首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Angiotensin II (Ang II) is both a vasoactive and a potent growth-promoting factor for vascular smooth muscle cells. Little is known about the in vivo contribution of AT1 and AT2 receptor activation to the biological action of Ang II. Therefore, we investigated the effect of AT1 or AT2 subtype receptor chronic blockade by losartan or PD123319 on the vascular hypertrophy in rats with Ang II-induced hypertension. Normotensive rats received for 3 wk subcutaneous infusions of Ang II (120 ng/kg per min), or Ang II + PD 123319 (30 mg/kg per d), or Ang II + losartan (10 mg/kg per d) or PD 123319 alone, and were compared with control animals. In normotensive animals, chronic blockade of AT2 receptors did not affect the plasma level of angiotensin II and the vascular reactivity to angiotensin II mediated by the AT1 receptor. Chronic blockade of AT1I in rats receiving Ang II resulted in normal arterial pressure, but it induced significant aortic hypertrophy and fibrosis. Chronic blockade of AT2 receptors in Ang II-induced hypertensive rats had no effect on arterial pressure, but antagonized the effect of Ang II on arterial hypertrophy and fibrosis, suggesting that in vivo vasotrophic effects of Ang II are at least partially mediated via AT2 subtype receptors.  相似文献   

2.
Stacy LB  Yu Q  Horak K  Larson DF 《Perfusion》2007,22(1):51-55
Left ventricular dysfunction is associated with reperfusion injury occurring during open-heart surgery. There is an increased secretion of angiotensin II (Ang II) and increased matrix metalloproteinases (MMPs) activities associated with open-heart surgery that may affect the cardiac extracellular matrix (ECM). The goal of this study was to determine the effects of Ang II and selective angiotensin II receptor (AT1-R and AT2-R) blockers on the enzymatic activities of MMPs in primary adult murine cardiac fibroblasts (CF). Our hypothesis is that Aug II, with and without a selective receptor blocker, differentially affects CF MMPs activities. The CF were treated with Ang II (10(-6) M) and doses of AT1-R and AT2-R blockers (losartan and PD123319, respectively) at doses of 10(-7) to 10(-5) M for 48 hours. The Ang II-stimulated CF reduced collagenase activities by only 24% (p = 0.004); however, the MMP-2 and MMP-9 gelatinase activities were reduced by 42% and 39%, respectively (p = 0.022). The losartan dose dependently increased MMP-2 (p = 0.02) and MMP-9 (ns). PD123319 at 10(-5) M significantly reduced MMP-2 and MMP-9 activities compared with the Ang II group (p = 0.014 and p = 0.02, respectively). The doses of PD123319 at 10(-6) and 10(-7) M increased the MMP-2 and MMP-9 enzymatic activities significantly above the Ang II only group. Thus, Ang II and AT1-R and AT2-R differentially affect the collagenase and gelatinase MMPs activities released by cardiac fibroblasts.  相似文献   

3.
We recently reported that in the ischemic human heart, locally formed angiotensin II activates angiotensin II type 1 (AT(1)) receptors on sympathetic nerve terminals, promoting reversal of the norepinephrine transporter in an outward direction (i.e., carrier-mediated norepinephrine release). The purpose of this study was to assess whether cardiac sympathetic nerve endings contribute to local angiotensin II formation, in addition to being a target of angiotensin II. To this end, we isolated sympathetic nerve endings (cardiac synaptosomes) from surgical specimens of human right atrium and incubated them in ischemic conditions (95% N(2,) sodium dithionite, and no glucose for 70 min). These synaptosomes released large amounts of endogenous norepinephrine via a carrier-mediated mechanism, as evidenced by the inhibitory effect of desipramine on this process. Norepinephrine release was further enhanced by preincubation of synaptosomes with angiotensinogen and was prevented by two renin inhibitors, pepstatin-A and BILA 2157BS, as well as by the angiotensin-converting enzyme inhibitor enalaprilat and the AT(1) receptor antagonist EXP 3174 [2-N-butyl-4-chloro-1-[2'-(1H-tetrazol-5-yl)biphenyl-4-yl] methyl]imidazole-5-carboxylic acid]. Western blot analysis revealed the presence of renin in cardiac sympathetic nerve terminals; renin abundance increased ~3-fold during ischemia. Thus, renin is rapidly activated during ischemia in cardiac sympathetic nerve terminals, and this process eventually culminates in angiotensin II formation, stimulation of AT(1) receptors, and carrier-mediated norepinephrine release. Our findings uncover a novel autocrine/paracrine mechanism whereby angiotensin II, formed at adrenergic nerve endings in myocardial ischemia, elicits carrier-mediated norepinephrine release by activating adjacent AT(1) receptors.  相似文献   

4.
The aim of this study was to investigate the relationships between plasma concentrations of losartan, an orally active angiotensin II inhibitor, its active metabolite EXP3174, and angiotensin II blockade. Six healthy subjects received single oral doses of 40, 80, or 120 mg losartan and placebo at 1-week intervals in a crossover study. Angiotensin II blockade was assessed by the blood pressure response to exogenous angiotensin II before and after losartan administration. EXP3174 reached higher plasma concentrations and was eliminated more slowly than its parent compound; its levels paralleled the profile of angiotensin II blockade closer than losartan. Inhibition of the pressure response was dose dependent. The Hill-shaped relationship between response and EXP3174 concentration (or time-integrated variables) approached a plateau with 80 mg. The dose-dependent increase in plasma renin and angiotensin II exhibited a considerable individual scatter. We conclude that losartan produces a dose-dependent, effective angiotensin II blockade that is largely determined by the active metabolite EXP3174.  相似文献   

5.
Schild regressions for the selective AT(1) and AT(2) receptor antagonists, losartan and PD123319 (S-[+]-1-[(4-dimethylamino]-3-methylphenyl)methyl]-5-[diphenylacetyl]-4,5,6,7-tetrahydro-1H-imidazol[4,5-c]pyridine-6-carboxilic acid), respectively, were calculated to analyze the heterogeneity of receptor populations in the rat anococcygeus muscle. For a one-receptor system, the Schild regression has a slope of unity and an intercept of K(B) for competitive antagonists. However, in a two-receptor system, a deviation from the single-receptor plot will occur. This is predicated on the assumption that the secondary receptor is less sensitive to the antagonist than the primary receptor. Results showed that the Schild regression for losartan did not produce a slope of unity, and PD123319 did not produce any effect. However, tissue incubation with losartan plus PD123319 resulted in a Schild regression that has a slope of unity and a pK(B) of 9.32. In the presence of prazosin, an alpha(1)-adrenoceptor antagonist, losartan did not produce any effect. Conversely, PD123319 enhanced the angiotensin II (Ang II)-induced contraction in a concentration-dependent fashion, suggesting an inhibitory AT(2)-mediated effect. This effect was confirmed with assays that showed a relaxant response induced by Ang II on precontracted tissues incubated with prazosin. PD123319 and N(G)-nitro-L-arginine methyl ester [nitric-oxide (NO) synthase inhibitor)] markedly inhibited the relaxant response of Ang II. In contrast, losartan did not produce any significant effect. Consequently, results show that the mechanism underlying the AT(2)-mediated effect is highly dependent on NO generation. Results indicate the presence of a heterogeneous angiotensin receptor population in the rat anococcygeus muscle following a negative cross-talk relationship between the AT(1) and AT(2) subtypes.  相似文献   

6.
Angiotensin II (Ang II), a main effector peptide in the renin-angiotensin system (RAS), plays a fundamental role as a vasoconstrictor in controlling cardiovascular function and renal homeostasis. Ang II also acts as a growth promoter or angiogenic factor via type 1 angiotensin II receptors (AT1Rs) in certain tumour cell lines. Recent studies have shown the activation of the local RAS in various tumour tissues, including the abundant generation of Ang II by angiotensin-converting enzyme (ACE) and the upregulation of AT1R expression. Thus, considerable attention has been paid to the role of the RAS in cancer and its blockade as a new approach to the treatment of cancer. There is increasing evidence that the Ang II-AT1R system is involved in tumour growth, angiogenesis and metastasis in experimental models, suggesting the therapeutic potential of an ACE inhibitor and AT1R blocker, both of which have been used as antihypertensive drugs. In addition, specific Ang II-degrading enzymes are expressed in tumours and play a regulatory role in cell proliferation and invasion. This review focuses on the role of the Ang II-AT1R system in solid tumours, particularly in the progression of gynaecological cancer, and presents the clinical potential of manipulating the angiotensin system as a novel and promising strategy for cancer treatment.  相似文献   

7.
8.
Having identified renin in cardiac mast cells, we assessed whether its release leads to cardiac dysfunction. In Langendorff-perfused guinea pig hearts, mast cell degranulation with compound 48/80 released Ang I-forming activity. This activity was blocked by the selective renin inhibitor BILA2157, indicating that renin was responsible for Ang I formation. Local generation of cardiac Ang II from mast cell-derived renin also elicited norepinephrine release from isolated sympathetic nerve terminals. This action was mediated by Ang II-type 1 (AT1) receptors. In 2 models of ischemia/reperfusion using Langendorff-perfused guinea pig and mouse hearts, a significant coronary spillover of renin and norepinephrine was observed. In both models, this was accompanied by ventricular fibrillation. Mast cell stabilization with cromolyn or lodoxamide markedly reduced active renin overflow and attenuated both norepinephrine release and arrhythmias. Similar cardioprotection was observed in guinea pig hearts treated with BILA2157 or the AT1 receptor antagonist EXP3174. Renin overflow and arrhythmias in ischemia/reperfusion were much less prominent in hearts of mast cell-deficient mice than in control hearts. Thus, mast cell-derived renin is pivotal for activating a cardiac renin-angiotensin system leading to excessive norepinephrine release in ischemia/reperfusion. Mast cell-derived renin may be a useful therapeutic target for hyperadrenergic dysfunctions, such as arrhythmias, sudden cardiac death, myocardial ischemia, and congestive heart failure.  相似文献   

9.
Angiotensin I-converting enzyme (ACE) inhibitors are thought to lower blood pressure in hypertensive patients, mainly by decreasing angiotensin II (Ang II) formation. Chymase, a human mast cell protease, has recently been proposed to play a role in blood pressure regulation because of its Ang II-forming activity. Here we show that the predominant chymase mRNA species in the mouse aorta are those for types 4 and 5 isoforms, and that both are efficient Ang II-forming enzymes. Evaluation of ACE-dependent and ACE-independent Ang II-forming pathways in mast cell-deficient (Kit(w)/Kit(w-v)) mice and their mast cell-sufficient littermate (MC(+/+)) controls revealed that, in contrast to the latter, Kit(w)/Kit(w-v) mice fail to express chymase mRNAs in the vasculature and have almost no ACE-independent Ang II-forming activity in either isolated blood vessels or homogenates. Moreover, in MC(+/+) but not in Kit(w)/Kit(w-v) mice, a contribution of ACE-independent Ang II generation to blood pressure regulation was evident by a 1.6-fold greater maximal reduction in mean arterial pressure with acute ACE inhibition plus AT(1) receptor blockade than with ACE inhibition alone. Thus, mast cells are the source of the vascular ACE-independent pathway, and the antihypertensive benefit of combining ACE inhibitor therapy with AT(1) receptor antagonist therapy is most likely due to negation of chymase-catalyzed Ang II generation.  相似文献   

10.
In protracted myocardial ischemia, sympathetic nerve endings undergo ATP depletion, hypoxia and pH(i) reduction. Consequently, norepinephrine (NE) accumulates in the axoplasm, because it is no longer stored in synaptic vesicles, and intraneuronal Na(+) concentration increases, as the Na(+)/H(+) exchanger (NHE) is activated. This forces the reversal of the Na(+)- and Cl(-)-dependent NE transporter, triggering a massive carrier-mediated release of NE and thus, arrhythmias. Indeed, NE overflow in myocardial ischemia directly correlates with the severity of arrhythmias. Histamine H(3)-receptors (H(3)R) have been identified as inhibitory heteroreceptors in adrenergic nerve endings of the heart. In addition to inhibiting NE exocytosis from sympathetic nerve endings, selective H(3)R agonists attenuate carrier-mediated release of NE in both animal and human models of protracted myocardial ischemia. Whereas H(3)R-mediated attenuation of exocytotic NE release involves an inhibition of N-type Ca(2+)-channels, H(3)R-mediated reduction of carrier-mediated NE release is associated with diminished NHE activity. In addition to inhibiting NE release, H(3)R stimulation significantly attenuates the incidence and duration of ventricular fibrillation. Although other presynaptic receptors also modulate NE release from sympathetic nerve endings, H(3)R stimulation reduces both exocytotic and carrier-mediated NE release, whereas alpha(2)-adrenoceptor agonists attenuate NE exocytosis but enhance carrier-mediated NE release. Furthermore, unlike adenosine A(1)-receptors, whose activation reduces both exocytotic and carrier-mediated NE release, H(3)R stimulation is devoid of negative chronotropic and dromotropic effects (i.e., sinoatrial and atrioventricular nodal functions are unaffected). Because excess NE release can trigger severe arrhythmias and sudden cardiac death, negative modulation of NE release by H(3)R agonists may offer a novel therapeutic approach to myocardial ischemia.  相似文献   

11.
We studied the binding properties of KRH-594, a new selective antagonist of angiotensin II (AII) type 1 (AT1) receptors, to rat liver membranes and to recombinant AT1 and AT2 receptors. Preincubation of rat liver membranes with KRH-594 produced maximal inhibition of [125I]-AII binding when the preincubation time was 1-2 h. Preincubation with KRH-594 for 2 h decreased the B(max) value and increased the Kd value. For human AT1, human AT2, rat AT1A and rat AT1B receptors, the Ki values for KRH-594 were 1.24, 9360, 0.67, and 1.02 nm, respectively. The rank order of K1 values for human AT1 receptors was KRH-594 > EXP3174 > candesartan = AII. The order of specificities for human AT1 and AT2 receptors was candesartan > EXP3174 > KRH-594. Although a 2-h preincubation of human AT2 receptors with KRH-594 (30 microM) or CGP 42112 (a selective AT2 receptor antagonist; 0.3 nM) inhibited binding of [125I]-AII, the suppression by KRH-594 was not significant. These results indicate that KRH-594 binds potently to AT1 receptors in an insurmountable manner, and that at a very high dose (30 microM) it may also bind to AT2 receptors, but in a surmountable manner.  相似文献   

12.
Angiotensin II recognizes two receptor subtypes, AT1 and AT2, both of them having been recently cloned. Although AT2 receptors represent 5-10% of angiotensin II receptors in the kidneys of adult rats, their function remains unknown. In the present work, we examined the possible contribution of AT2 receptors to the regulation of pressure-natriuresis in anesthetized rats infused either with the specific AT2 antagonist PD 123319, or with CGP 42112B, an AT2 ligand with agonistic properties. The effects of PD 123319 were examined in a preparation with stable levels of angiotensin II, and in which AT1 receptors were blocked by the specific antagonist losartan. The effects of CGP 42112B were studied in rats deprived of endogenous angiotensin II. AT2 receptor blockade with PD 123319 did not change the renal blood flow while it increased the diuresis and natriuresis. These effects persisted even after full AT1 receptor blockade with losarfan. CGP 42112B did not modify the renal blood flow, but dose-dependently decreased urine flow and natriuresis. These results show that, contrary to AT1 receptors, renal AT2 receptors have no effect on total renal blood flow, but blunt the pressure-natriuresis, thus demonstrating that this receptor subtype is involved in a function of importance for body fluid and blood pressure regulation.  相似文献   

13.
We have documented that both receptors of angiotensin II (ANG II) (AT1 and AT2) are involved in regulation of intracellular signals in glomerular epithelial cells (GECs). We studied the role of these receptors in regulation of intracellular ionized calcium [Ca2(+)]i in GECs. Cells were loaded with Indo-1 (Ca2(+)) and SNARF-1 (pH) fluorescent dyes and then incubated with or without ANG II for 1 hour at 37 degrees C. In some experiments AT(1) and AT(2) receptor blockers (Losartan and PD 12339, respectively) were added. In additional experiments cells were incubated with thapsigargin (Tg) and bradykinin (BK) as well as ANG II. A four-channel fluorescence videomicroscope system was used to measure real-time [Ca2(+) ]i in individual cells. Levels of inositol triphosphate (IP(3)) were measured with radioimmunoassay. An amount of 100 nmol/L of ANG II caused a maximal increase in [Ca2(+)]i in calcium-containing buffer. ANG II had no effect on intracellular pH of GECs. Increase in [Ca2(+)]i by ANG II was prevented by the concurrent use of Losartan and PD 123319. BK caused a transient increase in [Ca2(+)]i, which was significantly decreased by ANG II; concurrent addition of Losartan and PD 123319 prevented ANG II effect. ANG II prevented the accumulation of Ca2(+) in intracellular stores. ANG II caused a significant but transient increase in levels of IP(3). In summary, ANG II increases extracellular/intracellular calcium dependent bidirectional Ca2(+) transport in GECs, inhibits BK induced release of Ca2(+) from IP(3) sensitive stores, and, in addition, reduces refilling of endoplasmic reticulum [Ca2(+)] depleted by repeated BK stimulation. Both receptor subtypes appear to be important in ANG II mediated physiologic responses of GECs and may participate in modulation of glomerular function in vivo.  相似文献   

14.
The angiotensin AT2 receptor modulates renal production of cyclic guanosine 3',5'-monophosphate (cGMP; J. Clin. Invest. 1996. 97:1978-1982). In the present study, we hypothesized that angiotensin II (Ang II) acts at the AT2 receptor to stimulate renal production of nitric oxide leading to the previously observed increase in cGMP. Using a microdialysis technique, we monitored changes in renal interstitial fluid (RIF) cGMP in response to intravenous infusion of the AT2 receptor antagonist PD 123319 (PD), the AT1 receptor antagonist Losartan, the nitric oxide synthase (NOS) inhibitor nitro--arginine-methyl-ester (-NAME), the specific neural NOS inhibitor 7-nitroindazole (7-NI), or Ang II individually or combined in conscious rats during low or normal sodium balance. Sodium depletion significantly increased RIF cGMP. During sodium depletion, both PD and -NAME caused a similar decrease in RIF cGMP. Combined administration of PD and -NAME decreased RIF cGMP to levels observed with PD or -NAME alone or during normal sodium intake. During normal sodium intake, Ang II caused a twofold increase in RIF cGMP. Neither PD nor -NAME, individually or combined, changed RIF cGMP. Combined administration of Ang II and either PD or -NAME produced a significant decrease in RIF cGMP compared with that induced by Ang II alone. Combined administration of Ang II, PD, and -NAME blocked the increase in RIF cGMP produced by Ang II alone. During sodium depletion, 7-NI decreased RIF cGMP, but the reduction of cGMP in response to PD alone or PD combined with 7-NI was greater than with 7-NI alone. During normal sodium intake, 7-NI blocked the Ang II-induced increase in RIF cGMP. PD alone or combined with 7-NI produced a greater inhibition of cGMP than did 7-NI alone. During sodium depletion, 7-NI (partially) and -NAME (completely) inhibited RIF cGMP responses to -arginine. These data demonstrate that activation of the renin- angiotensin system during sodium depletion increases renal nitric oxide production through stimulation by Ang II at the angiotensin AT2 receptor. This response is partially mediated by neural NOS, but other NOS isoforms also contribute to nitric oxide production by this pathway.  相似文献   

15.
Angiotensin II (Ang II) resets the baroreflex control of heart rate to a higher blood pressure. This action is apparently mediated via Ang II receptors in the area postrema, but it is not known if these are of the AT1 or AT2 subtype. In the present study the effects of losartan, a selective AT1 receptor antagonist, and PD 123319, a selective AT2 antagonist, on the cardiac baroreflex response to Ang II were investigated in conscious rabbits with chronically implanted arterial and venous catheters. Baroreflex curves were generated with intravenous infusions of phenylephrine and nitroprusside (2.6-25 micrograms/kg per min) and analyzed using a four-parameter logistic model to yield their upper and lower plateaus, arterial pressure at the midpoint of the heart rate range (BP50), and slope coefficient. From these four parameters, the gain and range of the baroreflex were calculated. Background intravenous infusion of Ang II at 10 ng/kg per min increased mean arterial pressure by 17 mmHg but did not change heart rate. Ang II shifted the baroreflex curve to the right as indicated by an increase in BP50 from 70.9 +/- 2.0 to 89.3 +/- 2.7 mmHg (P < 0.05), but did not change baroreflex gain significantly. Ang II did not alter the upper plateau of the baroreflex, but decreased the lower plateau from 119.4 +/- 10.3 to 73.6 +/- 11.5 beats per minute (bpm) (P < 0.05), extending the heart rate range by 52.5 bpm. Pretreatment with losartan completely abolished the pressor and cardiac baroreflex responses to Ang II. In contrast, PD 123319 had no effect on these responses. Administration of losartan alone to block endogenous Ang II shifted the baroreflex curve to the left as indicated by a decrease in BP50 from 71.2 +/- 2.7 to 64.7 +/- 2.5 mmHg (P < 0.05). These results demonstrate that the resetting of the baroreflex control of heart rate by Ang II is mediated by AT1 receptors, and that basal levels of endogenous Ang II exert a tonic action on the cardiac baroreflex to increase the setpoint around which the baroreflex regulates heart rate.  相似文献   

16.
Angiotensin II (Ang II) is a potent vasopressor peptide that interacts with 2 major receptor isoforms - AT1 and AT2. Although blood pressure is increased in AT2 knockout mice, the underlying mechanisms remain undefined because of the low levels of expression of AT2 in the vasculature. Here we overexpressed AT2 in vascular smooth muscle (VSM) cells in transgenic (TG) mice. Aortic AT1 was not affected by overexpression of AT2. Chronic infusion of Ang II into AT2-TG mice completely abolished the AT1-mediated pressor effect, which was blocked by inhibitors of bradykinin type 2 receptor (icatibant) and nitric oxide (NO) synthase (L-NAME). Aortic explants from TG mice showed greatly increased cGMP production and diminished Ang II-induced vascular constriction. Removal of endothelium or treatment with icatibant and L-NAME abolished these AT2-mediated effects. AT2 blocked the amiloride-sensitive Na(+)/H(+) exchanger, promoting intracellular acidosis in VSM cells and activating kininogenases. The resulting enhancement of aortic kinin formation in TG mice was not affected by removal of endothelium. Our results suggest that AT2 in aortic VSM cells stimulates the production of bradykinin, which stimulates the NO/cGMP system in a paracrine manner to promote vasodilation. Selective stimulation of AT2 in the presence of AT1 antagonists is predicted to have a beneficial clinical effect in controlling blood pressure.  相似文献   

17.
To distinguish between the different effects of angiotensin IV (Ang IV) on resistance artery vasoreactivity, freshly isolated rat mesenteric arteries were perfused and the changes in their diameter were recorded under various conditions. Ang IV exerted vasoconstrictor effects on both normal vessels and vessels that had been precontracted with phenylephrine or serotonin. This effect was abolished by losartan or candesartan cilexetil, two type 1 angiotensin receptor antagonists, but not by PD 123319, a type 2 angiotensin receptor antagonist. No tachyphylaxis was observed for the vasoconstrictor effect of Ang IV. N(G)-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, had no effect on Ang IV-induced vasoconstriction, whereas indomethacin, a cyclooxygenase inhibitor that was inactive by itself, influenced Ang IV-induced vasoconstriction, suggesting that Ang IV could stimulate the release of prostaglandins. Treatment of preconstricted vessels by candesartan cilexetil unraveled a vasodilator effect of Ang IV that was abolished by PD 123319, a type 2 angiotensin receptor antagonist. Unexpectedly, Ang IV still produced a vasoconstrictor effect on normal or preconstricted vessels after blockade of both type 1 and type 2 angiotensin receptors. Taken together, these results show that Ang IV influences resistance artery vasoreactivity via different mechanisms, one of which implicates a functionally active type 4 angiotensin receptor.  相似文献   

18.
In a previous study, we found that angiotensin (Ang) II enhances beta-adrenoceptor-induced cAMP production in cultured preglomerular microvascular smooth muscle cells (PMVSMCs) obtained from spontaneously hypertensive rats. The purpose of the present investigation was to identify the Ang receptor subtypes that mediate this effect. In our first study, we compared the ability of Ang II, Ang III, Ang (3-8), and Ang (1-7) to increase cAMP production in isoproterenol (1 microM)-treated PMVSMCs. Each peptide was tested at 0.1, 1, 10, 100, and 1000 nM. Both Ang II and Ang III increased intracellular (EC50s, 1 and 11 nM, respectively) and extracellular (EC50s, 2 and 14 nM, respectively) cAMP levels in a concentration-dependent fashion. In contrast, Ang (3-8) and Ang (1-7) did not enhance either intracellular or extracellular cAMP levels at any concentration tested. In our second study, we examined the ability of L 158809 [a selective Ang receptor subtype 1 (AT1) receptor antagonist] to inhibit Ang II (100 nM) and Ang III (100 nM) enhancement of isoproterenol (1 microM)-induced cAMP production in PMVSMCs. L 158809 (10 nM) abolished or nearly abolished (p <.001) Ang II and Ang III enhancement of isoproterenol-induced intracellular and extracellular cAMP levels. In contrast, PD 123319 (300 nM; a selective AT2 receptor antagonist) did not significantly alter Ang II enhancement of isoproterenol-induced intracellular or extracellular cAMP levels. We conclude that AT1 receptors, but not AT2, Ang (3-8), nor Ang (1-7) receptors mediate Ang II and Ang III enhancement of beta-adrenoceptor-induced cAMP production in cultured PMVSMCs.  相似文献   

19.
We examined the ability of the new non-peptide angiotensin II receptor antagonist irbesartan to inhibit AT(1) receptors in vivo in the rat kidney following oral administration, compared with the prototype drug losartan. Male Sprague-Dawley rats (250-300 g) were gavaged with either irbesartan or losartan at doses of 1, 3, 10, 30 or 100 mg/kg, or with corresponding vehicle. Rats were killed at 0, 1, 2, 8, or 24 h after drug administration, trunk blood was collected and the kidneys were removed. The effects of irbesartan and losartan on angiotensin II receptor binding were determined by quantitative in vitro autoradiography using the specific radioligand (125)I-[Sar(1),Ile(8)]angiotensin II. High levels of angiotensin II receptor binding in the rat kidney were demonstrated in the glomeruli and inner stripe of the outer medulla, which was attributed to AT(1) receptors. At 1 h after dosing, irbesartan (1-100 mg/kg) and losartan (1-30 mg/kg) significantly inhibited AT(1) receptor binding in all anatomical areas of the kidney, in a dose-dependent manner, with a maximal effect at 100 mg/kg and 30 mg/kg respectively. For a 10 mg/kg dose, inhibition of AT(1) receptor binding was maximal around 1-2 h after oral administration of losartan, whereas maximal binding occurred between 2 and 8 h for irbesartan; both drugs produced persistent tissue blockade at 24h. In radioligand binding studies, irbesartan, losartan and EXP3174 (1x10(-10) to 1x10(-5) M) displaced (125)I-[Sar(1),Ile(8)]angiotensin II binding from renal AT(1) receptors in a concentration-dependent manner, with a rank order of potency of irbesartan>EXP3174>losartan. The concentration required to displace 50% of radioligand binding (IC(50)) by irbesartan, EXP3174 and losartan was 1.00+/-0.2 nM, 3.5+/-0.4 nM and 8.9+/-1.1 nM respectively. In conclusion, the findings of the present study suggest that irbesartan and losartan produce effective and sustained inhibition of AT(1) receptors in vivo in the kidney following oral administration. However, irbesartan appears less potent, with respect to dosage, than losartan in vivo, despite having a higher affinity for AT(1) receptors in vitro. The reason for this apparent discrepancy is unclear, but it may reflect the slower onset of action of irbesartan and its rate of tissue accessibility. Inhibition of angiotensin II receptors in target tissues such as the kidney may represent an important action of AT(1) receptor antagonists, which may contribute to the beneficial effects of these agents in the clinical setting.  相似文献   

20.
Previous studies have reported bimodal effects by angiotensin II (Ang II) in the rat internal anal sphincter (IAS), a concentration-dependent contraction (at lower concentrations) and relaxation (at higher concentrations). The experiments suggest the above-mentioned responses are the result of Ang II subtype I receptor(s) (AT(1)-R) and subtype II receptor(s) (AT(2)-R) activation, respectively. These studies determined the role and mechanism of AT(2)-R-induced relaxation of the smooth muscle cells (SMCs) from the IAS in response to Ang II. Laser confocal microscopy showed that in the basal state, the AT(1)-Rs reside in the plasma membrane, whereas AT(2)-Rs are present in the cytosol. Higher concentrations of Ang II caused movement of AT(1)-R and AT(2)-R in opposite directions to the cytosol and the membrane, respectively. Losartan (AT(1)-R antagonist) but not S-(+)-1-([4-(dimethylamino)-3-methylphenyl]methyl)-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo(4,5-c)pyridine-6-carboxylic acid (PD123319; AT(2)-R antagonist) selectively inhibited these movements. These results are based on biotinylation assays, confocal images, and Western blot analyses of the densities of AT(1)-Rs and AT(2)-Rs in the plasma membrane versus cytosolic fractions of the IAS SMCs. Ang II in higher concentrations did not change the total contents of Ang II receptors. These data combined with the functional data using measurements of IAS SMC lengths suggest that internalization of AT(1)-R and externalization of AT(2)-R may be responsible for the activation of the AT(2)-R, which leads to the relaxation of the IAS with higher concentrations of Ang II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号