首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Surgical skill assessment has predominantly been a subjective task. Recently, technological advances such as robot‐assisted surgery have created great opportunities for objective surgical evaluation. In this paper, we introduce a predictive framework for objective skill assessment based on movement trajectory data. Our aim is to build a classification framework to automatically evaluate the performance of surgeons with different levels of expertise.

Methods

Eight global movement features are extracted from movement trajectory data captured by a da Vinci robot for surgeons with two levels of expertise – novice and expert. Three classification methods – k‐nearest neighbours, logistic regression and support vector machines – are applied.

Results

The result shows that the proposed framework can classify surgeons' expertise as novice or expert with an accuracy of 82.3% for knot tying and 89.9% for a suturing task.

Conclusion

This study demonstrates and evaluates the ability of machine learning methods to automatically classify expert and novice surgeons using global movement features.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号