首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article we present a new class of high order accurate ArbitraryEulerian-Lagrangian (ALE) one-step WENO finite volume schemes for solving nonlinear hyperbolic systems of conservation laws on moving two dimensional unstructured triangular meshes. A WENO reconstruction algorithm is used to achieve high order accuracy in space and a high order one-step time discretization is achieved by using the local space-time Galerkin predictor proposed in [25]. For that purpose, a new element-local weak formulation of the governing PDE is adopted on moving space-time elements. The space-time basis and test functions are obtained considering Lagrange interpolation polynomials passing through a predefined set of nodes. Moreover, a polynomial mapping defined by the same local space-time basis functions as the weak solution of the PDE is used to map the moving physical space-time element onto a space-time reference element. To maintain algorithmic simplicity, the final ALE one-step finite volume scheme uses moving triangular meshes with straight edges. This is possible in the ALE framework, which allows a local mesh velocity that is different from the local fluid velocity. We present numerical convergence rates for the schemes presented in this paper up to sixth order of accuracy in space and time and show some classical numerical test problems for the two-dimensional Euler equations of compressible gas dynamics.  相似文献   

2.
We propose a WENO finite difference scheme to approximate anelastic flows, and scalars advected by them, on staggered grids. In contrast to existing WENO schemes on staggered grids, the proposed scheme is designed to be arbitrarily high-order accurate as it judiciously combines ENO interpolations of velocities with WENO reconstructions of spatial derivatives. A set of numerical experiments are presented to demonstrate the increase in accuracy and robustness with the proposed scheme, when compared to existing WENO schemes and state-of-the-art central finite difference schemes.  相似文献   

3.
In this paper, the second-order and third-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (WENO) limiters are proposed on tetrahedral meshes. The multi-resolution WENO limiter is an extension of a finite volume multi-resolution WENO scheme developed in [81], which serves as a limiter for RKDG methods on tetrahedral meshes. This new WENO limiter uses information of the DG solution essentially only within the troubled cell itself which is identified by a new modified version of the original KXRCF indicator [42], to build a sequence of hierarchical $L^2$ projection polynomials from zeroth degree to the second or third degree of the DG solution. The second-order and third-order RKDG methods with the associated multi-resolution WENO limiters are developed as examples for general high-order RKDG methods, which could maintain the original order of accuracy in smooth regions and keep essentially non-oscillatory property near strong discontinuities by gradually degrading from the optimal order to the first order. The linear weights inside the procedure of the new multi-resolution WENO limiters can be set as any positive numbers on the condition that they sum to one. A series of polynomials of different degrees within the troubled cell itself are applied in a WENO fashion to modify the DG solutions in the troubled cell on tetrahedral meshes. These new WENO limiters are very simple to construct, and can be easily implemented to arbitrary high-order accuracy on tetrahedral meshes. Such spatial reconstruction methodology improves the robustness in the simulation on the same compact spatial stencil of the original DG methods on tetrahedral meshes. Extensive one-dimensional (run as three-dimensional problems on tetrahedral meshes) and three-dimensional tests are performed to demonstrate the good performance of the RKDG methods with new multi-resolution WENO limiters.  相似文献   

4.
In this paper, we develop two finite difference weighted essentially non-oscillatory (WENO) schemes with unequal-sized sub-stencils for solving the Degasperis-Procesi (DP) and $\mu$-Degasperis-Procesi ($\mu$DP) equations, which contain nonlinear high order derivatives, and possibly peakon solutions or shock waves. By introducing auxiliary variable(s), we rewrite the DP equation as a hyperbolic-elliptic system, and the $\mu$DP equation as a first order system. Then we choose a linear finite difference scheme with suitable order of accuracy for the auxiliary variable(s), and two finite difference WENO schemes with unequal-sized sub-stencils for the primal variable. One WENO scheme uses one large stencil and several smaller stencils, and the other WENO scheme is based on the multi-resolution framework which uses a series of unequal-sized hierarchical central stencils. Comparing with the classical WENO scheme which uses several small stencils of the same size to make up a big stencil, both WENO schemes with unequal-sized sub-stencils are simple in the choice of the stencil and enjoy the freedom of arbitrary positive linear weights. Another advantage is that the final reconstructed polynomial on the target cell is a polynomial of the same degree as the polynomial over the big stencil, while the classical finite difference WENO reconstruction can only be obtained for specific points inside the target interval. Numerical tests are provided to demonstrate the high order accuracy and non-oscillatory properties of the proposed schemes.  相似文献   

5.
Hyperbolic balance laws have steady state solutions in which the flux gradients are nonzero but are exactly balanced by the source terms. In our earlier work [31–33], we designed high order well-balanced schemes to a class of hyperbolic systems with separable source terms. In this paper, we present a different approach to the same purpose: designing high order well-balanced finite volume weighted essentially non-oscillatory (WENO) schemes and RungeKutta discontinuous Galerkin (RKDG) finite element methods. We make the observation that the traditional RKDG methods are capable of maintaining certain steady states exactly, if a small modification on either the initial condition or the flux is provided. The computational cost to obtain such a well balanced RKDG method is basically the same as the traditional RKDG method. The same idea can be applied to the finite volume WENO schemes. We will first describe the algorithms and prove the well balanced property for the shallow water equations, and then show that the result can be generalized to a class of other balance laws. We perform extensive one and two dimensional simulations to verify the properties of these schemes such as the exact preservation of the balance laws for certain steady state solutions, the non-oscillatory property for general solutions with discontinuities, and the genuine high order accuracy in smooth regions.  相似文献   

6.
In the finite difference WENO (weighted essentially non-oscillatory) method, the final scheme on the whole stencil was constructed by linear combinations of highest order accurate schemes on sub-stencils, all of which share the same total count of grid points. The linear combination method which the original WENO applied was generalized to arbitrary positive-integer-order derivative on an arbitrary (uniform or non-uniform) mesh, still applying finite difference method. The possibility of expressing the final scheme on the whole stencil as a linear combination of highest order accurate schemes on WENO-like sub-stencils was investigated. The main results include: (a) the highest order of accuracy a finite difference scheme can achieve and (b) a sufficient and necessary condition that the linear combination exists. This is a sufficient and necessary condition for all finite difference schemes in a set (rather than a specific finite difference scheme) to have WENO-like linear combinations. After the proofs of the results, some remarks on the WENO schemes and TENO (targeted essentially non-oscillatory) schemes were given.  相似文献   

7.
This paper further considers weighted essentially non-oscillatory (WENO) and Hermite weighted essentially non-oscillatory (HWENO) finite volume methods as limiters for Runge-Kutta discontinuous Galerkin (RKDG) methods to solve problems involving nonlinear hyperbolic conservation laws. The application discussed here is the solution of 3-D problems on unstructured meshes. Our numerical tests again demonstrate this is a robust and high order limiting procedure, which simultaneously achieves high order accuracy and sharp non-oscillatory shock transitions.  相似文献   

8.
The development of high-order schemes has been mostly concentrated on the limiters and high-order reconstruction techniques. In this paper, the effect of the flux functions on the performance of high-order schemes will be studied. Based on the same WENO reconstruction, two schemes with different flux functions, i.e., the fifth-order WENO method and the WENO-Gas-Kinetic scheme (WENO-GKS), will be compared. The fifth-order finite difference WENO-SW scheme is a characteristic variable reconstruction based method which uses the Steger-Warming flux splitting for inviscid terms, the sixth-order central difference for viscous terms, and three stages Runge-Kutta time stepping for the time integration. On the other hand, the finite volume WENO-GKS is a conservative variable reconstruction based method with the same WENO reconstruction. But it evaluates a time dependent gas distribution function along a cell interface, and updates the flow variables inside each control volume by integrating the flux function along the boundary of the control volume in both space and time. In order to validate the robustness and accuracy of the schemes, both methods are tested under a wide range of flow conditions: vortex propagation, Mach 3 step problem, and the cavity flow at Reynolds number 3200. Our study shows that both WENO-SW and WENO-GKS yield quantitatively similar results and agree with each other very well provided a sufficient grid resolution is used. With the reduction of mesh points, the WENO-GKS behaves to have less numerical dissipation and present more accurate solutions than those from the WENO-SW in all test cases. For the Navier-Stokes equations, since the WENO-GKS couples inviscid and viscous terms in a single flux evaluation, and the WENO-SW uses an operator splitting technique, it appears that the WENO-SW is more sensitive to the WENO reconstruction and boundary treatment. In terms of efficiency, the finite volume WENO-GKS is about 4 times slower than the finite difference WENO-SW in two dimensional simulations. The current study clearly shows that besides high-order reconstruction, an accurate gas evolution model or flux function in a high-order scheme is also important in the capturing of physical solutions. In a physical flow, the transport, stress deformation, heat conduction, and viscous heating are all coupled in a single gas evolution process. Therefore, it is preferred to develop such a scheme with multi-dimensionality, and unified treatment of inviscid and dissipative terms. A high-order scheme does prefer a high-order gas evolution model. Even with the rapid advances of high-order reconstruction techniques, the first-order dynamics of the Riemann solution becomes the bottleneck for the further development of high-order schemes. In order to avoid the weakness of the low order flux function, the development of high-order schemes relies heavily on the weak solution of the original governing equations for the update of additional degree of freedom, such as the non-conservative gradients of flow variables, which cannot be physically valid in discontinuous regions.  相似文献   

9.
In this paper, we investigate the coupling of the Multi-dimensional Optimal Order Detection (MOOD) method and the Arbitrary high order DERivatives (ADER) approach in order to design a new high order accurate, robust and computationally efficient Finite Volume (FV) scheme dedicated to solving nonlinear systems of hyperbolic conservation laws on unstructured triangular and tetrahedral meshes in two and three space dimensions, respectively. The Multi-dimensional Optimal Order Detection (MOOD) method for 2D and 3D geometries has been introduced in a recent series of papers for mixed unstructured meshes. It is an arbitrary high-order accurate Finite Volume scheme in space, using polynomial reconstructions with a posteriori detection and polynomial degree decrementing processes to deal with shock waves and other discontinuities. In the following work, the time discretization is performed with an elegant and efficient one-step ADER procedure. Doing so, we retain the good properties of the MOOD scheme, that is to say, the optimal high-order of accuracy is reached on smooth solutions, while spurious oscillations near singularities are prevented. The ADER technique not only reduces the cost of the overall scheme as shown on a set of numerical tests in 2D and 3D, but also increases the stability of the overall scheme. A systematic comparison between classical unstructured ADER-WENO schemes and the new ADER-MOOD approach has been carried out for high-order schemes in space and time in terms of cost, robustness, accuracy and efficiency. The main finding of this paper is that the combination of ADER with MOOD generally outperforms the one of ADER and WENO either because at given accuracy MOOD isless expensive (memory and/or CPU time), or because it is more accurate for a given grid resolution. A large suite of classical numerical test problems has been solved on unstructured meshes for three challenging multi-dimensional systems of conservation laws: the Euler equations of compressible gas dynamics, the classical equations of ideal magneto-Hydrodynamics (MHD) and finally the relativistic MHD equations (RMHD), which constitutes a particularly challenging nonlinear system of hyperbolic partial differential equation. All tests are run on genuinely unstructured grids composed of simplex elements.  相似文献   

10.
In this article we present a new family of high order accurate Arbitrary Lagrangian-Eulerian one-step WENO finite volume schemes for the solution of stiff hyperbolic balance laws. High order accuracy in space is obtained with a standard WENO reconstruction algorithm and high order in time is obtained using the local space-time discontinuous Galerkin method recently proposed in [20]. In the Lagrangian framework considered here, the local space-time DG predictor is based on a weak formulation of the governing PDE on a moving space-time element. For the space-time basis and test functions we use Lagrange interpolation polynomials defined by tensor-product Gauss-Legendre quadrature points. The moving space-time elements are mapped to a reference element using an isoparametric approach, i.e. the space-time mapping is defined by the same basis functions as the weak solution of the PDE. We show some computational examples in one space-dimension for non-stiff and for stiff balance laws, in particular for the Euler equations of compressible gas dynamics, for the resistive relativistic MHD equations, and for the relativistic radiation hydrodynamics equations. Numerical convergence results are presented for the stiff case up to sixth order of accuracy in space and time and for the non-stiff case up to eighth order of accuracy in space and time.  相似文献   

11.
In this paper, we propose a new conservative semi-Lagrangian (SL) finite difference (FD) WENO scheme for linear advection equations, which can serve as a base scheme for the Vlasov equation by Strang splitting [4]. The reconstruction procedure in the proposed SL FD scheme is the same as the one used in the SL finite volume (FV) WENO scheme [3]. However, instead of inputting cell averages and approximate the integral form of the equation in a FV scheme, we input point values and approximate the differential form of equation in a FD spirit, yet retaining very high order (fifth order in our experiment) spatial accuracy. The advantage of using point values, rather than cell averages, is to avoid the second order spatial error, due to the shearing in velocity (v) and electrical field (E) over a cell when performing the Strang splitting to the Vlasov equation. As a result, the proposed scheme has very high spatial accuracy, compared with second order spatial accuracy for Strang split SL FV scheme for solving the Vlasov-Poisson (VP) system. We perform numerical experiments on linear advection, rigid body rotation problem; and on the Landau damping and two-stream instabilities by solving the VP system. For comparison, we also apply (1) the conservative SL FD WENO scheme, proposed in [22] for incompressible advection problem, (2) the conservative SL FD WENO scheme proposed in [21] and (3) the non-conservative version of the SL FD WENO scheme in [3] to the same test problems. The performances of different schemes are compared by the error table, solution resolution of sharp interface, and by tracking the conservation of physical norms, energies and entropies, which should be physically preserved.  相似文献   

12.
Three high order shock-capturing schemes are compared for large eddy simulations (LES) of temporally evolving mixing layers for different convective Mach numbers ranging from the quasi-incompressible regime to highly compressible supersonic regime. The considered high order schemes are fifth-order WENO (WENO5), seventh-order WENO (WENO7) and the associated eighth-order central spatial base scheme with the dissipative portion of WENO7 as a nonlinear post-processing filter step (WENO7fi). This high order nonlinear filter method of Yee & Sjogreen is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The LES results by WENO7fi using the same scheme parameter agree well with experimental results compiled by Barone et al., and published direct numerical simulations (DNS) work of Rogers & Moser and Pantano & Sarkar, whereas results by WENO5 and WENO7 compare poorly with experimental data and DNS computations.  相似文献   

13.
In this article, we detail the methodology developed to construct arbitrarily high order schemes — linear and WENO — on 3D mixed-element unstructured meshes made up of general convex polyhedral elements. The approach is tailored specifically for the solution of scalar level set equations for application to incompressible two-phase flow problems. The construction of WENO schemes on 3D unstructured meshes is notoriously difficult, as it involves a much higher level of complexity than 2D approaches. This due to the multiplicity of geometrical considerations introduced by the extra dimension, especially on mixed-element meshes. Therefore, we have specifically developed a number of algorithms to handle mixed-element meshes composed of convex polyhedra with convex polygonal faces. The contribution of this work concerns several areas of interest: the formulation of an improved methodology in 3D, the minimisation of computational runtime in the implementation through the maximum use of pre-processing operations, the generation of novel methods to handle complex 3D mixed-element meshes and finally the application of the method to the transport of a scalar level set.  相似文献   

14.
In this paper, a new type of third-order and fourth-order weighted essentially non-oscillatory (WENO) schemes is designed for simulating the Hamilton-Jacobi equations on triangular meshes. We design such schemes with the use of the nodal information defined on five unequal-sized spatial stencils, the application of monotone Hamiltonians as a building block, the artificial set of positive linear weights to make up high-order approximations in smooth regions simultaneously avoiding spurious oscillations nearby discontinuities of the derivatives of the solutions. The spatial reconstructions are convex combinations of the derivatives of a modified cubic/quartic polynomial defined on a big spatial stencil and four quadratic polynomials defined on small spatial stencils, and a third-order TVD Runge-Kutta method is used for the time discretization. The main advantages of these WENO schemes are their efficiency, simplicity, and can be easily implemented to higher dimensional unstructured meshes. Extensive numerical tests are performed to illustrate the good performance of such new WENO schemes.  相似文献   

15.
We present a new conservative semi-Lagrangian finite difference weighted essentially non-oscillatory scheme with adaptive order. This is an extension of the conservative semi-Lagrangian (SL) finite difference WENO scheme in [Qiu and Shu, JCP, 230 (4) (2011), pp. 863-889], in which linear weights in SL WENO framework were shown not to exist for variable coefficient problems. Hence, the order of accuracy is not optimal from reconstruction stencils. In this paper, we incorporate a recent WENO adaptive order (AO) technique [Balsara et al., JCP, 326 (2016), pp. 780-804] to the SL WENO framework. The new scheme can achieve an optimal high order of accuracy, while maintaining the properties of mass conservation and non-oscillatory capture of solutions from the original SL WENO. The positivity-preserving limiter is further applied to ensure the positivity of solutions. Finally, the scheme is applied to high dimensional problems by a fourth-order dimensional splitting. We demonstrate the effectiveness of the new scheme by extensive numerical tests on linear advection equations, the Vlasov-Poisson system, the guiding center Vlasov model as well as the incompressible Euler equations.  相似文献   

16.
This paper presents a new and better suited formulation to implement the limiting projection to high-order schemes that make use of high-order local reconstructions for hyperbolic conservation laws. The scheme, so-called MCV-WENO4 (multi-moment Constrained finite Volume with WENO limiter of 4th order) method, is an extension of the MCV method of Ii & Xiao (2009) by adding the 1st order derivative (gradient or slope) at the cell center as an additional constraint for the cell-wise local reconstruction. The gradient is computed from a limiting projection using the WENO (weighted essentially non-oscillatory) reconstruction that is built from the nodal values at 5 solution points within 3 neighboring cells. Different from other existing methods where only the cell-average value is used in the WENO reconstruction, the present method takes account of the solution structure within each mesh cell, and thus minimizes the stencil for reconstruction. The resulting scheme has 4th-order accuracy and is of significant advantage in algorithmic simplicity and computational efficiency. Numerical results of one and two dimensional benchmark tests for scalar and Euler conservation laws are shown to verify the accuracy and oscillation-less property of the scheme.  相似文献   

17.
In this article we present two types of nonlinear positivity-preserving finite volume (PPFV) schemes for a class of three-dimensional heat conduction equations on general polyhedral meshes. First, we present a new parameter selection strategy on the one-sided flux and establish a nonlinear PPFV scheme based on a two-point flux with higher efficiency. By comparing with the scheme proposed in [H. Xie, X. Xu, C. Zhai, H. Yong, Commun. Comput. Phys. 24 (2018) 1375–1408], our scheme avoids the assumption that the values of auxiliary unknowns are nonnegative, which makes our interpolation formulae suitable to be constructed by existing approaches with high accuracy and well robustness (e.g., the finite element method), thus enhancing the adaptability to distorted meshes with large deformations. Then we derive a linear multi-point flux involving combination coefficients and, via the Patankar trick, obtain another nonlinear PPFV scheme that is concise and easy to implement. The selection strategy of combination coefficients is also provided to improve the convergence behavior of the Picard procedure. Furthermore, the existence and positivity-preserving properties of these two nonlinear PPFV solutions are proved. Numerical experiments with the discontinuous diffusion scalar as well as discontinuous and anisotropic diffusion tensors are given to confirm our theoretical findings and demonstrate that our schemes both can achieve ideal-order accuracy even on severely distorted meshes.  相似文献   

18.
We propose a new high order accurate nodal discontinuous Galerkin (DG) method for the solution of nonlinear hyperbolic systems of partial differential equations (PDE) on unstructured polygonal Voronoi meshes. Rather than using classical polynomials of degree $N$ inside each element, in our new approach the discrete solution is represented by piecewise continuous polynomials of degree $N$ within each Voronoi element, using a continuous finite element basis defined on a subgrid inside each polygon. We call the resulting subgrid basis an agglomerated finite element (AFE) basis for the DG method on general polygons, since it is obtained by the agglomeration of the finite element basis functions associated with the subgrid triangles. The basis functions on each sub-triangle are defined, as usual, on a universal reference element, hence allowing to compute universal mass, flux and stiffness matrices for the subgrid triangles once and for all in a pre-processing stage for the reference element only. Consequently, the construction of an efficient quadrature-free algorithm is possible, despite the unstructured nature of the computational grid. High order of accuracy in time is achieved thanks to the ADER approach, making use of an element-local space-time Galerkin finite element predictor.The novel schemes are carefully validated against a set of typical benchmark problems for the compressible Euler and Navier-Stokes equations. The numerical results have been checked with reference solutions available in literature and also systematically compared, in terms of computational efficiency and accuracy, with those obtained by the corresponding modal DG version of the scheme.  相似文献   

19.
Fixed-point iterative sweeping methods were developed in the literature to efficiently solve static Hamilton-Jacobi equations. This class of methods utilizes the Gauss-Seidel iterations and alternating sweeping strategy to achieve fast convergence rate. They take advantage of the properties of hyperbolic partial differential equations (PDEs) and try to cover a family of characteristics of the corresponding Hamilton-Jacobi equation in a certain direction simultaneously in each sweeping order. Different from other fast sweeping methods, fixed-point iterative sweeping methods have the advantages such as that they have explicit forms and do not involve inverse operation of nonlinear local systems. In principle, it can be applied to solving very general equations using any monotone numerical fluxes and high order approximations easily. In this paper, based on the recently developed fifth order WENO schemes which improve the convergence of the classical WENO schemes by removing slight post-shock oscillations, we design fifth order fixed-point sweeping WENO methods for efficient computation of steady state solution of hyperbolic conservation laws. Especially, we show that although the methods do not have linear computational complexity, they converge to steady state solutions much faster than regular time-marching approach by stability improvement for high order schemes with a forward Euler time-marching.  相似文献   

20.
In this paper, we study high order discretization methods for solving the Maxwell equations on hybrid triangle-quad meshes. We have developed high order finite edge element methods coupled with different high order time schemes and we compare results and efficiency for several schemes. We introduce in particular a class of simple high order low dissipation time schemes based on a modified Taylor expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号