首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
经颅重复磁刺激对人脑皮层兴奋性的影响   总被引:2,自引:0,他引:2  
目的 研究经颅重复磁刺激(rTMS)对人脑运动皮层兴奋性的影响。方法 5Hz×30次或15Hz×30次rTMS,以相当于120%静止运动阈值的强度,作用于12名青壮年志愿者,并利用成对的条件-检测刺激方法检验rTMS对皮层内抑制(ICI)及皮层内易化(ICF)的影响。结果 15HzrTMS显著抑制ICI达3.4min,兴奋ICF达1.5min,而运动阈值仅被降低约30s。5HzrTMS仅显著抑制ICI30s,而对ICF及运动阈值无影响。结论 高频阈上rTMS能一过性抑制皮层内抑制环路并提高皮层内兴奋性环路的活动。  相似文献   

2.
OBJECTIVE: To investigate the changes in cortical excitability of the human motor cortex induced by high-frequency repetitive transcranial magnetic stimulation (rTMS) of different stimulation durations. METHODS: Twenty healthy subjects participated in the study. Subjects received 20 trains of 10-Hz rTMS at 80% of the resting motor threshold (RMT) intensity with two different stimulation durations (5 and 1.5s) over the motor hot spot for left first dorsal interosseous (FDI) muscle. Electromyographic responses (motor-evoked potentials, MEPs) to single-pulse stimulation, and intracortical inhibition (ICI) and intracortical facilitation (ICF) by paired-pulse stimulation were measured bilaterally in the relaxed FDI muscles before, immediately after, and 30, 60, 90 and 120 min after rTMS. RESULTS: After 5s of 10-Hz rTMS, the mean amplitude of MEP for the stimulated M1 cortex decreased for up to 90min (P=0.002) and that of the unstimulated M1 cortex decreased for up to 60 min (P=0.008). Enhancement of ICI and suppression of ICF were observed and sustained for more than 90 min in both stimulated (P=0.001) and unstimulated (P=0.003) M1 cortex after 5s of 10-Hz rTMS. After 1.5s of 10-Hz rTMS, the mean amplitude of MEP increased in stimulated cortex for up to 120 min (P=0.005). CONCLUSIONS: With different stimulation durations, high-frequency subthreshold rTMS can produce different patterns of long-lasting changes in corticospinal and intracortical excitability in stimulated and unstimulated motor cortex in healthy subjects. SIGNIFICANCE: The results have important implications for the selection of stimulation parameters other than the frequency of rTMS. The clinical application of rTMS for the purpose of motor enhancement should be considered along with the mechanism of different stimulation parameters.  相似文献   

3.
Interhemispheric effects of high and low frequency rTMS in healthy humans.   总被引:5,自引:0,他引:5  
OBJECTIVE: We investigated whether repetitive transcranial magnetic stimulation (rTMS) applied to the right motor cortex modified the excitability of the unstimulated left motor cortex. METHODS: Interhemispheric effects of 0.5 and 5 Hz subthreshold rTMS over the right motor cortex were examined by single pulse and paired pulse TMS and by transcranial electrical stimulation (TES) applied to the unstimulated left motor cortex. The effects of (a) 1800 pulses real and sham rTMS with 5 Hz, (b) 180 pulses real and sham rTMS with 0.5 Hz and (c) 1800 pulses real rTMS with 0.5 Hz were studied. RESULTS: Following 5 Hz right motor rTMS motor evoked potential (MEP) amplitudes induced by single pulse TMS over the left motor cortex increased significantly. Intracortical inhibition (ICI) and facilitation (ICF) and MEP amplitudes evoked by TES were unchanged. Sham stimulation had no influence on motor cortex excitability. After 180 pulses right motor cortex rTMS with 0.5 Hz a significant decrease of left motor ICF, but no change in single pulse MEP amplitudes was found. A similar trend was observed with 1800 pulses rTMS with 0.5 Hz. CONCLUSIONS: High frequency right motor rTMS can increase left motor cortex excitability whereas low frequency right motor rTMS can decrease it. These effects outlast the rTMS by several minutes. The underlying mechanisms mediating interhemispheric excitability changes are likely to be frequency dependent.  相似文献   

4.
OBJECTIVE: To investigate the effect of high frequency rTMS (25 Hz at 90-100% of resting motor threshold) on the excitability of the motor cortex of healthy human subjects. METHODS: Resting and active motor threshold, MEP recruitment curve (I/O curve), short interval intracortical inhibition (SICI) and facilitation (ICF), and the duration of the silent period (SP) were tested in the right first dorsal interosseous muscle (FDI) before and twice after the end of 1500 pulses in 16 normal young adult male volunteers. RESULTS: Twenty-five Hertz rTMS decreased motor thresholds, reduced the duration of the silent period and had a tendency to increase the slope of the I/O curve. Most of these effects lasted for the duration of the two post-testing sessions (at least 30 min) and had returned to normal by 2h. There were no significant effects on SICI/ICF. CONCLUSION: Twenty-five Hertz rTMS can produce a long lasting increase in cortical excitability in healthy subjects. SIGNIFICANCE: This method may prove useful for the study of normal human physiology and for therapeutic manipulation of brain plasticity.  相似文献   

5.
OBJECTIVE: To assess the effects of focal motor cortex stimulation on motor performance and cortical excitability in patients with Parkinson's disease (PD). METHODS: Repetitive transcranial magnetic stimulation (rTMS) was performed on the left motor cortical area corresponding to the right hand in 12 'off-drug' patients with PD. The effects of subthreshold rTMS applied at 0.5 Hz (600 pulses) or at 10 Hz (2000 pulses) using a 'real' or a 'sham' coil were compared to those obtained by a single dose of l-dopa. The assessment included a clinical evaluation by the Unified Parkinson's Disease Rating Scale and timed motor tasks, and a neurophysiological evaluation of cortical excitability by single- and paired-pulse TMS techniques. RESULTS: 'Real' rTMS at 10 or 0.5 Hz, but not 'sham' stimulation, improved motor performance. High-frequency rTMS decreased rigidity and bradykinesia in the upper limb contralateral to the stimulation, while low-frequency rTMS reduced upper limb rigidity bilaterally and improved walking. Concomitantly, 10 Hz rTMS increased intracortical facilitation, while 0.5 Hz rTMS restored intracortical inhibition. CONCLUSIONS: Low- and high-frequency rTMS of the primary motor cortex lead to significant but differential changes in patients with PD both on clinical and electrophysiological grounds. The effects on cortical excitability were opposite to previous observations made in healthy subjects, suggesting a reversed balance of cortical excitability in patients with PD compared to normals. However, the underlying mechanisms of these changes remain to determine, as well as the relationship with clinical presentation and response to l-dopa therapy. SIGNIFICANCE: The present study gives some clues to appraise the role of the primary motor cortex in PD. Clinical improvement induced by rTMS was too short-lasting to consider therapeutic application, but these results support the perspective of the primary motor cortex as a possible target for neuromodulation in PD.  相似文献   

6.
Single or paired pulse paradigms of transcranial magnetic stimulation (TMS) provide several parameters to test motor cortex excitability, such as motor threshold (MT), motor evoked potential (MEP) amplitude, electromyographic silent period to cortical stimulation (CSP) and intracortical facilitation (ICF) or inhibition (ICI). Various changes in TMS parameters, revealing motor cortex dysfunction, were found in patients with Parkinson's disease (PD). For instance, low MT and increased MEP size disclosed an enhanced corticospinal motor output at rest, while reduced ICF and failure of MEP size increase during contraction suggested defective facilitatory cortical inputs, particularly for movement execution. Inhibitory cortical pathways were also found less excitable at rest (reduced ICI) and sometimes during contraction (shortened CSP). By restoring cortical inhibition, dopaminergic drugs and deep brain stimulation probably overcome the difficulty to focus neuronal activity onto the appropriate network required for a specific motor task. The application of repetitive TMS trains over motor cortical areas also showed some effect on cortical excitability, opening perspectives to consider the motor cortex as a target for therapeutic neuromodulation in PD. However, systematic studies of cortical excitability remained to be performed in large series of patients with PD, taking into account disease stage, clinical symptoms and medication influence.  相似文献   

7.
OBJECTIVE: To study the after effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (M1) on corticospinal excitability. METHODS: Eight healthy volunteers received either 150 or 1800 stimuli of 5 Hz rTMS on two separate days in a counterbalanced order. rTMS was given over the 'motor hot spot' of the right first dorsal interosseus (FDI) muscle using an intensity of 90% of resting motor threshold (referred to as subthreshold rTMS). We evaluated the amplitude of the motor-evoked potential (MEP), short-latency intracortical inhibition (SICI), short-latency intracortical facilitation (SICF), and cortical silent period (CSP) before and for about 30 min after rTMS. MEPs were recorded from the right FDI muscle and abductor digiti minimi (ADM) muscle. RESULTS: 1800 stimuli induced an increase in MEP amplitude in the relaxed FDI muscle, but not in the relaxed ADM muscle. This facilitatory after effect was stable for at least 30 min. Prolonged 5 Hz rTMS had no effect on the relative magnitude of SICI and SICF. 150 stimuli caused no lasting modulation of MEP amplitudes in either muscle. In a subgroup of 5 subjects, 900 conditioning stimuli caused only a short-lived MEP facilitation. 5 Hz rTMS did not modify the duration of the CSP during tonic contraction. CONCLUSIONS: A single session of subthreshold 5 Hz rTMS to the M1 can induce a long-lasting and muscle-specific increase in resting corticospinal excitability. However, a sufficient number of conditioning stimuli is necessary to produce persistent corticospinal facilitation.  相似文献   

8.
OBJECTIVES: The objective of the present study is to test the modulating effects of dextro-amphetamine (d-AMP) on excitability and stimulation-induced plasticity in human motor cortex. METHODS: Transcranial magnetic stimulation (TMS) was used to measure motor threshold, motor evoked potential (MEP) size and paired-pulse intracortical facilitation (ICF) in the biceps muscle of 7 healthy subjects before and after two different experimental manipulations: temporary forearm ischemic nerve block (INB) alone, or INB plus 0.1 Hz repetitive TMS (INB+rTMS) of the motor cortex contralateral to INB. Both manipulations were run after treatment with 10mg of d-AMP or placebo (PBO). RESULTS: In the PBO experiments, INB alone had no significant effect on MEP size or ICF, while INB+rTMS produced long-lasting (>60 min) increases. Compared with PBO, d-AMP led to a short-lasting ( approximately 10 min) increase in MEP size in the INB alone experiment, but suppressed the long-lasting increases of MEP size and ICF in the INB+rTMS experiment. CONCLUSIONS: The present findings suggest that d-AMP increases neuronal excitability but suppresses long-lasting stimulation-induced plasticity in human motor cortex. These dual effects may be relevant when using d-AMP to modulate human cortex function.  相似文献   

9.
OBJECTIVE: The aim of the study was to examine intracortical excitability in cerebellar patients. METHODS: Short-latency intracortical inhibition (SICI), long-latency intracortical inhibition (LICI) and intracortical facilitation (ICF) to paired transcranial magnetic stimulation (TMS) were investigated in 8 patients with 'pure' cerebellar syndromes and in 14 age-matched normal controls. The conditioning stimulus for short-latency intracortical inhibition and intracortical facilitation was set at 70% of the resting motor threshold (RMT) and preceded the test stimulus (110-120% of the resting motor threshold) by interstimulus intervals (ISIs) of 1-30 ms. For the long-latency intracortical inhibition determinations, the conditioning stimulus was set at 120% of the resting motor threshold and preceded the test stimulus (also 120% of the resting motor threshold) by interstimulus intervals of 30-500 ms. RESULTS: No statistically significant differences were found between patients and controls as regards either short-latency intracortical inhibition or intracortical facilitation. A significant prevalence of long-latency intracortical inhibition was present in cerebellar patients at interstimulus intervals of 200-500 ms (conditioned MEP amplitude=29-41% of test MEP) as compared to controls (71-96% of test MEP). The amplitude of conditioned MEPs was persistently less than 45% of the test MEP in six patients, who were studied at interstimulus intervals up to 1000 ms. CONCLUSIONS: Long-latency intracortical inhibition was prevalent and abnormally longer-lasting in patients. Tonic hyperactivation of a subpopulation of GABAergic interneurons in the motor cortex of patients may be the mechanism responsible for this abnormality. Our findings seem to be specific to cerebellar diseases and are the opposite of those found in movement disorders such as dystonia and Parkinson's disease. These data suggest that the cerebellum and the basal ganglia may have opposite influences in tuning the excitability of the motor cortex.  相似文献   

10.
Acute and chronic effects of ethanol on cortical excitability.   总被引:1,自引:0,他引:1  
OBJECTIVE: We designed this study to find out whether 5Hz repetitive transcranial magnetic stimulation (rTMS) would disclose changes in cortical plasticity after acute intake of ethanol and in patients with chronic alcohol consumption. METHODS: Ten stimuli-5Hz-rTMS trains were applied over the primary motor cortex in 10 healthy subjects before and after acute ethanol intake and in 13 patients with chronic ethanol abuse, but negative blood ethanol levels when studied. The motor evoked potential (MEP) amplitude and the cortical silent period (CSP) duration during the course of rTMS trains were measured. Short-interval intracortical inhibition (3ms) and intracortical facilitation (10ms) were studied by paired-pulse TMS in 4 healthy subjects and 4 patients. RESULTS: In healthy subjects before and after acute ethanol intake, 5Hz-rTMS produced a significant increase in the MEP size and CSP duration during rTMS. The first CSP in the train was significantly longer after than before ethanol intake. In patients 5Hz-rTMS failed to produce the normal MEP facilitation but left the CSP increase unchanged. CONCLUSIONS: Acute and chronic ethanol intake alters cortical excitability and short-term plasticity of the primary motor cortex as tested by the MEP size facilitation and CSP lengthening after 5Hz-rTMS. SIGNIFICANCE: This finding suggests that rTMS is a valid tool for investigating the effects of ethanol on cortical plasticity in humans.  相似文献   

11.
Several recent reports suggest the possibility of monitoring pharmacological effects on brain excitability through transcranial magnetic stimulation (TMS). In these studies, paired magnetic stimulation has been used in normal subjects and on patients who were taking different antiepileptic drugs. The aim of our study was to investigate motor area excitability on depressed patients after intravenous administration of a single dose of clomipramine, a tricyclic antidepressant. Motor cortex excitability was studied by single and paired transcranial magnetic stimulation (TMS) before and after 4, 8 and 24 h from intravenous administration of 25 mg of clomipramine. Cortical excitability was measured using different TMS parameters: motor threshold (MT), motor evoked potential (MEP) amplitude, duration of cortical silent period (CSP), intracortical inhibition (ICI) and intracortical facilitation (ICF). Spinal excitability and peripheral nerve conduction was measured by F response and M wave. A temporary but significant increase of motor threshold and intracortical inhibition and a decrease of intracortical facilitation were observed 4 h following drug administration. MEP amplitude, cortical silent period, F response and M wave were not significantly affected by drug injection. Our findings suggest that a single intravenous dose of clomipramine can exert a significant but transitory suppression of motor cortex excitability in depressed patients. TMS represents a useful research tool in assessing the effects of motor cortical excitability of neuropsychiatric drugs used in psychiatric disease.  相似文献   

12.
We designed this study to investigate possible correlations between variables measuring primary motor cortex excitability detected by single and paired-pulse transcranial magnetic stimulation (TMS) and the severity of clinical manifestations in patients with multiple sclerosis (MS). Thirty patients with MS in remission, 16 with relapsing–remitting (RR), 14 with secondary progressive disease (SP) and 17 healthy subjects participated in the study. In each subject, the central motor conduction time (CMCT) was calculated, and single-pulse and paired-pulse TMS at 3 and 10 ms interstimulus intervals was delivered over the primary motor cortex of the dominant hemisphere to measure the amplitude of motor-evoked potentials (MEPs), motor threshold (MTh), intracortical inhibition (ICI) and facilitation (ICF). Correlations were determined between the patients’ TMS findings and magnetic resonance imaging (MRI) (lesion load) and clinical features (expanded disability status scale, EDSS score). EDSS scores were significantly higher in SPMS than in RRMS patients. The MTh was significantly higher, and the MEP was significantly smaller in SPMS patients than in RRMS patients and control subjects. All patients had longer CMCTs than healthy subjects. In all patients, paired-pulse TMS elicited an inhibited test MEP at the 3-ms ISI and a facilitated test MEP at the 10 ms ISI. Post hoc analysis showed that ICI was significantly lower in SPMS patients than in those with RRMS and healthy subjects. EDSS scores correlated significantly with TMS measures (MEP, ICI, CMCT and MTh), but not with MRI lesion load. It was found that intracortical excitability as measured with TMS differs according to the clinical course of MS; it remains normal in patients with low EDSS scores and is altered in patients with high EDSS scores.  相似文献   

13.
OBJECTIVE: The antidepressant action of electro-convulsive therapy (ECT) and repetitive transcranial magnetic stimulation (rTMS) may be related to their ability to modulate cortical excitability. The aim of this study was to investigate changes in cortical excitability following ECT in patients with major depression (MD) and to compare therapeutic efficacy of ECT combined with rTMS to that of ECT alone. METHODS: Twenty-two patients with MD were assigned to receive ECT and right prefrontal 1 Hz rTMS (n=12) or ECT with sham rTMS (n=10). ECT was given twice weekly and rTMS was applied on the remaining 4 days, throughout 3 weeks. The resting motor threshold (rMT) and motor evoked potential (MEP)/M-wave area ratio were evaluated before and 6 h after the first, third and sixth ECT session. The active motor threshold (aMT), intra-cortical inhibition (ICI) and intra-cortical facilitation (ICF) were measured at baseline and 24 h after the last ECT. RESULTS: There were no significant differences in the degree of clinical improvement and measures of cortical excitability in the ECT+active rTMS group as compared to the ECT+sham rTMS group. Marked clinical improvement observed in 19 out of the 22 patients was associated with a significant increase of the MEP/M-wave area ratio, decrease of the aMT and reduction of the ICI in the left hemisphere. CONCLUSIONS: The antidepressant effect of ECT was associated with an enhancement of left hemispheric excitability. rTMS did not add to the beneficial effect of ECT. However, the small sample size and the robust effect of ECT might have obscured a potential therapeutic effect of rTMS. SIGNIFICANCE: Measures of cortical excitability may provide insight to our understanding of the mechanism of action of ECT and might be useful for the assessment of treatment response.  相似文献   

14.
PURPOSE: Topiramate (TPM) is a novel drug with broad antiepileptic effect in children and adults. In vitro studies suggest activity as sodium-channel blocker, as gamma-aminobutyric acid type A (GABAA)-receptor agonist and as non-N-methyl-D-aspartate (NMDA)-glutamate receptor antagonist. METHODS: With transcranial magnetic stimulation (TMS), we evaluated which of the mechanisms of action of TPM detected in vitro are relevant for the modulation of human motor cortex excitability. In a double-blind, placebo-controlled, crossover study design, we investigated the effect of single oral doses of 50 mg and 200 mg TPM on motor thresholds, cortical silent period (CSP), and on intracortical inhibition (ICI) and intracortical facilitation (ICF) in 20 healthy subjects. RESULTS: A significant dose-dependent increase of ICI was noticed after 200 mg TPM as compared with placebo at short interstimulus intervals of 2 to 4 ms. TPM had no effect on motor thresholds or the CSP. CONCLUSIONS: We conclude that a single dose of TPM selectively increases ICI by GABAAergic and/or glutamatergic mechanisms without a relevant influence on measures, depending on ion-channel blockade or GABAB-receptor activity. The decrease of intracortical excitability (as measured by ICI and ICF) caused by TPM may correlate with its lack of proconvulsive potential in idiopathic generalized epilepsy, because drugs without this action or with less pronounced action may exacerbate seizures in this condition.  相似文献   

15.

Objective

Repetitive application of peripheral electrical stimuli paired with transcranial magnetic stimulation (rTMS) of M1 cortex at low frequency, known as paired associative stimulation (PAS), is an effective method to induce motor cortex plasticity in humans. Here we investigated the effects of repetitive peripheral magnetic stimulation (rPMS) combined with low frequency rTMS (‘magnetic-PAS’) on intracortical and corticospinal excitability and whether those changes were widespread or circumscribed to the cortical area controlling the stimulated muscle.

Methods

Eleven healthy subjects underwent three 10 min stimulation sessions: 10 Hz rPMS alone, applied in trains of 5 stimuli every 10 s (60 trains) on the extensor carpi radialis (ECR) muscle; rTMS alone at an intensity 120% of ECR threshold, applied over motor cortex of ECR and at a frequency of 0.1 Hz (60 stimuli) and magnetic PAS, i.e., paired rPMS and rTMS. We recorded motor evoked potentials (MEPs) from ECR and first dorsal interosseous (FDI) muscles. We measured resting motor threshold, motor evoked potentials (MEP) amplitude at 120% of RMT, short intracortical inhibition (SICI) at interstimulus interval (ISI) of 2 ms and intracortical facilitation (ICF) at an ISI of 15 ms before and immediately after each intervention.

Results

Magnetic-PAS, but not rTMS or rPMS applied separately, increased MEP amplitude and reduced short intracortical inhibition in ECR but not in FDI muscle.

Conclusion

Magnetic-PAS can increase corticospinal excitability and reduce intracortical inhibition. The effects may be specific for the area of cortical representation of the stimulated muscle.

Significance

Application of magnetic-PAS might be relevant for motor rehabilitation.  相似文献   

16.
OBJECTIVE: Following a previous report [Bestmann et al. Clin Neurophysiol 2004;115:755-64] that pairs of subthreshold pulses of transcranial magnetic stimulation (TMS) can show temporal summation, we explored whether repeated application of pairs of stimulation could produce long-lasting after effects on the excitability of the human motor cortex. METHODS: Twelve healthy subjects received 25 min repetitive paired pulse magnetic stimulation (paired rTMS) given at a frequency of about 0.6 Hz over the left primary motor cortex (500 paired stimuli in total). The interval between the paired stimuli was 3 ms and the intensity of both stimuli was 80% of active motor threshold. The resting and active motor threshold, MEP recruitment curve, short interval intracortical inhibition (SICI) and facilitation, and the duration of the cortical silent period (SP) were tested for the right first interosseous muscle (FDI) before and two times after the end of 25 min paired rTMS. RESULTS: Prolonged subthreshold paired rTMS produced a significant decrease in excitability in the corticospinal projection to FDI: resting motor threshold was significantly increased and MEP recruitment was significantly decreased, SICI was significantly increased at 2 and 4 ms and the SP was significantly increased in duration. CONCLUSIONS: Prolonged low frequency paired rTMS at subthreshold intensity can modulate cortical excitability by producing inhibitory effects that outlast the period of stimulation.  相似文献   

17.
Repetitive transcranial magnetic stimulation (rTMS) over primary motor cortex (M1) elicits changes in motor evoked potential (MEP) size thought to reflect short‐ and long‐term forms of synaptic plasticity, resembling short‐term potentiation (STP) and long‐term potentiation/depression (LTP/LTD) observed in animal experiments. We designed this study in healthy humans to investigate whether STP as elicited by 5‐Hz rTMS interferes with LTP/LTD‐like plasticity induced by intermittent and continuous theta‐burst stimulation (iTBS and cTBS). The effects induced by 5‐Hz rTMS and iTBS/cTBS were indexed as changes in MEP size. We separately evaluated changes induced by 5‐Hz rTMS, iTBS and cTBS applied alone and those induced by iTBS and cTBS delivered after priming 5‐Hz rTMS. Interactions between 5‐Hz rTMS and iTBS/cTBS were investigated under several experimental conditions by delivering 5‐Hz rTMS at suprathreshold and subthreshold intensity, allowing 1 and 5 min intervals to elapse between 5‐Hz rTMS and TBS, and delivering one and ten 5‐Hz rTMS trains. We also investigated whether 5‐Hz rTMS induces changes in intracortical excitability tested with paired‐pulse transcranial magnetic stimulation. When given alone, 5‐Hz rTMS induced short‐lasting and iTBS/cTBS induced long‐lasting changes in MEP amplitudes. When M1 was primed with 10 suprathreshold 5‐Hz rTMS trains at 1 min before iTBS or cTBS, the iTBS/cTBS‐induced after‐effects disappeared. The 5‐Hz rTMS left intracortical excitability unchanged. We suggest that STP elicited by suprathreshold 5‐Hz rTMS abolishes iTBS/cTBS‐induced LTP/LTD‐like plasticity through non‐homeostatic metaplasticity mechanisms. Our study provides new information on interactions between short‐term and long‐term rTMS‐induced plasticity in human M1.  相似文献   

18.
OBJECTIVE: Several studies suggest that transcutaneous electrical stimulation (TENS) can have a variety of effects on the central nervous system (CNS). In this study, we tried to replicate the physiological effects of TENS and to explore its effects on intracortical circuits. METHODS: We used transcranial magnetic stimulation (TMS) and spinal reflex testing to examine excitability of intracortical and spinal cord circuits before and after a 30-min period of TENS over the flexor carpi radialis (FCR) muscle. We measured the amplitude of TMS-evoked muscle responses (MEP), short interval intracortical inhibition (SICI), intracortical facilitation (ICF) and cortical antagonist inhibition (CAI) in flexor and extensor carpial radialis (FCR, ECR) muscles as well as spinal reciprocal inhibition (RI) and presynaptic inhibition (PI) from ECR to FCR. RESULTS: TENS had no significant effect on any of these measures apart from a reduction in median nerve induced facilitation of FCR when testing CAI. CONCLUSIONS: When compared with previous studies, our results suggest that the effects of TENS are highly variable and unreliable, likely by the difficulty in defining precise parameters of stimulation in individual subjects. SIGNIFICANCE: Care should be taken in assuming that effects after TENS observed in small populations of subjects will apply equally to a wider population.  相似文献   

19.
Motor cortical excitability in patients with poststroke epilepsy   总被引:3,自引:0,他引:3  
Kim JH  Lee HW  Cohen LG  Park KD  Choi KG 《Epilepsia》2008,49(1):117-124
PURPOSE: To gain insight into the mechanisms underlying poststroke epilepsy (PSE), we evaluated motor cortical function in chronic stroke patients with (N = 18) and without (N = 18) PSE. METHODS: We measured resting motor threshold (RMT), motor evoked potential (MEP) amplitudes, cortical silent period (CSP), intracortical inhibition (ICI), influenced by GABAergic neurotransmission, and intracortical facilitation (ICF), influenced by glutamatergic activity, to transcranial magnetic stimulation. RESULTS: We found (1) larger MEP amplitudes and ICF, in the affected than unaffected hemispheres of patients in the PSE group but not in patients without epilepsy, and (2) comparably higher RMT and longer CSP in the absence of differences in ICI, H-reflexes or F-waves in the affected and unaffected hemispheres of both PSE and non-PSE patients. CONCLUSIONS: Enhanced cortical excitability in the affected hemisphere, possibly related to increased glutamatergic activity, could be one of the mechanisms contributing to the development of poststroke epilepsy.  相似文献   

20.
OBJECTIVES: To test whether unilateral hand muscle activation involves changes in ipsilateral primary motor cortex (M1) excitability. METHODS: Single- and paired-pulse transcranial magnetic stimulation (TMS) of the right hemisphere was used to evoke motor evoked potentials (MEPs) from the resting left abductor pollicis brevis (APB) in 9 normal volunteers. We monitored changes in motor threshold (MT), MEP recruitment, intracortical inhibition (ICI) and intracortical facilitation (ICF) while the ipsilateral right APB was either at rest or voluntarily activated. Spinal motoneuron excitability was assessed using F-wave recording procedures. RESULTS: Voluntary muscle activation of the ipsilateral APB significantly facilitated the MEPs and F-waves recorded from the contralateral APB. Facilitation was observed with muscle activation >50% of the maximum voluntary force and with stimulus intensities >20% above the individual resting motor threshold. Intracortical inhibition significantly decreased in the ipsilateral M , while there was no significant change in intracortical facilitation during this maneuver. CONCLUSIONS: Unilateral hand muscle activation changes the excitability of homotopic hand muscle representations in both the ipsilateral M1 and the contralateral spinal cord. While the large proportion of MEP facilitation most likely occurred at a spinal level, involvement of the ipsilateral hemisphere may have contributed to the enlargement of magnetic responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号