首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 204 毫秒
1.
This study explored the dynamical changes in corticospinal excitability during the imagination of cyclical unimanual and bimanual wrist flexion-extension movements. Transcranial magnetic stimulation was applied over the left motor cortex to evoke motor evoked potentials in the right wrist flexor and extensor muscles. Findings provided evidence for increased reciprocal excitability changes during imagery of symmetrical in-phase movements as compared to asymmetrical (anti-phase) or unimanual movements. This suggests that in-phase movements may reinforce whereas anti-phase movements may reduce the temporal representation of the task in the corticospinal motor networks of the brain.  相似文献   

2.
When two hands require different information in bimanual asymmetric movements, interference can occur via callosal connections and ipsilateral corticospinal pathways. This interference could potentially work as a cost-effective measure in symmetric movements, allowing the same information to be commonly available to both hands at once. Using functional magnetic resonance imaging, we investigated supra-additive and sub-additive neural interactions in bimanual movements during the initiation and continuation phases of movement. We compared activity during bimanual asymmetric and symmetric movements with the sum of activity during unimanual right and left finger-tapping. Supra-additive continuation-related activation was found in the right dorsal premotor cortex and left cerebellum (lobule V) during asymmetric movements. In addition, for unimanual movements, the right dorsal premotor cortex and left cerebellum (lobule V) showed significant activation only for left-hand (non-dominant) movements, but not for right-hand movements. These results suggest that resource-demanding interactions in bimanual asymmetric movements are involved in a non-dominant hand motor network that functions to keep non-dominant hand movements stable. We found sub-additive continuation-related activation in the supplementary motor area (SMA), bilateral cerebellum (lobule VI) in symmetric movements, and the SMA in asymmetric movements. This suggests that no extra demands were placed on these areas in bimanual movements despite the conventional notion that they play crucial roles in bimanual coordination. Sub-additive initiation-related activation in the left anterior putamen suggests that symmetric movements place lower demands on motor programming. These findings indicate that, depending on coordination patterns, the neural substrates of bimanual movements either exhibit greater effort to keep non-dominant hand movements stable, or save neural cost by sharing information commonly to both hands.  相似文献   

3.
The aim of the present study was to investigate whether synchronized activity between the right and left primary sensorimotor cortices has a functional role in the organization of bimanual in-phase and anti-phase movement patterns, performed at different cycling frequencies. To this end we evaluated the cortical dynamics by means of task-related EEG. Both behavioral performance and coupling between the primary sensorimotor cortices in the beta frequency band were reduced with increasing movement speed, and this effect was far more powerful in the anti-phase than in-phase mode. Thus, a progressive degradation of interhemispheric connectivity with cycling rate was associated with a deteriorating behavioral output. Overall, these results support a significant role for interhemispheric synchronization in the control of bimanual movements. Electronic Publication  相似文献   

4.
Effect of transcranial magnetic stimulation on bimanual movements   总被引:1,自引:0,他引:1  
Transcranial magnetic stimulation (TMS) of the motor cortex can interrupt voluntary contralateral rhythmic limb movements. Using the method of "resetting index" (RI), our study investigated the TMS effect on different types of bimanual movements. Six normal subjects participated. For unimanual movement, each subject tapped either the right or left index finger at a comfortable rate. For bimanual movement, index fingers of both hands tapped in the same (in-phase) direction or in the opposite (antiphase) direction. TMS was applied to each hemisphere separately at various intensities from 0.5 to 1.5 times motor threshold (MT). TMS interruption of rhythm was quantified by RI. For the unimanual movements, TMS disrupted both contralateral and ipsilateral rhythmic hand movements, although the effect was much less in the ipsilateral hand. For the bimanual in-phase task, TMS could simultaneously reset the rhythmic movements of both hands, but the effect on the contralateral hand was less and the effect on the ipsilateral hand was more compared with the unimanual tasks. Similar effects were seen from right and left hemisphere stimulation. TMS had little effect on the bimanual antiphase task. The equal effect of right and left hemisphere stimulation indicates that neither motor cortex is dominant for simple bimanual in-phase movement. The smaller influence of contralateral stimulation and the greater effect of ipsilateral stimulation during bimanual in-phase movement compared with unimanual movement suggest hemispheric coupling. The antiphase movements were resistant to TMS disruption, and this suggests that control of rhythm differs in the 2 tasks. TMS produced a transient asynchrony of movements on the 2 sides, indicating that both motor cortices might be downstream of the clocking command or that the clocking is a consequence of the 2 hemispheres communicating equally with each other.  相似文献   

5.
Aramaki Y  Honda M  Sadato N 《Neuroscience》2006,141(4):2147-2153
Patterns of bimanual coordination in which homologous muscles are simultaneously active are more stable than those in which homologous muscles are engaged in an alternating fashion. This may be attributable to the stronger involvement of the dominant motor cortex in ipsilateral hand movements via interaction with the non-dominant motor system, known as neural crosstalk. We used functional magnetic resonance imaging to investigate the neural representation of the interhemispheric interaction during bimanual mirror movements. Thirteen right-handed subjects completed four conditions: sequential finger tapping using the right and left index and middle fingers, bimanual mirror and parallel finger tapping. Auditory cues (3 Hz) were used to keep the tapping frequency constant. Task-related activation in the right primary motor cortex was significantly less prominent during mirror than unimanual left-handed movements. This was mirror- and non-dominant side-specific; parallel movements did not cause such a reduction, and the left primary motor cortex showed no such differential activation across the unimanual right, bimanual mirror, and bimanual parallel conditions. Reducing the contralateral innervation of the left hand may increase the fraction of the force command to the left hand coming from the left primary motor cortex, enhancing the neural crosstalk.  相似文献   

6.
Unimanual and bimanual cyclical forearm movements were studied in 15 Huntington's disease (HD) patients and 15 healthy, gender- and age-matched controls. Whereas the unimanual task was only performed at maximal speed, the bimanual movements were performed according to the in-phase and anti-phase mode at different cycling frequencies. The HD patients also performed the tasks after 12 months of follow-up. Findings revealed that maximal cycling frequency during unimanual movement was significantly lower in HD patients as compared with controls. In addition, measures of relative phasing established that bimanual cyclical movements were performed with lower accuracy and higher variability in HD patients. The differential variability between both groups was magnified by increasing the cycling frequency and coordinative complexity whereas only coordinative complexity differentially affected the accuracy of relative phasing. The obtained performance measures were found to be significantly correlated with disease duration (unimanual) and with the score on the total motor scale, the Mini-Mental State Examination and the Stroop Interference Test (uni- and bimanual). After 12 months, maximal cycling frequency of unimanual elbow flexion–extension was significantly decreased in HD patients whereas the quality of the in-phase and anti-phase movement patterns remained stable. Electronic Publication  相似文献   

7.
We recorded local field potentials (LFP) in primary (MI) and supplementary (SMA) motor areas of rhesus monkey cortex in order to compare movement-evoked potentials (mEP) in bimanual and unimanual movements with single-unit activity recorded concurrently. The mEP was often different during bimanual and unimanual movements (a "bimanual-related" effect), but, unlike the single units, the size of the mEP in both MI and SMA was always greater during bimanual movements than during unimanual movements. This increase primarily reflected an increase in the late positive peak of the mEP, a result that may reflect greater overall cortical activation during bimanual movements. In addition, analysis of the mEP revealed differences between MI and SMA not seen in the single-unit activity. mEP in MI had greater contralateral preference than in SMA. Also, SMA mEP was more correlated to the single-unit activity than in MI. This greater correlation was also more apparent in the late peaks of the mEP than in the early peaks and may reflect a greater influence of recurrent activation in SMA than in MI. Our results further reinforce the idea that unimanual and bimanual movements are represented differently both in MI and in SMA and also show that a complex relationship between spikes of individual neurons and LFP may reflect the different input-output relations of different cortical areas. Electronic Publication  相似文献   

8.
Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.  相似文献   

9.
Functional imaging studies have revealed recruitment of ipsilateral motor areas during the production of sequential unimanual finger movements. This phenomenon is more prominent in the left hemisphere during left-hand movements than in the right hemisphere during right-hand movements. Here we investigate whether this lateralization pattern is related specifically to the sequential structure of the unimanual action or generalizes to other complex movements. Using event-related fMRI, we measured activation changes in the motor cortex during three types of unimanual movements: repetitions of a sequence of movements with multiple fingers, repetitive "chords" composed of three simultaneous key presses, and simple repetitive tapping movements with a single finger. During sequence and chord movements, strong ipsilateral activation was observed and was especially pronounced in the left hemisphere during left-hand movements. This pattern was evident for both right-handed and, to a lesser degree, left-handed individuals. Ipsilateral activation was less pronounced in the tapping condition. The site of ipsilateral activation was shifted laterally, ventrally, and anteriorly with respect to that observed during contralateral movements and the time course of activation implied a role in the execution rather than planning of the movement. A control experiment revealed that strong ipsilateral activity in left motor cortex is specific to complex movements and does not depend on the number of required muscles. These findings indicate a prominent role of left hemisphere in the execution of complex movements independent of the sequential nature of the task.  相似文献   

10.
We used a 61-channel electrode array to investigate the spatiotemporal dynamics of electroencephalographic (EEG) activity related to behavioral transitions in rhythmic sensorimotor coordination. Subjects were instructed to maintain a 1:1 relationship between repeated right index finger flexion and a series of periodically delivered tones (metronome) in a syncopated (anti-phase) fashion. Systematic increases in stimulus presentation rate are known to induce a spontaneous switch in behavior from syncopation to synchronization (in-phase coordination). We show that this transition is accompanied by a large-scale reorganization of cortical activity manifested in the spatial distributions of EEG power at the coordination frequency. Significant decreases in power were observed at electrode locations over left central and anterior parietal areas, most likely reflecting reduced activation of left primary sensorimotor cortex. A second condition in which subjects were instructed to synchronize with the metronome controlled for the effects of movement frequency, since synchronization is known to remain stable across a wide range of frequencies. Different, smaller spatial differences were observed between topographic patterns associated with synchronization at low versus high stimulus rates. Our results demonstrate qualitative changes in the spatial dynamics of human brain electrical activity associated with a transition in the timing of sensorimotor coordination and suggest that maintenance of a more difficult anti-phase timing relation is associated with greater activation of primary sensorimotor areas. Received: 3 September 1998 / Accepted: 3 March 1999  相似文献   

11.
Two dominant coordination constraints have been identified during isofrequency conditions in previous work: the egocentric constraint, i.e., simultaneous activation of homologous muscle groups, and the allocentric constraint, i.e., moving the segments in the same direction in extrinsic space. To verify their generalization, bimanual drawing movements were performed in different planes of motion (transverse, frontal, sagittal, frontal-transverse) according to the in-phase and anti-phase mode along the X- and Y-axes. Convergent findings were obtained across the transverse, frontal, and frontal-transverse planes. The in-phase mode along both axes was performed most accurately/consistently, whereas the anti-phase mode resulted in a deterioration of the coordination pattern and this effect was most pronounced when the latter mode was introduced with respect to both dimensions. For sagittal plane motions, the in-phase mode was again superior but the second most optimal configuration was the anti-phase mode along both axes. This finding was hypothesized to result from the familiarity with the pattern since it resembles cycling behavior. It illustrates how cognitive mapping is superimposed onto the dynamics of interlimb coordination. Overall, these results support the presence of both the egocentric and allocentric constraint during bimanual movement production. Received: 21 August 1998 / Accepted: 12 February 1999  相似文献   

12.
Single units were recorded from the primary motor (MI) and supplementary motor (SMA) areas of Rhesus monkeys performing one-arm (unimanual) and two-arm (bimanual) proximal reaching tasks. During execution of the bimanual movements, the task related activity of about one-half the neurons in each area (MI: 129/232, SMA: 107/206) differed from the activity during similar displacements of one arm while the other was stationary. The bulk of this "bimanual-related" activity could not be explained by any linear combination of activities during unimanual reaching or by differences in kinematics or recorded EMG activity. The bimanual-related activity was relatively insensitive to trial-to-trial variations in muscular activity or arm kinematics. For example, trials where bimanual arm movements differed the most from their unimanual controls did not correspond to the ones where the largest bimanual neural effects were observed. Cortical localization established by using a mixture of surface landmarks, electromyographic recordings, microstimulation, and sensory testing suggests that the recorded neurons were not limited to areas specifically involved with postural muscles. By rejecting this range of alternative explanations, we conclude that neural activity in MI as well as SMA can reflect specialized cortical processing associated with bimanual movements.  相似文献   

13.
Three sources of interlimb interactions have been postulated to underlie the stability characteristics of bimanual coordination but have never been evaluated in conjunction: integrated timing of feedforward control signals, phase entrainment by contralateral afference, and timing corrections based on the perceived error of relative phase. In this study, the relative contributions of these interactions were discerned through systematic comparisons of five tasks involving rhythmic flexion-extension movements about the wrist, performed bimanually (in-phase and antiphase coordination) or unimanually with or without comparable passive movements of the contralateral hand. The main findings were the following. 1) Contralateral passive movements during unimanual active movements induced phase entrainment to interlimb phasing of either 0 degrees (in-phase) or 180 degrees (antiphase). 2) Entrainment strength increased with the passive movements' amplitude, but was similar for in-phase and antiphase movements. 3) Coordination of unimanual active movements with passive movements of the contralateral hand (kinesthetic tracking) was characterized by similar bilateral EMG activity as observed in active bimanual coordination. 4) During kinesthetic tracking the timing of the movements of the active hand was modulated by afference-based error corrections, which were more pronounced during in-phase coordination. 5) Indications of in-phase coordination being more stable than antiphase coordination were most prominent during active bimanual coordination and marginal during kinesthetic tracking. Together the results indicated that phase entrainment by contralateral afference contributed equally to the stability of in-phase and antiphase coordination, and that differential stability of these patterns depended predominantly on integrated timing of feedforward signals, with only a minor role for afference-based error corrections.  相似文献   

14.
A chronic single-unit study of motor cortical activity was undertaken in two monkeys trained to perform a bimanually coordinated task. The hypothesis was tested that the supplementary motor area plays a specific role in coordinating the two hands for common goal-oriented actions. With this objective, a special search was made for neurons that might exhibit properties exclusively related to bimanual task performance. Monkeys learned to reach for and to pull open a spring-loaded drawer with one hand, while the other hand reached out to grasp food from the drawer recess. The two hands were precisely coordinated for achievement of this goal. Monkeys also performed, in separate blocks of trials, only the pulling or grasping movements, using the same hands as in the bimanual task. Task-related activity of 348 neurons from the supplementary motor area and 341 neurons from the primary motor area, each examined in the bimanual and in both unimanual tasks, was recorded in the two hemispheres. Most neurons from the supplementary motor area were recorded within its caudal microexcitable portion. Contrary to expectation, the proportion of neurons with activity patterns related exclusively to the bimanual task was small, but somewhat higher in the supplementary motor area (5%) than in the primary motor cortex (2%). Another group of neurons that were equally modulated during the bimanual as well as to both unimanual task components might also contribute in controlling bimanual actions. Such "task-dependent" rather than "effector-dependent" activity patterns were more common in neurons of the supplementary motor area (19%) than of the primary motor cortex (5%). Bilateral receptive fields were also more numerous among the supplementary motor area neurons. However, a large majority of neurons from primary and supplementary motor areas had activity profiles clearly related only to contralateral hand movements (65% in the primary motor and 51% in the supplementary motor area). A similar group of neurons showed an additional slight modulation with ipsilateral movements; they were equally common in the two areas (14% and 16%, respectively) and their significance for bimanual coordination is questionable. Summed activity profiles of all neurons recorded in the primary and supplementary motor areas of the same hemisphere were compared. The modulations of the three histograms, corresponding to the two unimanual and the bimanual tasks, were similar for the two motor areas, i.e. prominent with bimanual and contralateral movements and weak with ipsilateral movements. It is concluded that the supplementary motor area is likely to contribute to bimanual coordination, perhaps more than the primary motor cortex, but that it is not a defining function for the former cortical area. Instead, it is suggested that the supplementary motor area is part of a callosally interconnected and distributed network of frontal and parietal cortical areas that together orchestrate bimanual coordination.  相似文献   

15.
The effect of hemispace on lateralisation of temporal processing was investigated by requiring simultaneity judgements of pairs of unimanually and bimanually presented tactile stimuli. The effects of lateral and midline placeent of hands on simultaneity thresholds were investigated. The first experiment (N=16) showed that simultaneity thresholds were longer with bimanual than unimanual stimulation. Midline hand placement produced bimanual thresholds that were equivalent whether left or right hands were first stimulated. These two findings replicated experiments reported previously that supported an equivalence model of cerebral hemispheric temporal judgements (Clark & Geffen, 1990). With lateral hand placement, longer stimulus onset asynchrony to perceive simultaneity was obtained when the left rather than the right hand received the first stimulus. A second experiment (N=30) replicated these results. A crossed-arms condition in the second experiment yielded equivalent thresholds for left versus right hand receiving the first stimulus. The results of both experiments provide support for the hemispheric equivalence model and indicate that a left hemispace disadvantage rather than left hemisphere specialisation for temporal processing could explain previous reports of simultaneity threshold asymmetries. Longer bimanual than unimanual simultaneity thresholds implicate transcallosal transmission time (IHTT) to compare the two signals. IHTT increased with lateral and crossed compared to midline hand placement, suggesting that distance between the hands may be represented by increased IHTT. We conclude that temporal perceptions are affected by the process of interhemispheric transmission.  相似文献   

16.
The difficulty of a visual three stimulus and a bimanual coordination task was manipulated by varying discrimination difficulty (easy, hard) and coordination mode (in-phase, anti-phase) respectively. Electroencephalographic activity was recorded from 32 sites whilst participants (n = 16) completed four dual-task conditions in counterbalanced order. Longer reaction time and lower accuracy were found for the hard relative to the easy visual task and, for the hard visual task, accuracy was lower under anti-phase relative to in-phase conditions. Amplitude and latency of event-related potential components P3a and P3b were recorded and measured. There was a reduction in P3b amplitude and increase in P3a amplitude for the hard visual task overall and a further reduction in frontal P3b amplitude under the more demanding anti-phase condition. For the easy visual task, however, P3b and P3a amplitude were greater under the anti-phase relative to in-phase coordination condition at left hemisphere frontal sites. These findings suggest that the attentional cost of stabilising anti-phase bimanual coordination is largely associated with top-down automatic processes subserved by the frontal attentional network.  相似文献   

17.
The present set of experiments investigated the Bereitschaftspotential (BP) preceding voluntary bimanual sequential simple (task 1) and complex movements (task 2) in supplementary/cingulate and primary motor areas (SCMA, MIs) using 64-channel direct current electroencephalography analysis in 16 right-handed healthy subjects. The results showed that: (1) onset times of BPs preceding the two tasks were significantly earlier at Cz than at C3 and C4, (2) the complex task induced significantly larger amplitudes than the simple task over the SCMA 1.1 s before EMG onset (BPI period), over the SCMA and both MIs for the BP2 period, extending from the SCMA and MIs to all frontocentral, central, centroparietal, and frontal areas during the motor potential period, (3) task difference prior to 0.96 s mainly appeared in the SCMA rather than in either MI, (4) the BP had a significantly larger amplitude in the SCMA than in the MIs, the differences being asymmetric between the left and the right hemisphere motor areas, and (5) the sinks of BP current source density (CSD) preceding the two tasks were found in the frontocentral midline; and the regions and intensities of CSD maps were larger and stronger in task 2 than they were in task I at the same times of the epoch. The results suggested that: (1) the SCMA and MIs participate in bimanual sequential simple or complex movements, (2) the SCMA appears to not only serve as a trigger command for voluntary movement but also seems to design the different motor modes, (3) the amplitude, duration, onset time, CSD region, and intensity of BP all increase with the level of complexity of the movement, (4) the greater the complexity of the action, the earlier the preparation and the larger the extent of activated neuronal populations in the SCMA, (5) activation of the SCMA occurred prior to that of the MI, and (6) the activation suggests an asymmetry between left and right MIs in simultaneous bilateral finger movement, but this asymmetry seems to be less pronounced for complex movements.  相似文献   

18.
Both discrete and continuous bimanual coordination patterns are difficult to effectively perform when the two limbs are required to perform different movements patterns, move at different velocities and/or move different amplitudes unless some form of integrated feedback is provided. The purpose of the present experiment was to determine the degree to which a complex bimanual coordination pattern could be performed when integrated feedback and movement template are provided. The complex bimanual coordination pattern involved reciprocal movements of the two limbs under different difficulty requirements. As defined by Fitts’ index of difficulty (ID), the left arm (ID = 3, A = 16°, W = 4°) task was of lower difficulty than the right arm task (ID = 5, A = 32°, W = 2°). Note that the left and right limb movements are also different in terms of movement time, movement velocity, accuracy requirements and amplitude as well as one movement was continuous and the other intermittent. Participants were provided 2 blocks of 9 trials in the bimanual condition (30 s/trial). Following the bimanual phase, participants performed two unimanual test trials—one with each limb. The results demonstrated that the performance for each limb in the bimanual condition was similar to the performance for the same limb and conditions in the unimanual control conditions. The similarity was indicated by the same movement speed, movement structure, endpoint variability and hit rates for the bimanual and unimanual conditions. The results support our hypothesis that people can overcome the intrinsic difficulties associated with performing complex bimanual coordination patterns when provided appropriate perceptual information feedback that allows them to detect and correct coordination errors.  相似文献   

19.
The underlying neural mechanisms of a perceptual bias for in-phase bimanual coordination movements are not well understood. In the present study, we measured brain activity with functional magnetic resonance imaging in healthy subjects during a task, where subjects performed bimanual index finger adduction–abduction movements symmetrically or in parallel with real-time congruent or incongruent visual feedback of the movements. One network, consisting of bilateral superior and middle frontal gyrus and supplementary motor area (SMA), was more active when subjects performed parallel movements, whereas a different network, involving bilateral dorsal premotor cortex (PMd), primary motor cortex, and SMA, was more active when subjects viewed parallel movements while performing either symmetrical or parallel movements. Correlations between behavioral instability and brain activity were present in right lateral cerebellum during the symmetric movements. These findings suggest the presence of different error-monitoring mechanisms for symmetric and parallel movements. The results indicate that separate areas within PMd and SMA are responsible for both perception and performance of ongoing movements and that the cerebellum supports symmetric movements by monitoring deviations from the stable coordination pattern.  相似文献   

20.
To investigate the involvement of primate non-primary motor cortices in bimanual sequential movements, we recorded neuronal activity in the supplementary motor area (SMA) and presupplementary motor area (pre-SMA) while an animal was performing bimanual motor tasks that required two sequential arm movements consisting of either pronation or supination of the right or left arms with delay periods. We also recorded electromyograms (EMGs) from the arm while the animal performed the bimanual task to compare muscle and neuronal activity. This paper focuses on the neuronal activity before the onset of sequential movements. We found that the prime-mover forelimb muscles were selectively active when an impending arm movement involved recorded muscles, but was not dependent on whether the arm movements were bimanual or unimanual. In contrast, we found that neurons in the non-primary motor cortices showed different activity depending on whether the forthcoming sequential arm movements were unimanual or bimanual. Our results suggest that neuronal activity in the SMA and pre-SMA reflects higher-order information about arm use before motor execution. By extracting this type of information, we can use it to control prosthetic arms in a more intelligent manner through a brain-machine interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号