首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study the effect of LY 231617, an antioxidant, on spatial learning deficit on neuronal damage following transient cerebral ischemia was evaluated. Global ischemia was induced by four-vessel-occlusion (4VO) for 20 min in rats. LY 231617 (20 mg/kg i.p.) was administered after onset of reperfusion. One week after surgery spatial learning was tested in the Morris water maze. LY 231617 reduced the increase in escape latency and in swim distance induced by 4VO. Neuronal damage in the CA1 sector of the hippocampus produced by 4VO was significantly attenuated by LY 231617. The present data demonstrate that posttreatment with LY 231617 exerts a protective effect on hippocampal neuronal damage and deficits in spatial learning induced by 4VO.  相似文献   

2.
In this study the effect of an inhibitor of lipid peroxidation and of phospholipase A2 activity, EPC-K1, on spatial learning deficit and neuronal damage following transient cerebral ischemia was evaluated. Global ischemia was induced by four-vessel occlusion (4VO) for 20 min in rats. EPC-K1 (10 mg/kg IP) was administered either a) 15 min before induction of ischemia, b) immediately after, or c) 30 min after onset of repertusion. One week after surgery spatial learning was tested in the Morris water maze. EPC-K1 reduced the deficit in spatial learning when given immediately or 30 min after the onset of reperfusion but not when applied 15 min before ischemia. Neuronal damage in the CA1 sector of the hippocampus produced by 4VO was slightly, but not significantly attenuated by posttreatment. The present data demonstrate that posttreatment with EPC-K1 exerts a protective effect on deficits in spatial learning induced by 4VO. These results support the hypothesis that lipid peroxidation and activation of phospholipase A2 contribute to functional alterations of the brain during reperfusion following forebrain ischemia.  相似文献   

3.
The 2-vessel-occlusion + hypotension (2VO + H) model of transient global cerebral ischemia results in neurodegeneration within the CA1 field of the hippocampus, but previous research has failed to demonstrate robust or reliable learning/memory deficits in rats subjected to this treatment. In the present study, sensitive behavioral protocols were developed in an effort to characterize the cognitive impairments following 2VO + H more precisely. Adult rats were exposed to 10 min of bilateral carotid occlusion with simultaneous hypotension. Following recovery, 2VO + H and control rats were subjected to a series of behavioral tests (locomotor activity, sensorimotor battery, water maze [cued, place, learning set], object recognition, and radial arm maze) over an extended recovery period followed by an assessment of neuronal loss in the dorsal hippocampus. The 2VO + H treatment was associated with long-lasting spatial learning deficits in the absence of other behavioral impairments and with neurodegeneration in dorsal hippocampal CA1. Water maze protocols that placed higher memory demands upon the rats (relatively "hard" vs. "easy") were more sensitive for detecting ischemia-induced deficits. We have shown that the use of appropriate behavioral tests (e.g., a relatively difficult place learning task) allowed for the observation of robust spatial learning deficits in a model previously shown to induce relatively subtle behavioral effects. Thus, the 2VO + H model induces both hippocampal neuronal loss and long-term learning deficits in rats, providing a potentially useful model for evaluating therapeutic efficacy.  相似文献   

4.
目的 观察Rho激酶抑制剂盐酸法舒地尔(hydroxy fasudil, HF)对慢性低灌注脑缺血所致大鼠海马神经细胞损伤的保护作用。方法 采用永久性结扎大鼠双侧颈总动脉(permanent occlusion of the bilateral CCA, 2VO)制备大鼠慢性不完全性全脑缺血模型,将SD大鼠随机分为假手术组、脑缺血模型组和HF治疗组,运用Morris 水迷宫行为学方法检测大鼠空间学习记忆能力; 用HE染色观察海马组织形态学改变。结果 Morris 水迷宫检测发现模型组大鼠学习记忆能力受损,与假手术组比较逃避潜伏期延长、空间辨别能力下降; 组织学观察模型组大鼠海马CA1细胞发生丢失,组织结构异常。连续给予盐酸法舒地尔30 d能改善大鼠学习记忆功能,减少脑缺血所致的大鼠海马神经细胞丢失。结论 盐酸法舒地尔可减少慢性脑缺血所致的大鼠海马神经元的丢失,改善学习记忆功能。  相似文献   

5.
The pyramidal neurons of the hippocampal CA1 region are essential for spatial learning and memory and are almost entirely destroyed 7-14 days after transient cerebral ischemia (DAI). Recently, we found that CA1 neurons reappeared at 21-90 DAI, in association with a recovery of ischemia-induced deficits in spatial learning and memory. However, at 125 DAI the number of neurons was fewer than at 90 DAI, suggesting that the new nerve cells undergo neurodegeneration during this time period. We therefore investigated whether neuronal degeneration occurred between 90 and 250 DAI and how this related to learning and memory performance. We found that many of the new CA1 neurons previously seen at 90 DAI had disappeared at 250 DAI. In parallel, large mineralized calcium deposits appeared in the hippocampus and thalamus, in association with neuroinflammatory and astroglial reactions. In spite of the extensive CA1 damage, the ischemic rats showed no deficiencies in spatial learning and memory, as analyzed in the Morris water maze and a complimentary water maze test based on sequential left-right choices. However, ischemia rats showed a general increase in swim length in the Morris water maze suggesting altered search behaviour. Taken together, these results indicate that the CA1 neurons that reappear after transient global ischemia to a large extent degenerate at 125-250 DAI, in parallel with the appearance of a less efficient search strategy.  相似文献   

6.
Cognitive deficits of schizophrenia constitute a disabling part of the disease predicting treatment success as well as functional outcome. Phencyclidine (PCP), a non-competitive NMDA receptor antagonist was used to model schizophrenic cognitive dysfunctions of learning and memory using the Morris water maze paradigm for reference memory. In experiment 1 male Sprauge-Dawley rats were acutely administered PCP (0.5, 1.0 and 2.0 mg/kg s.c.) before the first swim session on each of the four acquisition days. Probe test for reference memory was performed 2 days after the last acquisition day; the first probe without drug treatment to assess reference memory and a second probe with prior drug treatment to control for state dependency effects of PCP. In experiment 2 the effects of pre-treatment (10 min before PCP) with the nitric oxide synthase inhibitor, L-NAME (10 mg/kg s.c.), on the PCP (2 mg/kg)-induced spatial memory deficit was evaluated in the Morris water maze paradigm for reference memory. The results showed that PCP in a dose of 2 mg/kg disrupts spatial learning as estimated by prolonged search time to find platform during acquisition as well as the reference memory test as measured by less time spent in target quadrant during probe trial. No state dependency effects of PCP were found. Pre-treatment with L-NAME completely reversed the PCP-induced disruption of acquisition learning. The reference memory disruption was, however, not completely restored as measured by probe trial.  相似文献   

7.
Yin S  Guan Z  Tang Y  Zhao J  Hong J  Zhang W 《Brain research》2005,1053(1-2):195-202
Previous epilepsy-related gene screen identified a spontaneous recurrent seizure (SRS)-related gene named epilepsy-related gene (ERG1) that encodes N-ethylmaleimide-sensitive fusion protein (NSF). To explore whether spatial learning memory deficits are relevant to SRS and whether hippocampal NSF expression is altered by SRS, we used the kainic acid (KA)-induced epilepsy animal model. SRS was monitored for 3 weeks after injection of a single convulsive dose of KA. KA-treated rats with SRS, KA-treated rats without SRS, and saline-treated rats were then measured in Morris water maze. In this spatial learning task, KA-treated rats with SRS performed poorer compared to those without SRS and those treated with saline. During the subsequent probe trials, KA-treated rats with SRS spent less swim path and time in the target quadrant but more swim path and time in the opposite quadrant, and showed fewer platform crossings. Moreover, in situ hybridization and immunohistochemistry showed that both ERG1/NSF mRNA and NSF immunoreactive expression were down-regulated in the CA1 and dorsal dentate gyrus cells (dDGCs) of the hippocampus, and interestingly, tyrosine hydroxylase (TH) immunoreactive dopamine (DA) neurons were lost in ventral tegmental area (VTA) in the KA rats with SRS. These data demonstrate that SRS impairs spatial learning memory and suggest that the down-regulation of NSF expression pattern in the hippocampus and the loss of DA neurons in VTA might contribute to the spatial learning memory deficits induced by SRS.  相似文献   

8.
Prenatal exposure to ethanol causes learning disabilities and low I.Q. scores. The objective of the present studies was to investigate whether exposure of rats to ethanol in utero, would induce a deficit in spatial memory in adult life. Pregnant rats were fed with an ethanol diet from day 1 of pregnancy till parturition. Control rats were either pair-fed with an isocaloric sucrose diet or were fed with lab-chow ad libitum. On the first day of birth, offspring exposed to ethanol in utero were placed with a control mother fed with lab-chow, while offspring of the lab-chow fed dams were placed with ethanol-treated dams. At 40, 60 and 90 days postnatally, behavioral testing was performed using the Morris swim maze, a test of spatial memory. Results indicated that the offspring exposed to ethanol in utero presented deficits in spatial memory processes. Ethanol did not completely block the learning of the swim maze task but the alcohol-exposed offspring exhibited longer latencies to perform the task, swam longer distances prior to locating and climbing onto the platform, and when the platform was removed, searched for it in all 4 quadrants of the pool. Restricted caloric intake during gestation and maternal behavior in early postnatal life also induced deficits in the performance on the swim maze task. However, these deficits were mild and short-lasting being absent at 60 and 90 days of age. In contrast, the deficits induced by ethanol were more severe and longer-lasting, being present in adult life.  相似文献   

9.
A novel version of the 8-arm radial maze task was developed to quantify spatial learning and memory in rats subjected to transient cerebral ischemia (TCI) using the 4-VO model. This maze uses the rat's natural behavior of avoiding open, illuminated areas, and preference for a darkened, enclosed shelter. Ischemic rats were required to escape from the central area into the darkened goal box. Ischemia was induced before or after training to examine its influence on acquisition and retention of cognition, respectively. During the acquisition test, latency of ischemic rats to find the goal box, and working memory performance were significantly impaired (P < 0.005-0.001). The performance for retention of cognition was also disrupted by ischemia (P < 0.05-0.01). There was no correlation between the degree of CA1 pyramidal cell loss and behavioral deficits. The present data reveal that the aversive version of the 8-arm radial maze is sensitive to the cognitive effects of ischemia. Since it excludes the need for food deprivation or immersion of the animal in water, the method should provide a sensitive and more practical behavioral test with which to evaluate the effects of ischemic brain damage on cognition.  相似文献   

10.
Global cerebral ischemia followed by reperfusion, which leads to extensive neuronal damage, particularly the neurons in the hippocampal CA1 region. Apoptosis is one of the major mechanisms that lead to neuronal death after cerebral ischemia and reperfusion. The neuroprotective effects of remifentanil preconditioning against cerebral ischemia/reperfusion injury have been recently reported. Here we investigated whether remifentanil postconditioning exerts neuroprotective effects against global cerebral ischemia/reperfusion injury in rats and its potential mechanisms. Global cerebral ischemia was performed via 10 min of four-vessel occlusion. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling positive cells and expression of Bcl-2 and Bax in the hippocampal CA1 region were assessed after reperfusion. Morris water maze task was used to quantify spatial learning and memory deficits after reperfusion. We found remifentanil postconditioning markedly improved the spatial learning and memory as well as attenuated neuronal apoptosis in hippocampus caused by cerebral ischemia/reperfusion injury. In addition, remifentanil postconditioning enhanced the expression of anti-apoptotic gene Bcl-2 while suppressed the expression of pro-apoptotic gene Bax in hippocampal CA1 region. However, the neuroprotective effects of remifentanil postconditioning were abolished by pretreatment of the PI3K inhibitor LY294002. The results suggest that remifentanil postconditioning exhibits neuroprotective effects against global cerebral ischemia/reperfusion injury in rats, and its mechanisms might involve inhibition of neuronal apoptosis through the PI3K pathway.  相似文献   

11.
This study investigated the effects of neonatal hippocampal ablation on the development of spatial learning and memory abilities in rats. Newborn rats sustained bilateral electrolytic lesions of the hippocampus or were sham-operated on postnatal day 1 (PN1). At PN20–25, PN50–55, or PN90–95, separate groups of rats were tested in a Morris water maze on a visible “cue” condition (visible platform in a fixed location of the maze), a spatial “place” condition (submerged platform in a fixed location), or a no-contingency “random” condition (submerged platform in a random location). Rats were tested for 6 consecutive days, with 12 acquisition trials and 1 retention (probe) trial per day. During acquisition trials, the rat's latency to escape the maze was recorded. During retention trials (last trial for each day, no escape platform available), the total time the rat spent in the probe quadrant was recorded. Data from rats with hippocampal lesions tested as infants (PN20–25) or as adults (PN50–55 and PN90–95) converged across measures to reveal that 1) spatial (place) memory deficits were evident throughout developmental testing, suggesting that the deficits in spatial memory were long-lasting, if not permanent, and 2) behavioral performance measures under the spatial (place) condition were significantly correlated with total volume of hippocampal tissue damage, and with volume of damage to the right and anterior hippocampal regions. These results support the hypothesis that hippocampal integrity is important for the normal development of spatial learning and memory functions, and show that other brain structures do not assume hippocampal-spatial memory functions when the hippocampus is damaged during the neonatal period (even when testing is not begun until adulthood). Thus, neonatal hippocampal damage in rats may serve as a rodent model for assessing treatment strategies (e.g., pharmacological) relevant to human perinatal brain injury and developmental disabilities within the learning and memory realm. Hippocampus 7:403–415, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Effects of concurrent intracerebroventricular administration of amyloid-beta peptide 25-35 (Abeta(25-35)) and the proinflammatory cytokine tumor necrosis factor-alpha (TNFalpha) to rats were investigated. A battery of behavioral tests including radial arm maze, passive avoidance, elevated plus-maze and forced swim test as well as histological methods were used. A single administration of Abeta(25-35) induced delayed behavioral deficits manifested in reference and working memory disturbances in the radial maze task involving spatial memory. However, no effects of Abeta(25-35) on learning or retention in a passive avoidance test could be revealed. Abeta(25-35) appeared to decrease anxiety without affecting depression-like behavior in the rats. Abeta(25-35)-induced cognitive deficits could be related to the moderate neuronal cell loss found in the hippocampal CA1 field. Though administration of TNFalpha did not impair learning and memory of rats in the radial maze, it induced gross changes in their behavior during passive avoidance training. Though TNFalpha did not protect against Abeta(25-35)-induced neuronal cell loss in the CA1 field of hippocampus, co-administration of TNFalpha with Abeta(25-35) resulted in an improvement of reference memory impaired by the amyloid peptide, but not of working memory.  相似文献   

13.
In ischemic preconditioning, prior exposure to a short 3-min global ischemia provides substantial protection against the deleterious effects of a subsequent prolonged ischemic insult in rats. The objective of the present study was to determine if the neuronal protection induced by ischemic preconditioning influence functional recovery following a 6-min ischemic insult in rats. Animals received either sham-operation, a 3-min ischemia, a preconditioning 3-min global ischemia followed 3 days later by a 6-min global ischemia or a single 6-min global ischemia. Open field habituation, memory performance in the 8-arm radial maze and object recognition were assessed at different intervals following ischemia. Our findings revealed that preconditioning reversed ischemia-induced spatial memory deficits in the 8-arm radial maze, as suggested by significant reduction of working memory errors in preconditioned as compared to ischemic animals. Preconditioning also attenuated ischemia-induced object recognition deficits at short-term intervals. Nonetheless, preconditioning failed to alter ischemia-induced hyperactivity as demonstrated by enhanced behavioral activity in the open field in both preconditioned and ischemic animals compared to 3-min ischemic and sham-operated rats. CA1 cell counts revealed significant neuronal sparing in preconditioned animals that was observed 6-month following reperfusion. Together, these findings suggest that neuronal survival in preconditioned rats is associated with significant improvements of hippocampal-dependent memory functions and, further support that ischemia-induced hyperactivity may not solely depend on selective neuronal damage to hippocampal neurons.  相似文献   

14.
Spatial learning and memory deficits in the APP23 transgenic mice have mainly been studied using the Morris water maze (MWM). However learning in the MWM relies on swimming abilities and may be confounded by the stressful nature of this test. We have therefore assessed spatial learning and memory in 12-month-old APP23 using a dry-land maze test developed by Barnes. Mice were given daily learning trials for a total of 41 successive days. After a 12-day interval the mice were re-tested for 4 additional days in order to examine the spatial memory retention. Immediately following this phase, reversal learning was examined for 13 additional days by moving the escape tunnel to the opposite position. During the initial learning phase, APP23 mice showed a significantly longer latency to find the escape tunnel as well as an increased number of errors compared to non-transgenic littermates. These deficits appeared to be due to a delay in switching from a "no strategy" to a spatial strategy. Indeed, this same delay in the use of spatial strategy was observed in the reversal phase of the study. Our results suggest that impairments in APP23 mice in learning and memory maze tests may be due to a specific deficit in the use of spatial strategy.  相似文献   

15.
Both the hippocampus and the entorhinal cortex are known to be crucial for spatial learning, but the contribution of the pathway linking the two structures, the perforant path (PP), has never been tested in a spatial learning paradigm. The present study examined the role of the PP in spatial learning using the Morris water maze. Seven days after bilateral transection of the PP with a fine-bladed knife, rats were habituated to the pool, then trained to swim from varying start locations to a platform submerged in a fixed location. After 28 training trials over 5 days, probe trials (without any platform present) were given to assess spatial memory for the location. Compared to sham-operated controls, lesioned rats showed slower learning and poorer asymptotic performance in terms of both swim path distance and escape latency, and less preference for the correct quadrant during probe trials. When the platform location was "reversed" to the opposite quadrant, the lesioned rats again showed poorer learning, poorer asymptotic performance, and reduced preference for the correct quadrant on the probe trial. When tested with a visible platform whose position varied from trial to trial, lesioned rats performed as well as controls. These results are congruent with previous analyses of the contributions of the entorhinal cortex and hippocampus to spatial learning and suggest that for spatial learning, the PP is a critical functional link between these two structures.  相似文献   

16.
Chronic cerebral hypoperfusion (CCH) is common in the pathogenesis of cognitive impairment, in which oxidative stress plays an important role. Here we describe an alternative rat model for CCH that involves two-stage, three-vessel occlusion (2s-3VO) and compare its effects with those of permanent bilateral occlusion (2VO) of the common carotid arteries. Real-time cerebral blood flow (CBF) during the surgery was monitored. Spatial learning and memory were tested with the Morris water maze, and oxidative damage was evaluated by measuring malondialdehyde (MDA) levels in both the hippocampus and cortex. We found that the CBF drop in the early stage of the 2s-3VO model was more modest than that in the 2VO model. Like 2VO rats, 2s-3VO rats showed impaired spatial learning and memory and increased MDA levels 8 weeks after surgery. Interestingly, when pooling observations from previous studies, we confirmed that oxidative damage appeared later than spatial learning and memory deficits but lasted longer than did cerebral hypoperfusion. Thus, the 2s-3VO model appears to be a suitable model for the study of CCH. Moreover, data support the notion that cognitive impairment in CCH rat models may be induced early by cerebral hypoperfusion early and in a later phase by oxidative stress.  相似文献   

17.
The contribution of corticotropin-releasing hormone (CRH) in the modulation of ischemia-induced cell death in vivo remains unclear. We characterized the impact of pre-ischemic administration of CRH (0, 0.1, 1, 5 microg, i.c.v., 15 min prior to vessel occlusion) on neuronal damage following global ischemia in rats. The injection of 5 microg CRH led to a 37% increase in CA1 neuronal survival compared to vehicle-treated ischemic animals, while pre-treatment with alpha-helical CRH (9-41) abolished this neuronal protection. A second objective aimed to determine whether CRH protection is maintained over weeks when the peptide is administered at remote time intervals following ischemia. Compared to vehicle-treated ischemic animals, administration of CRH 8h following global ischemia led to a 61% increase in CA1 neuronal survival observed 30 days post-ischemia. Neuronal protection translated into significant improvement of ischemia-induced spatial memory deficits in the radial maze. Finally, our findings demonstrated that selective blockade of kappa- and delta-opioid receptors (using nor-binaltorphimine and naltrindole, respectively) prior to CRH administration significantly reduced CA1 neuronal protection. These findings represent the first demonstration of enhanced neuronal survival following in vivo CRH administration in a global model of ischemia in rats. They also support the idea that CRH-induced neuroprotection involves opioid receptors activation.  相似文献   

18.
This study reports a series of spatial discrimination procedures in a Morris-type maze to investigate the effects of delta9-tetrahydrocannabinol (delta9-THC) on different phases of learning and memory in mice. Adult male mice were given training trails to find the submerged platform at a fixed location in the water maze adapted for mice. In additional experiments, mice were trained with the repeated acquisition procedure to test the working memory. Results indicate that delta9-THC (8 mg/kg i.p.) 30 min pretest impaired specifically the acquisition of spatial learning and the performance of mice in the working memory task, while consolidation and retrieval of a previously learned task were not affected. There was no evidence of motoric difficulty, as the number of quadrant line crossings was not decreased and no visible sign of sensorimotor disturbance was observed during swimming. Pretreatment with SR 141716A (1 mg/kg i.p.), a CB1 cannabinoid receptor antagonist, significantly prevented the learning deficits in the water maze. These findings show that delta9-THC impairs spatial discrimination learning in a selective way in the water maze in mice and that these deficits may be mediated by cannabinoid receptors.  相似文献   

19.
盐酸多奈哌齐对血管性痴呆小鼠学习和记忆能力的影响   总被引:1,自引:0,他引:1  
目的观察盐酸多奈哌齐对脑缺血-再灌注后血管性痴呆小鼠不同时间点学习、记忆能力和海马CA1区病理变化的影响。方法雄性昆明小鼠250只,采用双侧颈总动脉反复缺血-再灌注的方法制备血管性痴呆(VD)模型,随机分为假手术组、模型组和多奈哌齐治疗组。应用Morris水迷宫实验、跳台实验进行行为学测试,HE染色观察海马病理表现及盐酸多奈哌齐对其的影响。结果术后4周时,模型组小鼠的学习、记忆成绩均明显劣于假手术组小鼠(P<0.05),病理改变较假手术组严重,这一变化持续至术后8周仍未恢复。盐酸多奈哌齐治疗组在术后4周和8周时,其学习、记忆能力和海马CA1区病理表现较模型组均有明显改善(P<0.05)。结论脑缺血-再灌注可导致小鼠海马CA1区神经元持续进行性损害,伴学习、记忆能力障碍;盐酸多奈哌齐对脑缺血-再灌注诱发的VD小鼠有一定治疗作用。  相似文献   

20.
Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the effects of environmental enrichment on spatial learning and memory as well as on synaptic remodeling in a mouse model of chronic cerebral ischemia, produced by subjecting adult male C57 BL/6 mice to permanent left middle cerebral artery occlusion. Three days postoperatively, mice were randomly assigned to the environmental enrichment and standard housing groups. Mice in the standard housing group were housed and fed a standard diet. Mice in the environmental enrichment group were housed in a cage with various toys and fed a standard diet. Then, 28 days postoperatively, spatial learning and memory were tested using the Morris water maze. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 in the hippocampus were analyzed by western blot assay. The number of synapses was evaluated by electron microscopy. In the water maze test, mice in the environmental enrichment group had a shorter escape latency, traveled markedly longer distances, spent more time in the correct quadrant(northeast zone), and had a higher frequency of crossings compared with the standard housing group. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 were substantially upregulated in the hippocampus in the environmental enrichment group compared with the standard housing group. Furthermore, electron microscopy revealed that environmental enrichment increased the number of synapses in the hippocampal CA1 region. Collectively, these findings suggest that environmental enrichment ameliorates the spatial learning and memory impairment induced by permanent middle cerebral artery occlusion. Environmental enrichment in mice with cerebral ischemia likely promotes cognitive recovery by inducing plastic changes in synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号