首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin‐2 (IL‐2) is a mainstay for current immunotherapeutic protocols but its usefulness in patients is reduced by severe toxicities and because IL‐2 facilitates regulatory T (Treg) cell development. IL‐21 is a type I cytokine acting as a potent T‐cell co‐mitogen but less efficient than IL‐2 in sustaining T‐cell proliferation. Using various in vitro models for T‐cell receptor (TCR)‐dependent human T‐cell proliferation, we found that IL‐21 synergized with IL‐2 to make CD4+ and CD8+ T cells attain a level of expansion that was impossible to obtain with IL‐2 alone. Synergy was mostly evident in naive CD4+ cells. IL‐2 and tumour‐released transforming growth factor‐β (TGF‐β) are the main environmental cues that cooperate in Treg cell induction in tumour patients. Interleukin‐21 hampered Treg cell expansion induced by IL‐2/TGF‐β combination in naive CD4+ cells by facilitating non‐Treg over Treg cell proliferation from the early phases of cell activation. Conversely, IL‐21 did not modulate the conversion of naive activated CD4+ cells into Treg cells in the absence of cell division. Treg cell reduction was related to persistent activation of Stat3, a negative regulator of Treg cells associated with down‐modulation of IL‐2/TGF‐β‐induced phosphorylation of Smad2/3, a positive regulator of Treg cells. In contrast to previous studies, IL‐21 was completely ineffective in counteracting the suppressive activity of Treg cells on naive and memory, CD4+ and CD8+ T cells. Present data provide proof‐of‐concept for evaluating a combinatorial approach that would reduce the IL‐2 needed to sustain T‐cell proliferation efficiently, thereby reducing toxicity and controlling a tolerizing mechanism responsible for the contraction of the T‐cell response.  相似文献   

2.
3.
Immune responses to protein antigens involve CD4+ and CD8+ T cells, which follow distinct programs of differentiation. Naïve CD8 T cells rapidly develop cytotoxic T‐cell (CTL) activity after T‐cell receptor stimulation, and we have previously shown that this is accompanied by suppressive activity in the presence of specific cytokines, i.e. IL‐12 and IL‐4. Cytokine‐induced CD8+ regulatory T (Treg) cells are one of several Treg‐cell phenotypes and are Foxp3? IL‐10+ with contact‐dependent suppressive capacity. Here, we show they also express high level CD39, an ecto‐nucleotidase that degrades extracellular ATP, and this contributes to their suppressive activity. CD39 expression was found to be upregulated on CD8+ T cells during peripheral tolerance induction in vivo, accompanied by release of IL‐12 and IL‐10. CD39 was also upregulated during respiratory tolerance induction to inhaled allergen and on tumor‐infiltrating CD8+ T cells. Production of IL‐10 and expression of CD39 by CD8+ T cells was independently regulated, being respectively blocked by extracellular ATP and enhanced by an A2A adenosine receptor agonist. Our results suggest that any CTL can develop suppressive activity when exposed to specific cytokines in the absence of alarmins. Thus negative feedback controls CTL expansion under regulation from both nucleotide and cytokine environment within tissues.  相似文献   

4.
Beta2‐adrenergic receptor (B2AR) signaling is known to impair Th1‐cell differentiation and function in a cAMP‐dependent way, leading to inhibition of cell proliferation and decreased production of IL‐2 and IFN‐γ. CD4+ Foxp3+ Treg cells play a key role in the regulation of immune responses and are essential for maintenance of self‐tolerance. Nevertheless, very little is known about adrenergic receptor expression in Treg cells or the influence of noradrenaline on their function. Here we show that Foxp3+ Treg cells express functional B2AR. B2AR activation in Treg cells leads to increased intracellular cAMP levels and to protein kinase A (PKA)‐dependent CREB phosphorylation. We also found that signaling via B2AR enhances the in vitro suppressive activity of Treg cells. B2AR‐mediated increase in Treg‐cell suppressive function was associated with decreased IL‐2 mRNA levels in responder CD4+ T cells and improved Treg‐cell‐induced conversion of CD4+ Foxp3? cells into Foxp3+ induced Treg cells. Moreover, B2AR signaling increased CTLA‐4 expression in Treg cells in a PKA‐dependent way. Finally, we found that PKA inhibition totally prevented the B2AR‐mediated increase in Treg‐cell suppressive function. Our data suggest that sympathetic fibers are able to regulate Treg‐cell suppressive activity in a positive manner through B2AR signaling.  相似文献   

5.
T‐cell immunoglobulin and mucin domain 3 (TIM‐3) is an Ig‐superfamily member expressed on IFN‐γ‐secreting Th1 and Tc1 cells and was identified as a negative regulator of immune tolerance. TIM‐3 is expressed by a subset of activated CD4+ T cells, and anti‐CD3/anti‐CD28 stimulation increases both the level of expression and the number of TIM‐3+ T cells. In mice, TIM‐3 is constitutively expressed on natural regulatory T (Treg) cells and has been identified as a regulatory molecule of alloimmunity through its ability to modulate CD4+ T‐cell differentiation. Here, we examined TIM‐3 expression on human Treg cells to determine its role in T‐cell suppression. In contrast to mice, TIM‐3 is not expressed on Treg cells ex vivo but is upregulated after activation. While TIM‐3+ Treg cells with increased gene expression of LAG3, CTLA4, and FOXP3 are highly efficient suppressors of effector T (Teff) cells, TIM‐3? Treg cells poorly suppressed Th17 cells as compared with their suppression of Th1 cells; this decreased suppression ability was associated with decreased STAT‐3 expression and phosphorylation and reduced gene expression of IL10, EBI3, GZMB, PRF1, IL1Rα, and CCR6. Thus, our results suggest that TIM‐3 expression on Treg cells identifies a population highly effective in inhibiting pathogenic Th1‐ and Th17‐cell responses.  相似文献   

6.
Human Th17 clones and circulating Th17 cells showed lower susceptibility to the anti‐proliferative effect of TGF‐β than Th1 and Th2 clones or circulating Th1‐oriented T cells, respectively. Accordingly, human Th17 cells exhibited lower expression of clusterin, and higher Bcl‐2 expression and reduced apoptosis in the presence of TGF‐β, in comparison with Th1 cells. Umbilical cord blood naïve CD161+CD4+ T cells, which contain the precursors of human Th17 cells, differentiated into IL‐17A‐producing cells only in response to IL‐1β plus IL‐23, even in serum‐free cultures. TGF‐β had no effect on constitutive RORγt expression by umbilical cord blood CD161+ T cells but it increased the relative proportions of CD161+ T cells differentiating into Th17 cells in response to IL‐1β plus IL‐23, whereas under the same conditions it inhibited both T‐bet expression and Th1 development. These data suggest that TGF‐β is not critical for the differentiation of human Th17 cells, but indirectly favors their expansion because Th17 cells are poorly susceptible to its suppressive effects.  相似文献   

7.
Recent studies have indicated that Treg contribute to the HIV type 1 (HIV‐1)‐related immune pathogenesis. However, it is not clear whether T cells with suppressive properties reside within the HIV‐1‐specific T‐cell population. Here, PBMC from HIV‐1‐infected individuals were stimulated with a 15‐mer Gag peptide pool, and HIV‐1‐specific T cells were enriched by virtue of their secretion of IL‐10 or IFN‐γ using immunomagnetic cell‐sorting. Neither the IL‐10‐secreting cells nor the IFN‐γ‐secreting cells expressed the Treg marker FOXP3, yet the IL‐10‐secreting cells potently suppressed anti‐CD3/CD28‐induced CD4+ as well as CD8+ T‐cell proliferative responses. As shown by intracellular cytokine staining, IL‐10‐ and IFN‐γ‐producing T cells represent distinct subsets of the HIV‐1‐specific T cells. Our data collectively suggest that functionally defined HIV‐1‐specific T‐cell subsets harbor potent immunoregulatory properties that may contribute to HIV‐1‐associated T‐cell dysfunction.  相似文献   

8.
Interferon‐gamma producing CD4+ T (Th1) cells and IL‐17‐producing CD4+ T (Th17) cells are involved in the pathogenesis of several autoimmune diseases including multiple sclerosis. Therefore, the development of treatment strategies controlling the generation and expansion of these effector cells is of high interest. Frankincense, the resin from trees of the genus Boswellia, and particularly its prominent bioactive compound acetyl‐11‐keto‐β‐boswellic acid (AKBA), have potent anti‐inflammatory properties. Here, we demonstrate that AKBA is able to reduce the differentiation of human CD4+ T cells to Th17 cells, while slightly increasing Th2‐ and Treg‐cell differentiation. Furthermore, AKBA reduces the IL‐1β‐triggered IL‐17A release of memory Th17 cells. AKBA may affect IL‐1β signaling by preventing IL‐1 receptor‐associated kinase 1 phosphorylation and subsequently decreasing STAT3 phosphorylation at Ser727, which is required for Th17‐cell differentiation. The effects of AKBA on Th17 differentiation and IL‐17A release make the compound a good candidate for potential treatment of Th17‐driven diseases.  相似文献   

9.
10.
CD161++CD8+ T cells represent a novel subset that is dominated in adult peripheral blood by mucosal‐associated invariant T (MAIT) cells, as defined by the expression of a variable‐α chain 7.2 (Vα7.2)‐Jα33 TCR, and IL‐18Rα. Stimulation with IL‐18+IL‐12 is known to induce IFN‐γ by both NK cells and, to a more limited extent, T cells. Here, we show the CD161++ CD8+ T‐cell population is the primary T‐cell population triggered by this mechanism. Both CD161++Vα7.2+ and CD161++Vα7.2? T‐cell subsets responded to IL‐12+IL‐18 stimulation, demonstrating this response was not restricted to the MAIT cells, but to the CD161++ phenotype. Bacteria and TLR agonists also indirectly triggered IFN‐γ expression via IL‐12 and IL‐18. These data show that CD161++ T cells are the predominant T‐cell population that responds directly to IL‐12+IL‐18 stimulation. Furthermore, our findings broaden the potential role of MAIT cells beyond bacterial responsiveness to potentially include viral infections and other inflammatory stimuli.  相似文献   

11.
Treg cells are important for the maintenance of self‐tolerance and are implicated in autoimmunity. Despite enrichment of Treg cells in joints of rheumatoid arthritis (RA) patients, local inflammation persists. As expression of the ATP‐hydrolyzing enzymes CD39 and CD73 and the resulting anti‐inflammatory adenosine production have been implicated as an important mechanism of suppression, we characterized FOXP3+ Treg cells in blood and synovial fluid samples of RA patients in the context of CD39 and CD73 expression. Synovial FOXP3+ Treg cells displayed high expression levels of rate‐limiting CD39, whereas CD73 was diminished. FOXP3+CD39+ Treg cells were also abundant in synovial tissue. Furthermore, FOXP3+CD39+ Treg cells did not secrete the proinflammatory cytokines IFN‐γ and TNF after in vitro stimulation in contrast to FOXP3+CD39? T cells. FOXP3+CD39+ Treg cells could be isolated by CD39 and CD25 coexpression, displayed a demethylated Treg‐specific demethylated region and coculture assays confirmed that CD25+CD39+ T cells have suppressive capacity, while their CD39? counterparts do not. Overall, our data show that FOXP3+CD39+ Treg cells are enriched at the site of inflammation, do not produce proinflammatory cytokines, and are good suppressors of many effector T‐cell functions including production of IFN‐γ, TNF, and IL‐17F but do not limit IL‐17A secretion.  相似文献   

12.
Control and termination of infection with Influenza A virus is associated with increased IL‐10 production in mouse models. Notably, IL‐10 can be produced by Treg. Therefore, we investigated whether the population of IL‐10‐producing influenza‐specific CD4+ T cells comprised Treg as they are potent suppressors of the adaptive immune response. Influenza‐specific IL‐10‐producing T cells were detected in all human donors displaying influenza‐specific immunity. Isolation of Matrix 1 protein‐specific IL‐10‐producing T‐cell clones revealed that a substantial proportion of these T‐cell clones displayed the capacity to suppress effector cells, functionally identifying them as Treg. Both FOXP3+ and FOXP3? CD4+ Treg were isolated and all were able to exert their suppressive capacity when stimulated with cognate antigen, including influenza virus‐infected cells. In vitro suppression was not mediated by IL‐10 but involved interference with the IL‐2 axis. The isolated Treg suppressed amongst others the IL‐2 production of influenza‐specific T‐helper cells as well as partially prevented the upregulation of the high‐affinity IL‐2 receptor on CD8 effector cells. So far the induction of virus‐specific Treg has only been studied in the context of chronic viral infections. This study demonstrates that virus‐specific Treg can also be induced by viruses that are rapidly cleared in humans.  相似文献   

13.
The identification of regulatory T cells (Treg cells) in human peripheral blood is an important tool in diagnosis, research, and therapeutic intervention. As compared to lymphoid tissues, the frequencies of circulating Treg cells identified as CD4+CD25+Foxp3+ are, however, low. We here show that many of these cells remain undetected due to transient down regulation of Foxp3, which rapidly decays in the absence of cytokine‐mediated STAT5 signals. Short‐term incubation of PBMCs or isolated CD4+ T cells, but not of lymph node cells, with IL‐2, ‐7, or ‐15 more than doubles the frequency of Foxp3+CD25+ among CD4+ T cells detectable by flow cytometry. This increase is not due to cell division but to upregulation of both proteins. At the same time, the uncovered Treg cells up‐regulate CD25 and down‐regulate CD127, making them accessible to viable cell sorting. “Latent” Treg cells have a demethylated FOXP3 TSDR sequence, are enriched in naïve, non‐cycling cells, and are functional. The confirmation of our findings in RA and SLE patients shows the feasibility of uncovering latent Treg cells for immune monitoring in clinical settings. Finally, our results suggest that unmasking of latent Treg cells contributes to the increase in circulating CD4+CD25+Foxp3+ cells reported in IL‐2 treated patients.  相似文献   

14.
Cancer vaccines have yet to yield clinical benefit, despite the measurable induction of humoral and cellular immune responses. As immunosuppression by CD4+CD25+ regulatory T (Treg) cells has been linked to the failure of cancer immunotherapy, blocking suppression is therefore critical for successful clinical strategies. Here, we addressed whether a lyophilized preparation of Streptococcus pyogenes (OK‐432), which stimulates Toll‐like receptors, could overcome Treg‐cell suppression of CD4+ T‐cell responses in vitro and in vivo. OK‐432 significantly enhanced in vitro proliferation of CD4+ effector T cells by blocking Treg‐cell suppression and this blocking effect depended on IL‐12 derived from antigen‐presenting cells. Direct administration of OK‐432 into tumor‐associated exudate fluids resulted in a reduction of the frequency and suppressive function of CD4+CD25+Foxp3+ Treg cells. Furthermore, when OK‐432 was used as an adjuvant of vaccination with HER2 and NY‐ESO‐1 for esophageal cancer patients, NY‐ESO‐1–specific CD4+ T‐cell precursors were activated, and NY‐ESO‐1–specific CD4+ T cells were detected within the effector/memory T‐cell population. CD4+ T‐cell clones from these patients had high‐affinity TCRs and recognized naturally processed NY‐ESO‐1 protein presented by dendritic cells. OK‐432 therefore inhibits Treg‐cell function and contributes to the activation of high‐avidity tumor antigen‐specific naive T‐cell precursors.  相似文献   

15.
Forkhead box P3 (Foxp3)+ regulatory T (Treg) cells maintain the immune tolerance and prevent inflammatory responses in the periphery. However, the presence of Treg cells in the CNS under steady state has not been studied. Here, for the first time, we show a substantial TCRαβ+CD4+Foxp3+ T‐cell population (cerebral Treg cells) in the rat cerebrum, constituting more than 15% of the cerebral CD4+ T‐cell compartment. Cerebral Treg cells showed an activated/memory phenotype and expressed many Treg‐cell signature genes at higher levels than peripheral Treg cells. Consistent with their activated/memory phenotype, cerebral Treg cells robustly restrained the LPS‐induced inflammatory responses of brain microglia/macrophages, suggesting a role in maintaining the cerebral homeostasis by inhibiting the neuroinflammation. In addition, brain astrocytes were the helper cells that sustained Foxp3 expression in Treg cells through IL‐2/STAT5 signaling, showing that the interaction between astrocytes and Treg cells contributes to the maintenance of Treg‐cell identity in the brain. Taken together, our work represents the first study to characterize the phenotypic and functional features of Treg cells in the rat cerebrum. Our data have provided a novel insight for the contribution of Treg cells to the immunosurveillance and immunomodulation in the cerebrum under steady state.  相似文献   

16.
17.
Atherosclerosis is a progressive disease with a strong inflammatory component. Here we confirm the existence of a critical imbalance in the ratio of Th17 to Treg‐cell populations in peripheral CD4+ T cells from patients with acute coronary syndrome (ACS), which favors inflammation. This was concurrent with increased IL‐17 production from the CD4+CD45RA?FOXP3lo Treg‐cell subset, and elevated osteopontin (OPN) levels in serum from ACS patients. We demonstrate a direct effect of OPN in serum from ACS patients on increased IL‐17 production by CD4+CD45RA?FOXP3lo T cells, mediated through recruitment of the OPN receptors CD29 and CD44, and dependent on STAT3 and the nuclear hormone receptor retinoic‐acid‐related orphan receptor‐γt (RORγt) pathway, but not IL‐6 production. To our knowledge and beyond the disease context of ACS, this study constitutes the first demonstration of a critical role for OPN in the positive regulation of inflammation through increased IL‐17 production by CD4+CD45RA?FOXP3lo cells.  相似文献   

18.
19.
Costimulatory signals are required for priming and activation of naive T cells, while it is less clear how they contribute to induction of regulatory T (Treg)‐cell activity. We previously reported that the blockade of the B7‐CD28 and CD40L‐CD40 interaction efficiently suppresses allogeneic T‐cell activation in vivo. This was characterized by an initial rise in Foxp3+ cells, followed by depletion of host‐reactive T cells. To further investigate effects of costimulatory blockade on Treg cells, we used an in vitro model of allogeneic CD4+ cell activation. When CTLA‐4Ig and anti‐CD40L mAb (MR1) were added to the cultures, T‐cell proliferation and IL‐2 production were strongly reduced. However, Foxp3+ cells proliferated and acquired suppressive activity. They suppressed activation of syngeneic CD4+ cells much more efficiently than did freshly isolated Treg cells. CD4+ cells activated by allogeneic cells in the presence of MR1 and CTLA‐4Ig were hyporesponsive on restimulation, but their response was restored to that of naive CD4+ cells when Foxp3+ Treg cells were removed. We conclude that natural Treg cells are less dependent on B7‐CD28 or CD40‐CD40L costimulation compared with Foxp3? T cells. Reduced costimulation therefore alters the balance between Teff and Treg‐cell activation in favor of Treg‐cell activity.  相似文献   

20.
We studied the factors that regulate IL‐23 receptor expression and IL‐17 production in human tuberculosis infection. Mycobacterium tuberculosis (M. tb)‐stimulated CD4+ T cells from tuberculosis patients secreted less IL‐17 than did CD4+ T cells from healthy tuberculin reactors (PPD+). M. tb‐cultured monocytes from tuberculosis patients and PPD+ donors expressed equal amounts of IL‐23p19 mRNA and protein, suggesting that reduced IL‐23 production is not responsible for decreased IL‐17 production by tuberculosis patients. Freshly isolated and M. tb‐stimulated CD4+ T cells from tuberculosis patients had reduced IL‐23 receptor and phosphorylated STAT3 (pSTAT3) expression, compared with cells from PPD+ donors. STAT3 siRNA reduced IL‐23 receptor expression and IL‐17 production by CD4+ T cells from PPD+ donors. Tuberculosis patients had increased numbers of PD‐1+ T cells compared with healthy PPD+ individuals. Anti‐PD‐1 antibody enhanced pSTAT3 and IL‐23R expression and IL‐17 production by M. tb‐cultured CD4+ T cells of tuberculosis patients. Anti‐tuberculosis therapy decreased PD‐1 expression, increased IL‐17 and IFN‐γ production and pSTAT3 and IL‐23R expression. These findings demonstrate that increased PD‐1 expression and decreased pSTAT3 expression reduce IL‐23 receptor expression and IL‐17 production by CD4+ T cells of tuberculosis patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号