首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
背景:组织工程心脏瓣膜是应用工程学和生命科学的原理和方法构建具有生理功能和生物活性的瓣膜替代物,但仍处于动物实验阶段。 目的:总结常用的组织工程心脏瓣膜,对不同类型生物材料的心脏瓣膜应用的安全性进行评价。 方法:以“生物材料,心脏瓣膜,支架材料,综述文献,组织工程”为中文关键词,采用计算机检索2000-01/2010-12相关文章。纳入与生物材料与组织工程心脏瓣膜研究相关的文章;排除重复研究或Meta分析类文章。 结果与结论:共纳入生物材料与组织工程心脏瓣膜研究相关文献20篇。天然支架材料因其优越的生物相容性和三维空间构象,具有其他材料不可比拟的仿生性。合成可降解高分子材料具有良好的可控性和力学性能也备受研究者青睐,而将天然材料和高分子材料融合一体构建的复合支架材料为组织工程心脏瓣膜的研究提供了新的策略和方向,具有广阔的应用前景。  相似文献   

2.
背景:当前应用于临床的生物瓣和机械瓣都存在着一定缺陷,而组织工程心脏瓣膜将避免这些问题成为理想的生物瓣膜替代物。 目的:综述近年来组织工程心脏瓣膜支架材料的研究进展及面临的问题。 方法:应用计算机检索1990至2011年万方数据库相关文章,检索词为“组织工程,心脏瓣膜,支架材料”,并限定文章语言种类为中文。同时计算机检索1990至2011年 PubMed数据库相关文章,检索词为“tissue engineering,heart valve,scaffold materials”,并限定文章语言种类为English。共检索到文献147篇,最终纳入符合标准的文献61篇。 结果与结论:人工心脏瓣膜置换是目前治疗心脏瓣膜性病变的主要外科治疗手段,但现有机械瓣和生物瓣都不是理想的心脏瓣膜置换物,在耐久性,增长潜力,相容性,抗感染方面有着显著的缺陷。组织工程心脏瓣膜是一个活体器官,并具有和自体心脏瓣膜同样的生长,修复和重建能力,这一新概念的提出为构建理想的心脏瓣替换物带来了希望。  相似文献   

3.
背景:组织工程心脏瓣膜有望克服生物瓣膜和机械瓣膜的缺点而从根本上解决瓣膜病外科面临的问题。其中,支架材料扮演着关键角色,而选择何种支架材料是经常困扰研究者的难题。目的:文章在强调细胞外基质与细胞的相互作用在组织动力学中有重要作用的基础上,对目前广泛使用的支架材料及其优缺点进行简要综述。方法:使用Pubmed文献检索数据库,采用医学主题词检索,检索词为"心脏瓣膜;组织工程",时间范围为2000-01/2009-08,语言限定为英文。共检索到186篇文章,其中综述34篇,实验研究152篇。选择文章主要内容与组织工程心脏瓣膜支架材料直接相关的、针对性强、代表性好、相关领域权威杂志的文章共39篇进行综述。结果与结论:天然支架材料因其优越的生物相容性和三维空间构象,具有其他材料不可比拟的仿生性。合成可降解高分子材料具有良好的可控性和力学性能也备受研究者青睐,而将天然材料和高分子材料融合一体构建的复合支架材料为组织工程心脏瓣膜的研究提供了新的策略和方向,具有广阔的应用前景。  相似文献   

4.
背景:骨软骨支架是用于承载细胞,供细胞黏附、生长、增殖、分化的载体。 目的:总结运动性关节软骨缺损支架材料的应用进展及其生物替代材料的生物相容性。 方法:以“关节软骨,生物材料,工程软骨,支架材料,生物相容性”为中文关键词,以“ tissue enginneering ,articular cartilage,scaffold material”为英文关键词,采用计算机检索维普数据库、PubMed数据库1993-01/2010-11相关文章。纳入与有关修复关节软骨损伤、生物材料、支架材料、生物相容性等相关的文章。以20篇文献为重点对运动性关节软骨缺损修复用的生物材料的生物相容性进行了讨论。 结果与结论:天然软骨支架材料因其具有细胞识别信号,故生物相容性好,细胞黏附率高,但力学性能较差。有些人工合成材料生物相容性不理想、亲水性差、对细胞吸附不足,人工合成高分子聚合物生物相容性良好。复合支架利用不同生物材料的优点克制材料的局限性制备理想的复合支架,其混合比例、混合技术还有待进一步研究。目前尚无一种材料完全满足组织工程的要,通过材料制备技术的改进或将几种不同材料的复合,材料的性能会不断的提高。  相似文献   

5.
目的:总结修复肌腱损伤的主要组织工程支架材料及研究进展。 方法:由第一作者采用电子检索的方式,在CNKI数据库中检索1902-01/2010-10有关生物材料应用于组织工程肌腱支架的研究文章,关键词为“重建肌腱,生物材料,人工肌腱,组织工程,支架材料”。排除重复研究、普通综述或Meta分析类文章,筛选纳入18篇文献进行评价。 结果:来源于自然界的天然生物材料主要有蚕丝、小肠黏膜下层、胶原、衍生肌腱支架材料等,保留了组织正常的三维网架结构,组织相容性好,但力学性能较差、降解速度快。人工合成高分子材料主要为聚乳酸和聚羟基乙酸、聚乳酸-聚羟基乙酸共聚物、聚磷酸钙纤维等,但存在亲水性低、细胞黏附性能差的不足。 结论:天然及合成高分子材料作为组织工程支架材料都有各自的优缺点,绝大多数还处于研究阶段,尚未应用于临床,因此改进支架材料的性能是目前研究的主要方向之一。  相似文献   

6.
背景:目前临床上应用的心脏生物瓣和机械瓣都存在一些缺陷和不足,而组织工程心脏瓣膜有可能避免这些问题的出现,成为瓣膜替代物的理想选择。 目的:探讨构建组织工程心脏瓣膜的实验研究进展。 方法:应用数据库检索的方法分析关于组织工程心脏瓣膜的实验研究文献,组织工程心脏瓣膜的三大要素为种子细胞、支架材料和细胞种植。 结果与结论:心脏瓣膜修复和置换是目前治疗心脏瓣膜性疾病的主要外科手段。目前,主要用于构建组织工程心脏瓣膜的种子细胞有血管内皮细胞、内皮祖细胞以及骨髓间充质干细胞等。经脱细胞处理的支架具有良好的生物力学性能和组织相容性,细胞种植后支架表面会形成一层连续的细胞层,其构建的组织工程心脏瓣膜是可行的。组织工程心脏瓣膜有着良好的应用前景,但目前还有很多问题需要解决,还处于研究的初级阶段。 中国组织工程研究杂志出版内容重点:组织构建;骨细胞;软骨细胞;细胞培养;成纤维细胞;血管内皮细胞;骨质疏松;组织工程全文链接:  相似文献   

7.
背景:不同生物材料制备的复合软骨支架其修复软骨缺损也各具特点。 目的:探讨不同生物材料制备复合支架的组织工程学特性及其修复关节软骨缺损的性能评价。 方法:以“软骨组织工程,生物材料,工程软骨,复合支架”为中文关键词,以“tissue enginneering,articular cartilage,scaffold material”为英文关键词,采用计算机检索中国期刊全文数据库、PubMed数据库(1993-01/2010-11)相关文章。纳入复合支架材料-细胞复合物修复关节软骨损伤等相关的文章,排除重复研究或Meta分析类文章。 结果与结论:复合支架是当前软骨组织工程中应用较多的支架,它是将具有互补特征的生物相容性可降解支架,按一定比例和方式组合,设计出结构与性能优化的复合支架。较单一支架材料具有更好的生物相容性和一定强度的韧性,较好的孔隙和机械强度。复合支架的制备不仅包括同一类生物材料的复合,还包括不同类别生物材料之间的交叉复合。可分为纯天然支架材料、纯人工支架材料以及天然与人工支架材料的复合等3类。复合支架使生物材料具有互补特性,一定程度上满足了理想生物材料支架应具的综合特点,但目前很多研究仍处于实验阶段,还有一些问题有待于解决,如不同材料的复合比例、复合工艺等。  相似文献   

8.
背景:组织工程支架已成为近年来研究的热点,不同材料构建的组织工程血管支架的特点各异,植入后的生物相容性、感染、再狭窄是临床上面临的难点与重要研究课题。 目的:文章综述了不同材料构建的组织工程血管支架的特点和生物相容性等的研究进展,以便寻找临床最佳的生物材料支架。 方法:应用计算机检索CNKI和PubMed数据库中2002-01/2010-12关于细菌生物膜耐药机制的文章,在标题和摘要中以“组织工程,血管支架,相容性,感染,再狭窄”或“Tissue engineering,stents,compatibility,infection,restenosis ”为检索词进行检索。选择文章内容与血管支架的特点和生物相容性相关,同一领域文献则选择近期发表或发表在权威杂志文章。初检得到285篇文献,根据纳入标准选择23篇文章进行综述。 结果与结论:天然材料包含有生物信息(如特殊的氨基酸序列),可促进细胞吸附或使细胞保留分化功能,人工合成材料的优点是它们的强度、降解速度、微结构和渗透性均可在生产过程中进行控制;若生物材料和高分子可降解材料相结合,将两者按照一定的方法组合构建成一种复合基质,发挥两者各自的优势,便能更好地满足血管组织工程的要求,构建出性能良好的组织工程化血管。  相似文献   

9.
目的:探讨复合支架的组织工程学特性及其修复关节软骨缺损的性能评价。 方法:以“关节软骨、生物材料、工程软骨、复合材料、复合支架”为中文关键词,以“ tissue enginneering,articular cartilage,scaffold material”为英文关键词,采用计算机检索中国期刊全文数据库、PubMed数据库(1993-01/2010-11)相关文章。纳入复合支架材料-细胞复合物修复关节软骨损伤相关的文章,排除重复研究或Meta分析类文章。 结果:共入选18篇文章进入结果分析。复合支架是当前软骨组织工程中应用较多的支架,它是将具有互补特征的生物相容性可降解支架,按一定比例和方式组合,设计出结构与性能优化的复合支架。较单一支架材料具有显著优越性,具有更好的生物相容性和一定强度的韧性,较好的孔隙和机械强度。复合支架的制备不仅包括同一类生物材料的复合,还包括不同类别生物材料之间的交叉复合。可分为纯天然支架材料、纯人工支架材料以及天然与人工支架材料的复合等3类。 结论:复合支架使生物材料具有互补特性,一定程度上满足了理想生物支架材料应具有的综合特点,但目前很多研究仍处于实验阶段,还有一些问题有待于解决,如不同材料的复合比例、复合工艺等。  相似文献   

10.
程越  田京 《中国组织工程研究》2012,16(12):2265-2269
背景:纳米羟基磷灰石因具有与骨组织中天然羟磷灰石晶体尺寸相关的特性以及具有良好的生物相容性和骨传导性,被广泛用于骨组织工程。 目的:对纳米支架材料的性能进行阐述,探讨仿生多层纳米支架构建和纳米支架体内试验研究的新进展。 方法:由作者应用计算机检索PubMed数据库及CNKI数据库1979/2011,在英文标题和摘要中以“cartilage, nano”和“cartilage, nanofiber or nanofibrous”检索,中文文献检索以“软骨,纳米,支架”为关键词,选择内容与纳米支架、软骨损伤修复与软骨组织工程相关的文章,同一领域文献则选择近期发表或发表在权威杂志文章,共纳入50篇文献。 结果与结论:软骨自我修复能力有限,软骨组织工程作为一种新治疗手段为其治愈提供了可能,纳米支架则以其优越的性能成为软骨组织修复的重要生物材料,纳米支架的仿生分层设计与制备及其生物性能的最优化,以及大宗样本临床试验的缺乏成为制约纳米支架材料应用于临床软骨缺损修复的关键问题。 关键词:纳米;支架;软骨重建;组织工程;综述文献 doi:10.3969/j.issn.1673-8225.2012.12.041  相似文献   

11.
BACKGROUND: Tissue-engineered vascular scaffold materials have been developed from pure natural materials to degradable composite materials and nano polymer materials, and the preparation method has also been developed from the manual technology to the rapid proto-typing technology. OBJECTIVE: To clarify the advantages and disadvantages, application and research hotspots of different tissue-engineered vascular scaffold materials, and to find a suitable scaffold material for clinical treatment. METHODS: The first author retrieved databases of PubMed, CNKI and CqVip for relevant articles about tissue-engineered vascular scaffolds published from 1985 to 2015. The key words were “tissue engineering, tissue engineered, blood vessel, vascular, scaffold” in English and Chinese, respectively. In accordance with the inclusion and exclusion criteria, 36 articles were reviewed. RESULTS AND CONCLUSION: Non-degradable materials are mainly used to construct large diameter  tissue-engineered blood vessels. Natural biomaterials have good biocompatibility, which can provide necessary signals for cells and promote cell attachment and retain cell differentiation ability. Degradable polymer composite materials have good biocompatibility, whose mechanical properties, degradation rate and microstructure can be controlled, and they can be mass-produced according to the design requirements. The composite materials inheriting the advantages of natural biomaterials and synthetic polymer materials have become the most ideal scaffold materials and will be a research focus in the future.  相似文献   

12.
背景:血管组织工程是指利用血管壁的正常细胞和生物可降解材料来制备、重建和再生血管替代材料的科学。近年来,组织工程学技术的发展推动了组织工程化血管的研究,已成为今后血管替代物的重要方向。 目的:综述血管组织工程的相关临床及基础研究进展。 方法:检索SCI数据库2001/2010有关血管组织工程的文献,检索词为“组织工程血管(tissue-engineered vascular);组织工程(tissue engineering);血管(vascular);支架材料(scaffold materials);支架(scaffolds);种子细胞(seed cell);细胞外基质(extracellular matrix, ECM);血管支架(vascular scaffold);高分子材料(polymer materials);复合材料(composite materials);纳米(nanometer);生物材料(biological materials)”,对血管组织工程的临床及基础文献进行分析。 结果与结论:血管组织工程研究的内容主要有种子细胞、细胞外基质替代物以及组织工程血管三维培养。血管组织工程所应用的种子细胞包括自体血管壁细胞、胚胎干细胞和骨髓间充质干细胞,还包括内皮细胞,平滑肌细胞及成纤维细胞等众多组织细胞。在组织工程血管构建中血管组织微环境是活细胞在体外生长所需的支持物,是种子细胞生长增殖的三维空间,便于细胞黏着、生长、进行新陈代谢。因此,组织工程血管需要具有良好的生物相容性,可塑性强,来源广泛,有一定的抗张强度和无免疫原性的支架材料。根据来源和性能,目前研究应用的材料分为天然生物生材料和合成材料两种。  相似文献   

13.
背景:组织工程技术的发展为已退变椎间盘功能的恢复提供了可能。 目的:综述椎间盘组织工程中支架的研究进展。 方法:由第一作者检索PubMed 数据库中1990-01-01/2012-12-31 有关椎间盘组织工程中支架的文献,以 “tissue engineering, intervertebral disc, scaffold”为检索词。 结果与结论:支架材料是组织工程研究中的一项重要组成部分。椎间盘纤维环支架材料有3大类,包括天然生物材料、人工合成材料及复合材料。椎间盘纤维环支架材料种类繁多,各有优缺点,尚无公认的最合适的支架材料,支架材料选择仍需进一步的实验研究。纳米级生物材料是研究发展的一个必然趋势,另外,利用仿生学原理,在模拟人椎间盘组织的过程中对支架材料进行改进同样是一个发展趋势;此外,可注射型支架同样是另一个研究热点,可注射型支架材料的选择范围主要集中在壳聚糖、Ⅱ型胶原、透明质酸、纤维蛋白、弹性蛋白、藻酸盐身上,目前将壳聚糖作为支架的研究相对较多。  相似文献   

14.
心脏瓣膜置换术是外科治疗瓣膜性心脏病的主要方法,但目前临床应用的人工瓣膜的远期效果尚不满意。近年来,随着组织工程学技术的进展,利用培养的自身组织细胞种植于支架材料表面,体外重新构建理想的心脏瓣膜植物日益成为研究热点。本文简述了心脏瓣膜工程的定义,细胞支架材料的选择,种子细胞的培养、种植方法以及组织工程化心脏瓣膜的评估,并指出下一步研究中尚需解决的问题。  相似文献   

15.
Achieving the lofty goal of developing a tissue engineered heart will likely rely on progress in engineering the various components: blood vessels, heart valves, and cardiac muscle. Advances in tissue engineered vascular grafts have shown the most progress to date. Research in tissue-engineered vascular grafts has focused on improving scaffold design, including mechanical properties and bioactivity; genetically engineering cells to improve graft performance; and optimizing tissue formation through in vitro mechanical conditioning. Some of these same approaches have been used in developing tissue engineering heart valves and cardiac muscle as well. Continued advances in scaffold technology and a greater understanding of vascular cell biology along with collaboration among engineers, scientists, and physicians will lead to further progress in the field of cardiovascular tissue engineering and ultimately the development of a tissue-engineered heart.  相似文献   

16.
Heart valve disease is a significant medical problem worldwide. Current treatment for heart valve disease is heart valve replacement. State of the art replacement heart valves are less than ideal and are associated with significant complications. Using the basic principles of tissue engineering, promising alternatives to current replacement heart valves are being developed. Significant progress has been made in the development of a tissue-engineered semilunar heart valve substitute. Advancements include the development of different potential cell sources and cell-seeding techniques; advancements in matrix and scaffold development and in polymer chemistry fabrication; and the development of a variety of bioreactors, which are biomimetic devices used to modulate the development of tissue-engineered neotissue in vitro through the application of biochemical and biomechanical stimuli. This review addresses the need for a tissue-engineered alternative to the current heart valve replacement options. The basics of heart valve structure and function, heart valve disease, and currently available heart valve replacements are discussed. The last 10 years of investigation into a tissue-engineered heart valve as well as current developments are reviewed. Finally, the early clinical applications of cardiovascular tissue engineering are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号