首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient expression of the tumor suppressor gene p53 via adenoviral-mediated gene transfer induces apoptosis in glioma cells expressing mutant p53, while causing cell cycle arrest in cells with wild-type p53. To determine whether a change in p53 status of a wild-type p53-expressing cell line such as U-87 MG would alter its apoptotic resistant phenotype in response to Ad-p53 infection, we generated cell lines U-87-175.4 and U-87-175.13 via retroviral-mediated gene transfer of the p53 (175H) mutant into the U-87 MG parental line. Control cell lines U-87-Lux.6 and U-87-Lux.8 were also generated and express the reporter gene luciferase. Both U-87-175.4 and U-87-175.13, but not control cell lines, exhibited morphology characteristic of apoptosis after Ad-p53 infection. Furthermore, expression of other p53 mutants (248W, 273H) in U-87 MG also sensitized cells to Ad-p53-induced apoptosis. Apoptosis was confirmed by TUNEL and cell cycle analysis. Several p53 response genes were examined in cells infected with Ad-p53, and among these, BCL2, p21WAF1/CIP1, CPP32/caspase 3, and PARP showed differences in expression between U87-175 and U87-Lux cell lines. Taken together, our data demonstrate that the introduction of p53 mutants in U-87 MG promotes an apoptotic response in association with adenoviral-mediated wild-type p53 gene transfer. These results underscore the importance of glioma p53 genotype for predicting tumor response to p53-based gene therapy.  相似文献   

2.
Therapeutic replacement of the p53 gene using an adenovirus vector (Ad-p53) may be an effective alternative to conventional therapies for the treatment of glioma. We have previously demonstrated that the introduction of Ad-p53 into glioma cells containing mutant p53 induces apoptosis, whereas glioma cells containing wild-type p53 are resistant. However, Ad-p53 will enhance the radiosensitivity of wild-type p53 glioma cells by increasing their tendency for apoptosis. The mechanism underlying these different responses to Ad-p53 has not been elucidated to date. Because phosphorylation of p53 at serines 15, 20, and 392 may play a role in regulating p53-mediated apoptotic activity, we determined the phosphorylation status of exogenous p53 in mutant and wild-type gliomas after Ad-p53 transfer. Monolayer cultures of glioma cell lines expressing mutant p53 (U251 and U373) or wild-type p53 (U87 and D54) were infected with Ad-p53 and analyzed by Western blotting. High levels of exogenous p53 were detected in both cell lines after Ad-p53 transfer. However, only apoptotic mutant p53 cells expressed high levels of phospho-Ser15-p53 and phospho-Ser20-p53. The levels of phospho-Ser15-p53 and phospho-Ser20-p53 were very low in wild-type p53 cells after Ad-p53 infection alone. When wild-type p53 glioma cells were exposed to radiation after Ad-p53 infection, phospho-Ser15-p53 and phospho-Ser20-p53 were detected at high levels, and the cells subsequently underwent apoptosis; no change in serine 392 was detected. The induction of apoptosis and the expression of phospho-Ser15 and phospho-Ser20 in these cells were also enhanced by the combination of Ad-p53 and other DNA-damaging agents such as cisplatin and bichloroethyl nitrosourea. Furthermore, the expression of phospho-Ser15-p53 and phospho-Ser20-p53 correlated with the amount of apoptosis; the apoptotic activity of p53 in glioma cells was partially inhibited by a mutation of p53 at serine 15. These results suggest that phosphorylation of p53 at serine 15 and serine 20 is critical for apoptosis induction in p53 gene therapy for gliomas.  相似文献   

3.
4.
Most malignant astrocytomas (gliomas) express a high level of Fas, whereas the surrounding normal tissues such as neurons and astrocytes express a very low level of Fas. Thus, transduction of Fas ligand would selectively kill malignant astrocytoma cells. On the other hand, glioma cells harboring p53 mutation have been reported to be resistant to conventional therapies including radiation. To override the resistance mechanism of glioma cells with p53 mutation to radiation, we transduced U-373MG malignant astrocytoma (glioma) cells harboring mutant p53 with Fas ligand via an adenovirus (Adv) vector in combination with X-ray irradiation, and evaluated the degree of apoptosis. The degree of apoptosis in U-373MG cells infected with the Adv for Fas ligand (Adv-FL) and treated with irradiation (81%) was much higher than that in U-373MG cells infected with Adv-FL and not treated with irradiation (0.8%) or that in U-373MG cells infected with the control Adv for lacZ and treated with irradiation (5.0%). In U-373MG cells infected with Adv-FL, irradiation increased the expression of Fas ligand. Coincident with the increase in Fas ligand, there was a marked reduction in the caspase-3 level and a marked increase in the cleaved form of poly(ADP-ribose) polymerase (PARP), which are downstream components of Fas ligand-mediated apoptosis. This suggests that the enhanced activation of caspase-3 by the transduction of Fas ligand combined with irradiation, induced extensive apoptosis in U-373MG cells. In summary, transduction of Fas ligand may override the resistance mechanism to radiotherapy in glioma cells harboring p53 mutation.  相似文献   

5.
Most malignant astrocytomas (gliomas) express a high level of Fas, whereas the surrounding normal tissues such as neurons and astrocytes express a very low level of Fas. Thus, transduction of Fas ligand would selectively kill malignant astrocytoma cells. On the other hand, glioma cells harboring p53 mutation have been reported to be resistant to conventional therapies including radiation. To override the resistance mechanism of glioma cells with p53 mutation to radiation, we transduced U-373MG malignant astrocytoma (glioma) cells harboring mutant p53 with Fas ligand via an adenovirus (Adv) vector in combination with X-ray irradiation, and evaluated the degree of apoptosis. The degree of apoptosis in U-373MG cells infected with the Adv for Fas ligand (Adv-FL) and treated with irradiation (81%) was much higher than that in U-373MG cells infected with Adv-FL and not treated with irradiation (0.8%) or that in U-373MG cells infected with the control Adv for lacZ and treated with irradiation (5.0%). In U-373MG cells infected with Adv-FL, irradiation increased the expression of Fas ligand. Coincident with the increase in Fas ligand, there was a marked reduction in the caspase-3 level and a marked increase in the cleaved form of poly(ADP-ribose) polymerase (PARP), which are downstream components of Fas ligand-mediated apoptosis. This suggests that the enhanced activation of caspase-3 by the transduction of Fas ligand combined with irradiation, induced extensive apoptosis in U-373MG cells. In summary, transduction of Fas ligand may override the resistance mechanism to radiotherapy in glioma cells harboring p53 mutation.  相似文献   

6.
Anazawa Y  Arakawa H  Nakagawa H  Nakamura Y 《Oncogene》2004,23(46):7621-7627
  相似文献   

7.
Anticancer drugs exert at least part of their cytotoxic effect by triggering apoptosis. We previously identified chemotherapy-induced apoptosis in lung cancer cells and suggested a role for p53 alternative or complementary pathways in this process. Recently, a role for the Fas/FasL (CD95/Apo1) signaling system in chemotherapy-induced apoptosis was proposed in some cell types. In the present work, the involvement of the Fas/FasL system in drug-induced apoptosis in lung cancer cells was investigated upon exposure to four cytotoxic drugs (cisplatin, gemcitabine, topotecan, and paclitaxel). We assessed the expression of Fas and FasL and the function of the Fas pathway in six lung cancer cell lines (H460, H322, GLC4, GLC4/ADR, H187, and N417). All lung cancer cell lines expressed Fas and FasL at RNA and protein levels, and apoptosis could be induced in four of six cell lines upon exposure to the Fas agonistic monoclonal antibody (mAb) CLB-CD95/15. Nevertheless, after drug exposure, no significant FasL up-regulation was observed, whereas the Fas expression was increased in the wild-type p53 cell line H460, but not in the other lines, proved to be mutant p53 by direct gene sequencing. Moreover, no correlation was observed in lung cancer cell lines between sensitivity to drugs and to a Fas agonistic mAb, and preincubation of cells with either the Fas-antagonistic mAb CLB-CD95/2 or a FasL-neutralizing mAb did not protect from drug-induced apoptosis. Taken together, these observations strongly argue against a role of the Fas/FasL signaling pathway in drug-induced apoptosis in lung cancer cells. Interestingly, caspase-8 activation was observed upon drug exposure, independently from Fas/FasL signaling.  相似文献   

8.
The infection of recombinant adenovirus expressing wild-type p53 (Ad-p53) to lung cancer cells that harbor mutant p53 genes improves their response to cis-diamminedichloroplatinum(II). In this study, we tested whether this improvement in response is also seen in wild-type p53 (wt-p53)-containing cancer cells and whether this phenomenon is universal with other commonly used chemotherapeutic agents, including etoposide, 7-ethyl-10-hydrocycamptothecin, paclitaxel, and docetaxel. Using a panel of 7 non-small cell lung cancer cell lines with wild-type (2) or abnormal (2 null, 3 point-mutated) p53, we examined in vitro cytotoxicity using a tetrazolium-based colorimetric assay (3-(4,5-diethylthiazoyl-2-yl)-2,5-diphenyltetrazolium bromide assay) and analyzed the combined effects of Ad-p53 and chemotherapeutic agents using the isobologram method. Ad-p53 and DNA-damaging agents (cis-diamminedichloroplatinum(II), etoposide, and 7-ethyl-10-hydrocycamptothecin) showed synergistic effects in six of seven cell lines but additive effects against a p53-mutated cell line. In contrast, Ad-p53 showed additive effects with the antitubulin agents (paclitaxel and docetaxel) in all four of the cell lines tested. Furthermore, we examined this synergistic interaction between Ad-p53 and DNA-damaging agents by flow cytometric analysis and DNA fragmentation analysis. Both analyses revealed that a sublethal dose of Ad-p53 augmented the apoptotic response induced by DNA-damaging agents in six of seven cell lines. Our results suggest that Ad-p53 may synergistically enhance the chemosensitivity of the majority of non-small cell lung cancers to DNA-damaging agents due to augmentation of apoptosis.  相似文献   

9.
Death ligands such as CD95 ligand (CD95L) or tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand (TRAIL/Apo2L) induce apoptosis in radiochemotherapy-resistant human malignant glioma cell lines. The death-signaling TRAIL receptors 2 (TRAIL-R2/death receptor (DR) 5) and TRAIL-R1/DR4 were expressed more abundantly than the non-death-inducing (decoy) receptors TRAIL-R3/DcR1 and TRAIL-R4/DcR2 in 12 human glioma cell lines. Four of the 12 cell lines were TRAIL/Apo2L-sensitive in the absence of a protein synthesis inhibitor, cycloheximide (CHX). Three of the 12 cell lines were still TRAIL/Apo2L-resistant in the presence of CHX. TRAIL-R2 expression predicted sensitivity to apoptosis. Coexposure to TRAIL/Apo2L and cytotoxic drugs such as topotecan, lomustine (1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea, CCNU) or temozolomide resulted in synergistic killing. Synergistic killing was more often observed in cell lines retaining wild-type p53 activity (U87MG, LN-229) than in p53 mutant cell lines (LN-18, T98G, U373MG). Drug exposure resulted in enhanced TRAIL-R2 expression, but decreased TRAIL-R4 expression in U87MG cells. Ectopic expression of dominant-negative p53(V135A) abrogated the drug-induced changes in TRAIL-R2 and TRAIL-R4 expression, but had no effect on synergy. Thus, neither wild-type p53 function nor changes in TRAIL receptor expression were required for synergy. In contrast, synergy resulted possibly from drug-induced cytochrome c release from mitochondria, serving as an amplifier of the TRAIL/Apo2L-mediated cascade of caspase activation. These data provide novel insights into the role of the TRAIL/Apo2L system in malignant gliomas and illustrate that TRAIL/Apo2L-based immunochemotherapy may be an effective therapeutic strategy for these lethal neoplasms.  相似文献   

10.
We have shown that the loss of p53 function contributed to resistance of tumor cells to TNF-induced cytotoxicity. In the present study, we evaluated the effect of wild-type p53 (wt-p53) expression on TNF sensitivity, by introducing wt-p53 into MCF7/Adr cells in which p53 was deleted, via a recombinant adenovirus encoding p53 (Ad-p53). Our results indicate that infection with Ad-p53 (50-100 viral particles per cell) resulted in pronounced cytotoxicity, whereas infection with 10 viral particles per cell, which was weakly toxic for the MCF7/Adr cells, sensitized these cells to TNF-induced cell death. Moreover, expression of wt-p53 in MCF7/Adr cells induced the production of reactive oxygen intermediates (ROIs) and caused glutathione (GSH) depletion, indicating disturbances in the cellular redox state. Additional treatment of cells with the anti-oxidant and glutathione (GSH) precursor N-acetylcysteine (NAC) resulted in inhibition of p53-induced ROIs production and in partial restoration of intracellular GSH levels, which was associated with the ability of NAC to inhibit p53-modulated TNF-induced cytotoxicity. Interestingly, Ad-p53 was able to inhibit TNF-induced MnSOD mRNA expression in MCF7/Adr cells, which might contribute to the sensitization of cells to the cytotoxic action of TNF. Taken together, our data strongly suggest that wt-p53 expression sensitizes TNF-resistant MCF7 cells with p53 deletion to TNF-induced cell death by a pathway that is dependent on ROIs production.  相似文献   

11.
We investigated the combined effects of p53 gene transfer and irradiation and its still unclear interaction mechanism in human gliomas. Four human glioma cell lines expressing mutant type p53 (U373 and A172) and wild-type p53 (D54MG and EFC-2) were transfected by adenoviral vectors bearing p53 gene at 50 multiplicity of infection. Two days after transfection, cells were irradiated (3, 6, and 9 Gy). The cytotoxicity was evaluated by clonogenic assay. The quantitative analysis of apoptosis and cell cycle analysis were performed using flow cytometry. Irradiation combined with adenoviral p53 transfection significantly increased cytotoxicity, which was additive in cell lines with wild-type p53 and more than additive in cell lines with mutant p53. The combination of two modalities increased the apoptotic population by 14% in A172 cells and 20% in D54 MG cells, which were the sum of apoptosis from each modality. Adenoviral p53 transfection increased the G1 phase fraction and concomitant decrease of radioresistant S phase fraction in A172 and D54MG cells. Our study demonstrated that p53 gene transfer combined with irradiation increased absolute cytotoxicity in human glioma cells used in this experiment. The interaction mechanism for increased cytotoxicity involved, in part, increased apoptosis and change of cell cycle profile.  相似文献   

12.
Li Y  Raffo AJ  Drew L  Mao Y  Tran A  Petrylak DP  Fine RL 《Cancer research》2003,63(7):1527-1533
The p53 mutant 143Ala is a human temperature-sensitive mutant with two conformational states.To definitively determine whether the Fas signal transduction pathway and the function of the pathway are dependent on p53 status, we have established stable transfectants of p53 mutant 143Ala in two human cancer cell lines: H1299 (lung cancer line) and PC-3 (prostate cancer line), the native state of which contains null p53 status and can grow at 37 degrees C and 32.5 degrees C. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell cycle analysis showed inhibition of the growth of cells overexpressing p53 mutant 143Ala in the wild-type p53 form at 32.5 degrees C because of induction of G0/G1 arrest. Transfected cells had increased protein expression of p21, Fas, and MDM2 at the wild-type p53 conformation at 32.5 degrees C, but not in the mutant p53 form at 37 degrees C. However, there was no change in protein expression of FADD, FAP-1, Bcl-2, or Bax at 32.5 or 37 degrees C. Assays for apoptosis demonstrated that anti-Fas antibody CH-11 and FasL induced apoptosis only in cells that overexpress p53 mutant 143Ala at 32.5 degrees C with the wild-type p53 form. Both caspase-3 and caspase-8 activities were increased by anti-Fas antibody CH-11 only in cells at 32.5 degrees C with wild-type p53. Our results demonstrated that Fas-mediated apoptosis in H1299 and PC-3 cells expressing p53 mutant 143Ala occurred only with the wild-type p53 phenotype. These results support the hypothesis that Fas-mediated apoptosis is dependent, at least partially, on the presence of a functional wild-type p53 state. This model may be a useful tool for dissecting the specific interactions between wild-type p53 and the Fas signal transduction pathway in human cancer cells.  相似文献   

13.
Gomyo Y  Sasaki J  Branch C  Roth JA  Mukhopadhyay T 《Oncogene》2004,23(40):6779-6787
Treating lung cancer cell lines using low-dose 5-aza-2'-deoxycytidine (DAC) caused an accumulation of procaspase-9 through mRNA upregulation, but the cells did not undergo apoptosis. However, when cells were treated with DAC and infected with a low dose of a recombinant wild-type p53 adenovirus vector (Ad-p53), a synergistic growth inhibitory effect was observed. Combination treatment induced Apaf-1 and procaspase-9 expression in which cytochrome c releases by Ad-p53 triggered the mitochondrial pathway of apoptosis. Selective blockage of caspase-9 activities by Z-LEHD-FMK completely attenuated DAC-induced enhancement of apoptosis mediated by Ad-p53 infection, and ectopic overexpression of procaspase-9 sensitized cells to Ad-p53-induced apoptosis in p53-null cells. In addition, DAC sensitized lung cancer cells to cisplatin and paclitaxel. Induction of the mitochondrial pathway of apoptosis using a slightly toxic dose of DAC may therefore be a strategy for treating lung cancer, and DAC treatment may have clinical implications when combined with chemotherapy or apoptosis-inducing gene therapy.  相似文献   

14.
Combined radiation and p53 gene therapy of malignant glioma cells   总被引:6,自引:0,他引:6  
More than half of malignant gliomas reportedly have alterations in the p53 tumor suppressor gene. Because p53 plays a key role in the cellular response to DNA-damaging agents, we investigated the role of p53 gene therapy before ionizing radiation in cultured human glioma cells containing normal or mutated p53. Three established human glioma cell lines expressing the wild-type (U87 MG, p53wt) or mutant (A172 and U373 MG, p53mut) p53 gene were transduced by recombinant adenoviral vectors bearing human p53 (Adp53) and Escherichia coli beta-galactosidase genes (AdLacZ, control virus) before radiation (0-20 Gy). Changes in p53, p21, and Bax expression were studied by Western immunoblotting, whereas cell cycle alterations and apoptosis were investigated by flow cytometry and nuclear staining. Survival was assessed by clonogenic assays. Within 48 hours of Adp53 exposure, all three cell lines demonstrated p53 expression at a viral multiplicity of infection of 100. p21, which is a p53-inducible downstream effector gene, was overexpressed, and cells were arrested in the G1 phase. Bax expression, which is thought to play a role in p53-induced apoptosis, did not change with either radiation or Adp53. Apoptosis and survival after p53 gene therapy varied. U87 MG (p53wt) cells showed minimal apoptosis after Adp53, irradiation, or combined treatments. U373 MG (p53mut) cells underwent massive apoptosis and died within 48 hours of Adp53 treatment, independent of irradiation. Surprisingly, A172 (p53mut) cells demonstrated minimal apoptosis after Adp53 exposure; however, unlike U373 MG cells, apoptosis increased with radiation dose. Survival of all three cell lines was reduced dramatically after >10 Gy. Although Adp53 transduction significantly reduced the survival of U373 MG cells and inhibited A172 growth, it had no effect on the U87 MG cell line. Transduction with AdLacZ did not affect apoptosis or cell cycle progression and only minimally affected survival in all cell lines. We conclude that responses to p53 gene therapy are variable among gliomas and most likely depend upon both cellular p53 status and as yet ill-defined downstream pathways involving activation of cell cycle regulatory and apoptotic genes.  相似文献   

15.
Mutation of the p53 gene plays a critical role in the development of cancer and response to cancer therapy. To analyze the mechanism of cancer development and to improve cancer therapy, it is important to assess which genes are downstream components of p53 in cancers, and whether the expression levels of these genes affect p53-mediated apoptosis. In this study, we transduced the wild type p53 gene along with the Apaf-1 and caspase-9 genes via adenovirus vectors into U251 and U-373MG glioma cells harbouring a mutated p53, and evaluated the degree of apoptosis. Co-induction of Apaf-1 and caspase-9 genes highly enhanced p53-mediated apoptosis in glioma cells. Induction of wild type p53 enhanced the expression levels of Bax, p21/WAF1, and Fas protein. To determine which gene is activated by wild type p53 induction and, in turn, activates Apaf-1 and caspase-9, we transduced the Bax, p21/WAF1 or Fas gene via adenovirus vector to U251 cells to achieve a similar expression level as that induced by the Adv for p53 in U251 cells. U251 cells transduced with Fas concomitant with the Apaf-1 and caspase-9 genes underwent drastic apoptosis. This suggests that induction of wild type p53 upregulates Fas, which in turn may play a role in the activation of Apaf-1 and caspase-9. These results are important for analyzing the mechanism of tumour development and for predicting the therapeutic effect of p53 replacement gene therapy in a particular patient.  相似文献   

16.
It has been reported that U-87MG glioma cells with wild-type p53 are resistant to p53 replacement gene therapy. As some gliomas harbor wild-type p53, it would be important to override the resistance mechanism due to wild-type p53 in glioma gene therapy. In this study, we transduced U-87MG cells or U251 glioma cells harboring mutated p53 with the p53 or p73alpha gene (a homologue of p53, that differently induces some p53-responsive genes) via adenovirus vectors (Advs) at same multiplicities of infection (MOIs) into respective cells (U-87MG: MOI 1000, U251: MOI 100), and evaluated the degree of apoptosis. The results demonstrate that the degree of apoptosis induced by Adv-mediated transduction of p53 in U-87MG cells was lower than that in U251 cells, whereas that induced by Adv-mediated transduction of p73alpha in U-87MG cells was higher than that in U251 cells. Bax expression in U-87MG and U251 cells induced by Adv-mediated transduction of p53 was almost the same as that of p73alpha. On the other hand, Adv-mediated transduction of p73alpha induced caspase-9 at higher levels than that of p53 in both cells. The results indicate that Adv-mediated transduction of p73alpha might be beneficial to overcome the resistance mechanism of glioma cells harboring wild-type p53.  相似文献   

17.
The CD95 (Fas/APO-1) system regulates a number of physiological and pathological processes of cell death. The ligand for CD95 induces apoptosis in sensitive target cells by interacting with a transmembrane cell surface CD95 receptor. We previously reported that the recombinant adenovirus-mediated transfer of the wild-type p53 gene caused apoptotic cell death in a variety of human cancer cells. To better understand the mechanism responsible for this cell death signaling, we have investigated the potential involvement of the CD95 receptor/ligand system in p53-mediated apoptosis. The transient expression of the wild-type p53 gene upregulated the CD95 ligand mRNA as well as protein expression in H1299 human lung cancer cells deficient for p53 and in DLD-1 and SW620 human colon cancer cells with mutated p53, all of which constitutively expressed CD95 receptor as shown by a flow cytometric analysis, and induced rapid apoptotic cell death as early as 24 h after gene transfer. However, the sensitivity to the cytolytic effect of agonistic anti-CD95 antibody (CH11) varied among these cell lines: CH11 induced apoptosis in H1299 cells, but not in DLD-1 and SW620 cells despite their abundant CD95 receptor expression, suggesting that the CD95 receptors on DLD-1 and SW620 cells might be inactivated. In addition, an antagonistic anti-CD95 ligand antibody (4H9) that interfered with the CD95-receptor-ligand interaction partially reduced the apoptosis induced by the wild-type p53 gene transfer in H1299 cells, whereas apoptosis of DLD-1 and SW620 cells occurred in the presence of 4H9. Taken together, these findings led us to conclude that the CD95 receptor/ligand system is differentially involved in p53-mediated apoptosis, suggesting that the restoration of the wild-type p53 function may mediate apoptosis through CD95 receptor/ligand interactions as well as an alternative pathway.  相似文献   

18.
Adenoviral vectors expressing wild-type p53 (Ad-p53) induce apoptosis in different types of cancer cells. The therapeutic utility of Ad-p53 is now being evaluated in prostate-cancer patients. Bcl-2 is frequently expressed by prostate-cancer cells and has previously been shown to inhibit p53-mediated cell death following genotoxic stress. We studied the impact of bcl-2 on Ad-p53-induced cell death in human prostate-cancer cells. Human prostate-cancer cell lines LNCaP (p53 wt) and PC3 (p53 mut) were stably transfected with bcl-2. After p53 transduction, cell viability, apoptosis induction and modulation of specific apoptosis-regulatory proteins were assessed. LNCaP vector control and bcl-2-expressing cells underwent similar decreases in viability associated with apoptosis induction following Ad-p53 infection. Increased bcl-2 expression provided significant protection to PC3 cells transduced with Ad-p53. These findings are correlated with modulations in bax, bcl-2, bcl-x(L) and p21 protein levels. These data suggest that Ad-p53 may be useful in the treatment of some prostate cancers.  相似文献   

19.
Adenoviral chimeric tumor suppressor 1 (CTS1) gene transfer was evaluated as a novel approach of somatic gene therapy for malignant glioma. CTS1 is an artificial p53-based gene designed to resist various pathways of p53 inactivation. Here, we report that an adenovirus encoding CTS1 (Ad-CTS1) induces growth arrest and loss of viability in all glioma cell lines examined, in the absence of specific cell cycle changes. In contrast, an adenovirus encoding wild-type p53 (Ad-p53) does not consistently induce apoptosis in the same cell lines. Electron microscopic analysis of Ad-CTS1-infected glioma cells reveals complex cytoplasmic pathology and delayed apoptotic changes. Ad-CTS1 induces prominent activation of various p53 target genes, including p21 and MDM-2, but has no relevant effects on BCL-2 family protein expression. Although Ad-CTS1 strongly enhances CD95 expression at the cell surface, endogenous CD95/CD95 ligand interactions do not mediate CTS1-induced cell death. This is because Ad-CTS1 promotes neither caspase activation nor mitochondrial cytochrome c release and because the caspase inhibitors, z-val-Ala-DL-Asp-fluoromethylketone (zVAD)-fmk or z-Ile-Glu-Thr-Asp- fluoromethylketone (z-IETD)-fmk, do not block CTS1-induced cell death. Ad-CTS1 synergizes with radiotherapy and CD95 ligand in killing glioma cells. In summary, Ad-CTS1 induces an unusual type of cell death that appears to be independent of BCL-2 family proteins, cytochrome c release, and caspases. CTS1 gene transfer is a promising strategy of somatic gene therapy for malignant glioma.  相似文献   

20.
Phosphorylation of Thr18 and Ser20 of p53 in Ad-p53-induced apoptosis   总被引:1,自引:0,他引:1  
The p53 protein plays a critical role in inducing cell cycle arrest or apoptosis. Because p53 is inactivated in human gliomas, restoring p53 function is a major focus of glioma therapy. The most clinically tested strategy for replacing p53 has been adenoviral-mediated p53 gene therapy (Ad-p53). In addition to their therapeutic implications, investigations into Ad-p53 provide model systems for understanding p53's ability to induce cell cycle arrest versus apoptosis, particularly because wild-type p53 cells are resistant to Ad-p53-induced apoptosis. Here we use Ad-p53 constructs to test the hypothesis that simultaneous phosphorylation of p53 at threonine 18 (Thr18) and serine 20 (Ser20) is causally associated with p53-mediated apoptosis. Studies using phosphorylation-specific antibodies demonstrated that p53-induced apoptosis correlates with phosphorylation of p53 at Thr18 and Ser20 but not with carboxy-terminal phosphorylation (Ser392). To prove a causal relationship between apoptosis and Thr18 and Ser20 phosphorylation of p53, the effects of an adenoviral p53 construct that was not phosphorylated (Ad-p53) was compared with a Thr18/Ser20 phosphomimetic construct (Ad-p53-18D20D) in wild-type p53 gliomas. Whereas treatment with Ad-p53 resulted only in cell cycle arrest, treatment with Ad-p53-18D20D induced dramatic apoptosis. Microarray and Western blot analyses showed that only Ad-p53-18D20D was capable of inducing expression of apoptosis-inducing proteins. Chromatin immunoprecipitation assays indicated that the protein product of Ad-p53-18D20D, but not Ad-p53, was capable of binding to apoptosis-related genes. We thus conclude that phosphorylation of Thr18 and Ser20 is sufficient for inducing p53-mediated apoptosis in glioma cells. These results have implications for p53 gene therapy and inform other strategies that aim to restore p53 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号