首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Activating mutations in the FLT3 tyrosine kinase (TK) occur in approximately 35% of patients with acute myeloid leukemia (AML). Therefore, targeting mutated FLT3 is an attractive therapeutic strategy, and early clinical trials testing FLT3 TK inhibitors (TKI) showed measurable clinical responses. Most of these responses were transient; however, in a subset of patients blast recurrence was preceded by an interval of prolonged remission. The etiology of clinical resistance to FLT3-TKI in AML is unclear but is of major significance for the development of future therapeutic strategies. We searched for mechanisms of resistance in 6 patients with AML who had relapses upon PKC412 treatment. In an index AML patient, an algorithm of analyses was applied using clinical material. In vivo and in vitro investigation of primary blasts at relapse revealed persistent TK phosphorylation of FLT3 despite sufficient PKC412 serum levels. Through additional molecular analyses, we identified a single amino acid substitution at position 676 (N676K) within the FLT3 kinase domain as the sole cause of resistance to PKC412 in this patient. Reconstitution experiments expressing the N676K mutant in 32D cells demonstrated that FLT3-ITD-N676K was sufficient to confer an intermediate level of resistance to PKC412 in vitro. These studies point out that a genetically complex malignancy such as AML may retain dependence on a single oncogenic signal.  相似文献   

3.
Knapper S  Mills KI  Gilkes AF  Austin SJ  Walsh V  Burnett AK 《Blood》2006,108(10):3494-3503
The receptor tyrosine kinase FLT3 is a promising molecular therapeutic target in acute myeloid leukemia (AML). Activating mutations of FLT3 are present in approximately one-third of patients, while many nonmutants show evidence of FLT3 activation, which appears to play a significant role in leukemogenesis. We studied the effects of lestaurtinib (CEP701) and PKC412, 2 small molecule inhibitors of FLT3, on 65 diagnostic AML blast samples. Both agents induced concentration-dependent cytotoxicity in most cases, although responses to PKC412 required higher drug concentrations. Cytotoxic responses were highly heterogeneous and were only weakly associated with FLT3 mutation status and FLT3 expression. Importantly, lestaurtinib induced cytotoxicity in a synergistic fashion with cytarabine, particularly in FLT3 mutant samples. Both lestaurtinib and PKC412 caused inhibition of FLT3 phosphorylation in all samples. Translation of FLT3 inhibition into cytotoxicity was influenced by the degree of residual FLT3 phosphorylation remaining and correlated with deactivation of STAT5 and MAP kinase. FLT3 mutant and wild-type cases both varied considerably in their dependence on FLT3 signaling for survival. These findings support the continued clinical assessment of FLT3 inhibitors in combination with cytotoxic chemotherapy: Entry to future clinical trials should include FLT3 wild-type patients and should remain unrestricted by FLT3 expression level.  相似文献   

4.
5.
Acute lymphoblastic leukemia (ALL) in infants is characterized by rearrangements of the mixed lineage leukemia (MLL) gene, drug resistance, and a poor treatment outcome. Therefore, novel therapeutic strategies are needed to improve prognosis. Recently, we showed that FLT3 is highly expressed in MLL rearranged ALL (MLL). Here we demonstrate FLT3 expression in infants with MLL (n = 41) to be significantly higher compared to both infant (n = 8; P < .001) and noninfant patients with ALL (n = 23; P = .001) carrying germline MLL genes. Furthermore, leukemic cells from infants with MLL were significantly more sensitive to the Fms-like tyrosine kinase 3 (FLT3) inhibitor PKC412 (N-benzoyl staurosporine) than noninfant ALL cells, and at least as sensitive as internal tandem duplication-positive (ITD+) AML cells. Surprisingly, activation loop mutations only occurred in about 3% (1 of 36) of the cases and no FLT3/ITDs were observed. However, measuring FLT3 phosphorylation in infants with MLL expressing varying levels of wild-type FLT3 revealed that high-level FLT3 expression is associated with ligand-independent FLT3 activation. This suggests that infant MLL cells displaying activated FLT3 as a result of overexpression can be targeted by FLT3 inhibitors such as PKC412. However, at concentrations of PKC412 minimally required to fully inhibit FLT3 phosphorylation, the cytotoxic effects were only fractional. Thus, PKC412-induced apoptosis in infant MLL cells is unlikely to be a consequence of FLT3 inhibition alone but may involve inhibition of multiple other kinases by this drug.  相似文献   

6.
FLT3 (fms-related tyrosine kinase/Flk2/Stk-2) is a receptor tyrosine kinase (RTK) primarily expressed on hematopoietic cells. In blasts from acute myelogenous leukemia (AML) patients, 2 classes of FLT3 activating mutations have been identified: internal tandem duplication (ITD) mutations in the juxtamembrane domain (25%-30% of patients) and point mutations in the kinase domain activation loop (7%-8% of patients). FLT3-ITD mutations are the most common molecular defect identified in AML and have been shown to be an independent prognostic factor for decreased survival. FLT3-ITD is therefore an attractive molecular target for therapy. SU11248 is a recently described selective inhibitor with selectivity for split kinase domain RTKs, including platelet-derived growth factor receptors, vascular endothelial growth factor receptors, and KIT. We show that SU11248 also has potent activity against wild-type FLT3 (FLT3-WT), FLT3-ITD, and FLT3 activation loop (FLT3-Asp835) mutants in phosphorylation assays. SU11248 inhibits FLT3-driven phosphorylation and induces apoptosis in vitro. In addition, SU11248 inhibits FLT3-induced VEGF production. The in vivo efficacy of SU11248 was investigated in 2 FLT3-ITD models: a subcutaneous tumor xenograft model and a bone marrow engraftment model. We show that SU11248 (20 mg/kg/d) dramatically regresses FLT3-ITD tumors in the subcutaneous tumor xenograft model and prolongs survival in the bone marrow engraftment model. Pharmacokinetic and pharmacodynamic analysis in subcutaneous tumors showed that a single administration of an efficacious drug dose potently inhibits FLT3-ITD phosphorylation for up to 16 hours following a single dose. These results suggest that further exploration of SU11248 activity in AML patients is warranted.  相似文献   

7.
Leukemic cells from 30% of patients with acute myeloid leukemia (AML) have an activating mutation in the FLT3 (fms-like tyrosine kinase) gene, which represents a target for drug therapy. We treated 20 patients, each with mutant FLT3 relapsed/refractory AML or high-grade myelodysplastic syndrome and not believed to be candidates for chemotherapy, with an FLT3 tyrosine kinase inhibitor, PKC412 (N-benzoylstaurosporine), at a dose of 75 mg 3 times daily by mouth. The drug was generally well tolerated, although 2 patients developed fatal pulmonary events of unclear etiology. The peripheral blast count decreased by 50% in 14 patients (70%). Seven patients (35%) experienced a greater than 2-log reduction in peripheral blast count for at least 4 weeks (median response duration, 13 weeks; range, 9-47 weeks); PKC412 reduced bone marrow blast counts by 50% in 6 patients (2 of these to < 5%). FLT3 autophosphorylation was inhibited in most of the Corresponding patients, indicating in vivo target inhibition at the dose schedule used in this study. PKC412 is an oral tyrosine kinase inhibitor with clinical activity in patients with AML whose blasts have an activating mutation of FLT3, suggesting potential use in combination with active agents, such as chemotherapy.  相似文献   

8.
Treatment of acute myeloid leukemia (AML) remains challenging with many patients harboring unfavorable prognostic parameters such as FLT3 internal tandem duplication (FLT3-ITD) mutations leading to a constitutively activated FLT3-receptor tyrosine kinase (RTK). Activation of proteins by phosphorylation of tyrosine residues is a common mechanism in leukemia development. Therefore, specific tyrosine kinase inhibitors (TKI) have been developed for AML therapy and are currently under investigation. The staurosporine derivate PKC412 (Midostaurin) was found to be an effective inhibitor of the FLT3-RTK and is currently undergoing clinical trials for FLT3-mutated AML patients. Since resistance towards TKIs has been observed in vitro and in clinical trials, we have generated a PKC412-resistant clone (MV4-11r) of the human myelomonoblastic cell line MV4-11, which carries a homozygous FLT3-ITD mutation. MV4-11r displayed higher vitality after addition of PKC412 compared with MV4-11 with a pronounced reduction of apoptotic cells. Cytogenetic characterization revealed the acquisition of additional aberrations in the resistant cell line such as clonal alterations at chromosome 13q with additional FLT3 signals. Microarray analysis revealed significant expression changes in several genes prior to and after incubation with PKC412. The expression status of candidate genes being regulated by FLT-ITD like JAG1, p53, MCL-1, C-KIT, and FLT3/-L was confirmed by real-time PCR. In summary, resistance against PKC412 appears to be mediated by up-regulation of anti-apoptotic genes and down-regulation of proapoptotic signals as well as genes that are involved in normal and malignant hematopoiesis.  相似文献   

9.
Inhibition of the mutated fms-like tyrosine kinase 3 (FLT3) receptor tyrosine kinase is a promising therapeutic strategy in acute myeloid leukaemia (AML). However, development of resistance to FLT3 tyrosine kinase inhibitors (TKI), such as PKC412A, has been described recently. This observation may have an increasing impact on the duration of response and relapse rates in upcoming clinical trials employing FLT3-TKI. Herein we investigated two representatives of a novel class of FLT3-TKI: Bis(1 H -indol-2-yl)methanones. Both compounds effectively induced apoptosis in FLT3-internal tandem duplicate (ITD)-transfected murine myeloid cells and in primary FLT3-ITD positive blasts. Combination of both compounds with chemotherapy revealed synergistic effects in apoptosis assays. The compounds did not show significant toxicity in human bone marrow cells derived from healthy donors. Compound102 overcame resistance to PKC412 within a non-myelotoxic dose-range. Western Blotting experiments of 32D-FLT3-ITD cells showed dose-dependent dephosphorylation of FLT3-ITD and of its downstream targets STAT5, AKT and ERK upon incubation with either compound. In conclusion, bis(1 H -indol-2-yl)methanones overcome resistance mediated by FLT3-ITD mutations at position N676 and show strong efficacy in FLT3-ITD-positive cells alone as well as in combination with chemotherapy. We propose that further development of methanone compounds overcoming resistance to currently established FLT3-TKIs is an important step forward to an anticipated need within our future therapeutic algorithm in FLT3-ITD-positive AML.  相似文献   

10.
11.
Levis M  Tse KF  Smith BD  Garrett E  Small D 《Blood》2001,98(3):885-887
Internal tandem duplication (ITD) mutations of the receptor tyrosine kinase FLT3 have been found in 20% to 30% of patients with acute myeloid leukemia (AML). These mutations constitutively activate the receptor and appear to be associated with a poor prognosis. Recent evidence that this constitutive activation is leukemogenic renders this receptor a potential target for specific therapy. In this study, dose-response cytotoxic assays were performed with AG1295, a tyrosine kinase inhibitor active against FLT3, on primary blasts from patients with AML. For each patient sample, the degree of cytotoxicity induced by AG1295 was compared to the response to cytosine arabinoside (Ara C) and correlated with the presence or absence of a FLT3/ITD mutation. AG1295 was specifically cytotoxic to AML blasts harboring FLT3/ITD mutations. The results suggest that these mutations contribute to the leukemic process and that the FLT3 receptor represents a therapeutic target in AML. (Blood. 2001;98:885-887)  相似文献   

12.
P-glycoprotein (pgp), a membrane efflux pump, is recognized to have an anti-apoptotic function. Internal tandem duplications (ITDs) of the Fms-like tyrosine kinase 3 (FLT3) receptor are the most common mutations in acute myeloid leukaemia (AML). Both ITDs and pgp positivity confer an adverse clinical prognosis. FLT3 inhibitors induce variable apoptosis in cell lines transfected with FLT3 ITDs. We studied the effect of herbimycin A, AG1296 and PKC412 on primary AML blasts. All compounds showed significantly higher cell kill after 48-h incubation in samples with an ITD compared with wild type (Herbimicin P < 0.001; AG1296 P = 0.001, PKC412, P = 0.002). Pgp-positive samples were significantly less sensitive to herbimycin and AG1296 than pgp-negative samples, although neither molecule inhibited the efflux function of pgp. The concurrent incubation with the pgp inhibitor PSC833 resulted in an enhanced cell kill in 4/5 ITD pgp-positive samples versus two of nine ITD pgp-negative samples. PKC412 inhibited pgp function and induced cell death in FLT3 ITD/pgp-positive samples. We conclude that AML samples with a FLT3 ITD are more susceptible to these inhibitors than wild-type samples. However, the expression of pgp in cells with FLT3 ITDs can reduce their sensitivity to FLT3 inhibitors and therefore pgp expression should be assessed in clinical trials of FLT3 inhibitors.  相似文献   

13.
Clark JJ  Cools J  Curley DP  Yu JC  Lokker NA  Giese NA  Gilliland DG 《Blood》2004,104(9):2867-2872
FLT3 is constitutively activated by internal tandem duplications (ITDs) in the juxtamembrane domain or by activation loop mutations in acute myeloid leukemia (AML). We tested the sensitivity of 8 activation loop mutations to the small molecule FLT3 inhibitor, MLN518. Each FLT3 activation loop mutant, including D835Y, D835A, D835E, D835H, D835N, D835V, D835del, and I836del, transformed Ba/F3 cells to factor-independent proliferation and had constitutive tyrosine kinase activation, as assessed by FLT3 autophosphorylation and activation of downstream effectors, including STAT5 and ERK. MLN518 inhibited FLT3 autophosphorylation and phosphorylation of STAT5 and ERK in FLT3-ITD-transformed Ba/F3 cells with an IC(50) (50% inhibition of cell viability) of approximately 500 nM. However, there was a broad spectrum of sensitivity among the 8 activation loop mutants, with IC(50) ranging from approximately 500 nM to more than 10 microM for the inhibition of phosphorylation of FLT3, STAT5, and ERK. The relative sensitivity of the mutants to MLN518 in biochemical assays correlated with the cellular IC(50) for cytokine-independent proliferation of FLT3-transformed Ba/F3 cells in the presence of MLN518. Thus, certain activation loop mutations in FLT3 simultaneously confer resistance to small molecule inhibitors. These findings have implications for the evaluation of responses in clinical trials with FLT3 inhibitors and provide a strategy to screen for compounds that can overcome resistance.  相似文献   

14.
Activating mutations in the juxtamembrane domain (FLT3-length mutations, FLT3-LM) and in the protein tyrosine kinase domain (TKD) of FLT3 (FLT3-TKD) represent the most frequent genetic alterations in acute myeloid leukemia (AML) and define a molecular target for therapeutic interventions by protein tyrosine kinase (PTK) inhibitors. We could show that distinct activating FLT3-TKD mutations at position D835 mediate primary resistance to FLT3 PTK inhibitors in FLT3-transformed cell lines. In the presence of increasing concentrations of the FLT3 PTK inhibitor SU5614, we generated inhibitor resistant Ba/F3 FLT3-internal tandem duplication (ITD) cell lines (Ba/F3 FLT3-ITD-R1-R4) that were characterized by a 7- to 26-fold higher IC50 (concentration that inhibits 50%) to SU5614 compared with the parental ITD cells. The molecular characterization of ITD-R1-4 cells demonstrated that specific TKD mutations (D835N and Y842H) on the ITD background were acquired during selection with SU5614. Introduction of these dual ITD-TKD, but not single D835N or Y842H FLT3 mutants, in Ba/F3 cells restored the FLT3 inhibitor resistant phenotype. Our data show that preexisting or acquired mutations in the PTK domain of FLT3 can induce drug resistance to FLT3 PTK inhibitors in vitro. These findings provide a molecular basis for the evaluation of clinical resistance to FLT3 PTK inhibitors in patients with AML.  相似文献   

15.
16.
In acute myeloid leukemia (AML), two clusters of activating mutations are known in the FMS-like tyrosine kinase-3 (FLT3) gene: FLT3-internal tandem duplications (FLT3-ITDs) in the juxtamembrane (JM) domain in 20% to 25% of patients, and FLT3 point mutations in the tyrosine-kinase domain (FLT3-TKD) in 7% to 10% of patients, respectively. Here, we have characterized a new class of activating point mutations (PMs) that cluster in a 16-amino acid stretch of the juxtamembrane domain of FLT3 (FLT3-JM-PMs). Expression of 4 FLT3-JM-PMs in interleukin-3 (IL-3)-dependent Ba/F3 cells led to factor-independent growth, hyperresponsiveness to FLT3 ligand, and resistance to apoptotic cell death. FLT3-JM-PM receptors were autophosphorylated and showed a higher constitutive dimerization rate compared with the FLT3-wild-type (WT) receptor. As a molecular mechanism, we could show activation of STAT5 and up-regulation of Bcl-x(L) by all FLT3-JM-PMs. The FLT3 inhibitor PKC412 abrogated the factor-independent growth of FLT3-JM-PM-expressing cells. Compared with FLT3-ITD and FLT3-TKD mutants, the FLT3-JM-PMs showed a weaker transforming potential related to lower autophosphorylation of the receptor and its downstream target STAT5. Mapping of the FLT3-JM-PMs on the crystal structure of FLT3 showed that these mutations reduce the stability of the autoinhibitory JM domain, and provides a structural basis for the transforming capacity of this new class of gain-of-function mutations of FLT3.  相似文献   

17.
We have developed a useful surrogate assay for monitoring the efficacy of FLT3 inhibition in patients treated with oral FLT3 inhibitors. The plasma inhibitory activity (PIA) for FLT3 correlates with clinical activity in patients treated with CEP-701 and PKC412. Using the PIA assay, along with in vitro phosphorylation and cytotoxicity assays in leukemia cells, we compared PKC412 and its metabolite, CGP52421, with CEP-701. While both drugs could effectively inhibit FLT3 in vitro, CEP-701 was more cytotoxic to primary samples at comparable levels of FLT3 inhibition. PKC412 appears to be more selective than CEP-701 and therefore less effective at inducing cytotoxicity in primary acute myeloid leukemia (AML) samples in vitro. However, the PKC412 metabolite CGP52421 is less selective than its parent compound, PKC412, and is more cytotoxic against primary blast samples at comparable levels of FLT3 inhibition. The plasma inhibitory activity assay represents a useful correlative tool in the development of small-molecule inhibitors. Our application of this assay has revealed that the metabolite CGP52421 may contribute a significant portion of the antileukemia activity observed in patients receiving oral PKC412. Additionally, our results suggest that nonselectivity may constitute an important component of the cytotoxic effect of FLT3 inhibitors in FLT3-mutant AML.  相似文献   

18.
FLT3 is the most frequently mutated gene in cases of acute myelogenous leukemia (AML). About 30 to 35% of patients have either internal tandem duplications (ITDs) in the juxtamembrane domain or mutations in the activating loop of FLT3. FLT3 mutations occur in a broad spectrum of FAB subtypes in adult and pediatric AML and are particularly common in acute promyelocytic leukemia (APL). FLT3 mutations confer a poor prognosis in most retrospective studies. The consequence of either FLT3-ITD or activating loop mutations, which occur predominantly at position D835, is constitutive activation of the tyrosine kinase; FLT3 mutants confer factor-independent growth to Ba/F3 and 32D cells and activate similar transduction pathways as the native receptor in response to ligand, including the STAT, RAS/mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3; kinase (PI3K)/AKT pathways. Injection of FLT3-ITD transformed cells, such as Ba/F3 or 32D, into syngeneic recipient mice results in a leukemia-like syndrome, and expression in primary murine bone marrow cells in a retroviral transduction assay results in a myeloproliferative disorder. Mutations that abrogate FLT3 kinase activity result in loss of transforming properties in these assays. Further, FLT3-selective inhibitors impair transformation of primary AML cells that harbor these mutations, and also inhibit FLT3 transformed hematopoietic cell lines, and leukemias induced by activated FLT3 mutants in murine models. Collectively, these data indicate that FLT3 may be a viable therapeutic target for treatment of AML.  相似文献   

19.
Tandutinib (MLN518/CT53518) is a novel quinazoline-based inhibitor of the type III receptor tyrosine kinases: FMS-like tyrosine kinase 3 (FLT3), platelet-derived growth factor receptor (PDGFR), and KIT. Because of the correlation between FLT3 internal tandem duplication (ITD) mutations and poor prognosis in acute myelogenous leukemia (AML), we conducted a phase 1 trial of tandutinib in 40 patients with either AML or high-risk myelodysplastic syndrome (MDS). Tandutinib was given orally in doses ranging from 50 mg to 700 mg twice daily The principal dose-limiting toxicity (DLT) of tandutinib was reversible generalized muscular weakness, fatigue, or both, occurring at doses of 525 mg and 700 mg twice daily. Tandutinib's pharmacokinetics were characterized by slow elimination, with achievement of steady-state plasma concentrations requiring greater than 1 week of dosing. Western blotting showed that tandutinib inhibited phosphorylation of FLT3 in circulating leukemic blasts. Eight patients had FLT3-ITD mutations; 5 of these were evaluable for assessment of tandutinib's antileukemic effect. Two of the 5 patients, treated at 525 mg and 700 mg twice daily, showed evidence of antileukemic activity, with decreases in both peripheral and bone marrow blasts. Tandutinib at the MTD (525 mg twice daily) should be evaluated more extensively in patients with AML with FLT3-ITD mutations to better define its antileukemic activity.  相似文献   

20.
Activating mutations of FMS-like tyrosine kinase 3 (FLT3) are present in approximately one third of patients with acute myeloid leukemia (AML) and are associated with adverse prognosis. The important role played by FLT3 in the survival and proliferation of blasts, and its overexpression in most patients with AML, make FLT3 an attractive therapeutic target. We undertook a phase 2 trial of the FLT3-selective tyrosine kinase inhibitor lestaurtinib (CEP701) used as monotherapy in untreated older patients with AML not considered fit for intensive chemotherapy, irrespective of FLT3 mutation status. Lestaurtinib was administered orally for 8 weeks, initially at a dose of 60 mg twice daily, escalating to 80 mg twice daily, and was generally well tolerated. Clinical activity, manifest as transient reductions in bone marrow and peripheral-blood blasts or longer periods of transfusion independence, was seen in 3 (60%) of 5 patients with mutated FLT3 and 5 (23%) of 22 evaluable wild-type FLT3 patients. Laboratory data demonstrated that clinical responses occurred where the presence of sustained FLT3-inhibitory drug levels were combined with in vitro cytotoxic sensitivity of blasts to lestaurtinib. Further evaluation of this compound, in combination with cytotoxic chemotherapy or other targeted agents, is warranted in both FLT3 mutant and wild-type patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号