according to their response both to pyramidal tract stimulation and cutaneous articular or deep pressure stimulation. Most of the units were activated contralaterally by only one type of adequate stimulus. A low degree of sensory convergence in the sensorimotor cortex of normal-behaving, chronically implanted cats was found. In addition, cells with different sensory inputs displayed discharge patterns related to the different phases of the step cycle.  相似文献   

20.
One important target in the treatment of major depressive disorder (MDD) is the serotonin (5-hydroxytryptamine, 5-HT) system. Selective serotonin reuptake inhibitors (SSRI) are used to treat MDD. Yet, the mode of action of these drugs is not completely understood. There is evolving evidence for a role of glutamate in mood disorder and its signaling. Astrocytes are involved in glutamate metabolism and play an active role in memory processing but their role in mood disorders is still largely unknown. A modulation of astrocytic signaling by SSRIs or 5-HT has not been investigated up to now.We investigated astrocytic calcium signaling with the calcium indicator dye Fluo-4. Using a confocal microscope, we imaged astrocytes in the medial prefrontal cortex of acute mouse brain slices after the application of the SSRIs citalopram and fluoxetine. In the same way, we studied the effects of serotonin and the modulation of this signaling by glutamate in astrocytes.We found that astrocyte calcium signaling can be elicited by 5-HT. Also, the SSRIs citalopram and fluoxetine induce calcium signals in about 1/3 of all astrocytes, even when neuronal signal propagation is inhibited. Astrocytic responses to 5-HT have a unique pattern and they could mostly not be evoked twice. We determined that glutamate is a substance that can interfere with 5-HT-induced calcium signals in astrocytes since after stimulation by glutamate, astrocytes did not show a response to 5-HT.Astrocytic calcium signaling is elicited by SSRIs and 5-HT. They may serve as integrators, linking the serotonergic and glutamatergic signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号