首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Intracellular free calcium concentration ([Ca2+]i) and intracellular pH (pHi) were monitored in Ehrlich ascites tumor cells using Fura-2 or 2′,7′,-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF), or both probes in combination. An increase in [Ca2+]i induced by thrombin or bradykinin, agonists known to elicit transient cell shrinkage in these cells, evoked a transient intracellular acidification, followed by an alkalinization. The latter was due to activation of a Na+/H+ exchanger and was inhibited under conditions preventing agonist-induced cell shrinkage without preventing the increase in [Ca2+]i. In contrast, a smaller, slower increase in [Ca2+]i elicited by thapsigargin did not cause cell shrinkage, and did not activate the Na+/H+ exchanger. Exposure to hypertonic solution was not associated with an increase in [Ca2+]i, but elicited an intracellular alkalinization similar to that induced by thrombin or bradykinin, via activation of the Na+/H+ exchanger. Thus, activation of the exchanger by the Ca2+-mobilizing agonists is suggested to be secondary to the cell shrinkage induced by these compounds. NH4Cl-induced intracellular alkalinization resulted in an increase in [Ca2+]i, apparently via stimulation of Ca2+ influx, whereas shrinkage-induced intracellular alkalinization did not stimulate Ca2+ influx. Thus, cell shrinkage appears to inhibit the Ca2+ influx otherwise resulting from alkalosis. In agreement with that notion, thapsigargin-induced Ca2+ influx was inhibited by cell shrinkage. Received: 6 January 1998 / Received after revision: 10 March 1998 / Accepted: 11 March 1998  相似文献   

2.
Ionomycin (IM) at 5 μM mediates the Ca2+/H+ exchange, while IM at 1 μM activates the store-operated Ca2+ entry channels (SOCs). In this study, the effects of depolarization on both pathways were examined in rat submandibular acinar cells by increasing extracellular K+ concentration ([K+]o). IM (5 μM, the Ca2+/H+ exchange) increased the intracellular Ca2+ concentration ([Ca2+]i) to an extremely high value at 151 mM [K+]o. However, with increasing [K+]o, the rates of Ca2+ entry decreased in a linear relationship. The reversal potential (E rev) for the Ca2+/H+ exchange was +93 mV, suggesting that IM (5 μM) exchanges 1 Ca2+ for 1 H+. Thus, depolarization decreases the Ca2+ influx via the Ca2+/H+ exchange because of its electrogenicity (1 Ca2+ for 1 H+). On the other hand, IM (1 μM, the SOCs) abolished an increase in [Ca2+]i at 151 mM [K+]o. With increasing [K+]o, the rate of Ca2+ entry immediately decreased linearly. The E rev for the SOC was +3.7 mV, suggesting that the SOCs are nonselective cation channels and less selective for Ca2+ over Na+ (P Ca/P Na = 8.2). Moreover, an increase in extracellular Ca2+ concentration (20 mM) enhanced the Ca2+ entry via the SOCs at 151 mM [K+]o, suggesting depolarization does not inhibit the SOCs and decreases the driving force for the Ca2+ entry. This suggests that membrane potential changes induced by a secretory stimulation finely regulate the [Ca2+]i via the SOCs in rat submandibular acinar cells. In conclusion, IM increases [Ca2+]i via two pathways depending on its concentration, the exchange of 1 Ca2+ for 1 H+ at 5 μM and the SOCs at 1 μM.  相似文献   

3.
Stimulation of T cells via the T cell receptor (TCR) leads to an increase intracellular in free Ca2+ levels ([Ca2+]i) and the activation of the MAP kinase signaling pathway. This study analyzes for the first time Ca2+ fluxes in naive cytotoxic T cells stimulated with full agonists, partial agonists, or antagonists. Four different types of Ca2+ responses could be observed. Full agonists triggered a strong and sustained increase in [Ca2+]i. In contrast, partial T cell agonists induced either a strong but transient Ca2+ flux or very low to no increases in [Ca2+]i, while T cell antagonists failed to induce any measurable Ca2+ flux. The ability of peptides to induce elevated [Ca2+]i perfectly paralleled their ability to trigger TCR internalization and T cell activation. Thus, stimulation of naive cytotoxic T cells with a panel of defined altered peptide ligands reveals a consistent picture, where Ca2+ fluxes predict agonist, partial agonist and antagonist properties of peptides.  相似文献   

4.
When a cardiac muscle is held in a stretched position, its [Ca2+] transient increases slowly over several minutes in a process known as stress-induced slow increase in intracellular Ca2+ concentration ([Ca2+]i) (SSC). Transient receptor potential canonical (TRPC) 3 forms a non-selective cation channel regulated by the angiotensin II type 1 receptor (AT1R). In this study, we investigated the role of TRPC3 in the SSC. Isolated mouse ventricular myocytes were electrically stimulated and subjected to sustained stretch. An AT1R blocker, a phospholipase C inhibitor, and a TRPC3 inhibitor suppressed the SSC. These inhibitors also abolished the observed SSC-like slow increase in [Ca2+]i induced by angiotensin II, instead of stretch. Furthermore, the SSC was not observed in TRPC3 knockout mice. Simulation and immunohistochemical studies suggest that sarcolemmal TRPC3 is responsible for the SSC. These results indicate that sarcolemmal TRPC3, regulated by AT1R, causes the SSC.  相似文献   

5.
We studied stimulus-specific alterations of the excitation-contraction coupling pathway in freshly isolated contractile and subcultured non-contractile vascular smooth muscle cells. Using the calcium indicator aequorin, we detected physiological increases in cytoplasmic free calcium ([Ca2+]i) in subcultured smooth muscle cells subjected to angiotensin or 33 mM potassium depolarization. These increases were qualitatively identical to those previously measured in intact vascular strips. Platelet-derived growth factor (PDGF) induced a slow, sustained [Ca2+]i increase when applied to the subcultured smooth muscle cells at low picomolar concentrations. Freshly isolated, contractile vascular smooth muscle cells, prepared by a novel technique, exhibited a slow shortening of 20% of resting length in response to PDGF. PDGF also markedly potentiated smooth muscle cell shortening in response to an ED50 dose of phenylephrine. This effect was PDGF concentration dependent. The time course of shortening induced by PDGF alone was consistent with the time course of the PDGF-induced [Ca2+]i increase in the cultured smooth muscle cells. These data suggest that agonists which induce [Ca2+]i changes in contractile smooth muscle cells may retain this ability with respect to cultured smooth muscle cells. PDGF, a peptide mitogen for proliferative smooth muscle cells, may also serve to modulate vascular tone by modestly raising [Ca2+]i in contractile smooth muscle cell and, therefore, sensitizing the cells to alpha adrenergic agonists.  相似文献   

6.
Aim: The aim of this study was to compare the action potential configuration, contractility, intracellular Ca2+ and H+ concentrations in mammalian cardiac tissues bathed with Krebs and Tyrode solutions at 37 °C. Results: In Langendorff‐perfused guinea‐pig hearts, loaded with the fluorescent Ca2+‐indicator Fura‐2, or H+‐sensitive dye carboxy‐SNARF, shifts from Krebs to Tyrode solution caused intra‐cellular acidification, increased diastolic pressure and [Ca2+]i, decreased systolic pressure and [Ca2+]i, leading to a reduction in the amplitude of [Ca2+]i transients and pulse pressure. Contractility was also depressed in canine ventricular trabeculae when transferred from Krebs to Tyrode solution. Shifts from Krebs to Tyrode solution increased the duration of action potentials in multicellular cardiac preparations excised from canine and rabbit hearts but not in isolated cardiomyocytes. All these changes in action potential morphology, contractility, [Ca2+]i and [H+]i were readily reversible by addition of 26 mmol L?1 bicarbonate to Tyrode solution. Effects of dofetilide and CsCl, both blockers of the delayed rectifier K current, on action potential duration were compared in Krebs and Tyrode solutions. Dofetilide lengthened rabbit ventricular action potentials in a significantly greater extent in Tyrode than in Krebs solution. Exposure of canine Purkinje fibres to CsCl evoked early after depolarizations within 40 min in all preparations incubated with Tyrode solution, but not in those bathed with Krebs solution. Conclusion: It is concluded that the marked differences in action potential morphology, [Ca2+]i, [H+]i and contractility observed between preparations bathed with Krebs and Tyrode solutions are more likely attributable to differences in the intracellular buffering capacities of the two media.  相似文献   

7.
The relationship between isometric tension and free cytoplasmic calcium, [Ca2+]i, was investigated in rat isolated resistance arteries using fura-2. Depolarisation with 125 mM K+ induced a tonic contraction, while [Ca2+]i increased transiently but stabilised above resting [Ca2+]i. Furthermore, the tension/[Ca2+]i ratio was lower during activation with 125 mM K+ if the effect of endogenous noradrenaline (NA) was inhibited. Concentration/ response curves with NA and K+ indicated that NA increased the sensitivity to [Ca2+]i. Calcium concentration/response curves in the presence of 10 M NA or 125 mM K+ showed that NA could induce force at or below resting [Ca2+]i, while for any given bath calcium concentration, [Ca2+]i was similar in the presence of NA or K+. Addition of NA or vasopressin (AVP) to vessels depolarised with 125 mM K+ caused force development but no increase in [Ca2+]i, suggesting that agonists increase the efficacy of [Ca2+]i. However, during activation with AVP the efficacy of [Ca2+]i decreased time-dependently. The results suggest that in resistance arteries [Ca2+]i plays a crucial role in excitation-contraction coupling, but the tension/[Ca2+]i relationship can be modified by exogenous and endogenous agonists.  相似文献   

8.
The present study was conducted to investigate the effects of the diabetic condition on cytosolic free Ca2+ concentration, [Ca2+]i, and the proliferation of splenic lymphocytes from mice. Diabetes was induced in mice by intraperitoneal injection of alloxan. [Ca2+]i and the proliferation ex vivo of splenic lymphocytes isolated from mice were examined using fura-2 and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, respectively. Diabetes caused a significant increase in resting [Ca2+]i and significantly reduced the ability of concanavalin A (Con A; a T-lymphocyte-selective mitogen) to increase [Ca2+]i, but not that of lipopolysaccharide (LPS; a B-lymphocyte-selective mitogen). In addition, diabetes significantly reduced Con A-stimulated but not LPS-stimulated lymphocyte proliferation. Verapamil (an L-type Ca2+ channel blocker) inhibited Con A-induced increases in [Ca2+]i and proliferation in lymphocytes from control and diabetic mice to a similar extent, respectively. These results suggest that diabetes attenuates Con A-stimulated T-lymphocyte proliferation by decreasing [Ca2+]i via reduction of Ca2+ entry through L-type Ca2+ channels.  相似文献   

9.
The effect of the total fraction of human defensins (HNP-1, HNP-2, and HNP-3) on the cytoplasmic Ca2+ content ([Ca2+]i) in the platelets of healthy donors was studied. At concentrations of 0.1–40 μg/ml and an incubation time of 10 min defensins have no effect on [Ca2+]i in platelets labeled with Fura-2AM. However, at higher concentrations (100 μg/ml) they increased platelet [Ca2+]i. In addition, defensins (40 μg/ml) inhibited the Ca2+ increase in platelets induced by thrombin, adenosine diphosphate, and the lipopolysaccharide ofS. typhimurium endotoxin. The most pronounced inhibitory effect was observed in a suspension of thrombin-stimulated platelets. It is shown that the effect of human defensins on the functional activity of platelets is due to the alterations in the intracellular Ca2+. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 118, N o 12, pp. 600–603, December, 1994  相似文献   

10.
目的: 观察红景天苷对乳鼠心肌细胞胞浆Ca2+浓度的影响并分析其可能的作用机制。方法: 应用荧光指示剂Fluo-3/AM负载培养大鼠乳鼠的心肌细胞,用激光共聚焦显微镜动态观察胞内游离钙荧光信号强度的变化,检测不同浓度红景天苷对培养心肌细胞胞内游离钙离子浓度([Ca2+]i)的影响。结果: 红景天苷浓度为15 mg/L、30 mg/L和60 mg/L时,细胞内的平均[Ca2+]i升高,峰值分别为574.08±4.65、591.86±3.64和618.66±4.27(均P<0.01);有剂量依赖性而无时间依赖性。用维拉帕米阻断细胞膜外钙内流时,红景天苷同样引起细胞内[Ca2+]i升高,峰值由357.74±3.13、387.17±2.37和391.43±1.34分别上升到480.86±3.98、496.70±3.08和522.18±3.19(均P<0.01)。结论: 红景天苷能升高乳鼠心肌细胞中[Ca2+]i,其机制可能与其促进肌浆网钙离子释放有关。  相似文献   

11.
 In bovine pulmonary artery endothelial cells, ionic currents and the concentration of free intracellular Ca2+ ([Ca2+]i) were measured with a combined patch clamp and Ca2+-fluorimetric method (Fura-2). Volume-activated Cl–currents (ICl,vol) were activated by a 13 or 28% decrease in tonicity. Thrombin, 1 U/ml, strongly potentiated ICl,vol preactivated by low hypotonicity (13% HTS) but had no effect on ICl,vol preactivated by stronger hypotonic challenges (28% HTS). The thrombin-induced potentiation was not affected by buffering [Ca2+]i at 50–100 nmol/l and omitting extracellular Ca2+. A peptide agonist of the thrombin receptor, SFLLRN, also potentiated ICl,vol, while an enzymatically inactive thrombin analogue, DIP-thrombin, was without effect. These results suggest that proteolytic activation of the thrombin receptor sensitises the activation of ICl,vol in endothelial cells in a Ca2+-independent mechanism. Received: 27 September 1996 / Received after revision: 16 January 1997 / Accepted: 30 January 1997  相似文献   

12.
Raising the intracellular [Ca2+] ([Ca2+]i) was previously found to produce uncoupling between the electrical depolarization of the transverse tubules and contraction in skinned muscle fibers. Here we study the effect of elevated [Ca2+]i in voltage clamped cut fibers of frog skeletal muscle to establish how the charge movement, a measure of the activation of the dihydropyridine receptors (DHPR)-voltage sensors, and Ca2+ release, a consequence of the opening of the ryanodine receptor (RyR)-release channels, were affected. [Ca2+]i was raised by various procedures (pharmacological release from the sarcoplasmic reticulum, application of high [Ca2+]i intracellular solution, permeabilization of the plasma membrane by a Ca2+ ionophore) all of which produced impairment of excitation–contraction coupling. The charge movement was reduced from 20.2 ± 1.24 to 9.9 ± 0.94 nC/μF meanwhile the Ca2+ release flux was reduced from 13.5 + 0.7 to 2.2 ± 0.3 μM/ms (n = 33). This suggests that a significant fraction of the DHPRs that remained functional, could not activate RyRs, and were therefore presumably disconnected. These results are broadly consistent with the original reports in skinned fibers. Uncoupling was prevented by the addition to the intracellular solution of the protease inhibitor leupeptin. In approximately 40 % of the uncoupled cells we observed that the [Ca2+]i transient continued to rise after the voltage clamp pulse was turned off. This loss of control by membrane voltage suggests that the uncoupled release channels might have another mechanism of activation, likely by Ca2+.  相似文献   

13.
 To study the role of endothelial ATP-sensitive K+ channels in the regulation of vascular tone we examined the intracellular calcium concentration ([Ca2+]i) in coronary capillaries consisting only of endothelial cells. Coronary capillary fragments were isolated enzymatically from the guinea-pig heart and [Ca2+]i was determined by microfluorometry of fura-2 loaded cells. Low concentrations of the K+ channel opener diazoxide, which caused pronounced glibenclamide-sensitive hyperpolarization in capillaries, induced a rapid, transient rise in [Ca2+]i followed by a sustained elevation of [Ca2+]i (19 of 40 experiments). [Ca2+]i in the endothelial cells increased from 32 ± 7 nM at rest to 66 ± 11 nM at the peak (n = 19). One third of the [Ca2+]i-transients showed irregular oscillations of [Ca2+]i. No significant difference in the [Ca2+]i-response induced by 100 nM or 1 μM diazoxide was found. Similar results were obtained with the K+ channel opener rilmakalim. Simultaneous measurements of the membrane potential and [Ca2+]i with fluorometric methods indicated that the hyperpolarization but not the [Ca2+]i-transient could be repeatedly induced in a single capillary by the K+ channel openers. Electrophysiological recordings of the membrane potential using the ”perforated patch” method (n = 4), showed that rilmakalim (1 μM) induced hyperpolarization of capillaries towards the K+ equilibrium potential, confirming our fluorometric measurements. In conclusion, for the first time, these data indicate that K+ channel openers induce [Ca2+]i-transients in microvascular endothelial cells. This raises the possibility that these drugs not only act as synthetic vasoactive factors via hyperpolarizing smooth muscle cells but also via NO release of microvascular endothelial cells. Interestingly, only 100 nM diazoxide was sufficient for a maximal response, suggesting the expression of a new type of KATP-channel in coronary capillaries characterised by high sensitivity to diazoxide. Received: 22 August 1997 / Received after revision and accepted: 7 November 1997  相似文献   

14.
The dynamics of the Ca-response of cardiomyocytes is studied and the efficiency of befol, verapamil, and amiodarone is compared using various experimental models of stimulation of [Ca2+]i. Befol (1–5 μM) is shown to inhibit the caffeine-and strophanthin G-induced rise of [Ca2+]i. Unlike verapamil and amiodarone, befol exhibits no Ca-blocking activity in modeled K-depolarization. It is concluded that the cardiotropic effect of befol is mediated through its primary action on Na+/Ca2+ exchange in cardiomyocytes, while the cardioplegic effect of verapamil and amiodarone is due to their ability to block the slow Ca2+ inward current. Translated fromByulleten' Eksperimental'noi Biologii i Meditsiny, Vol. 121, N o 3, pp. 288–291, March, 1996  相似文献   

15.
There is increasing evidence that some agonists not only induce intracellular Ca2+ increases, due to store release and transmembranous influx, but also that they stimulate Ca2+ efflux. We have investigated the agonist-stimulated response on the intracellular Ca2+ activity ([Ca2+]i) in the presence of thapsigargin (10–8 mol/l, TG) in HT29 and CFPAC-1 cells. For CFPAC-1 the agonists ATP (10–7–10–3 mol/l, n=9), carbachol (10–6–10–3 mol/l, n=5) and neurotensin (10–10–10–7 mol/l, n=6) all induced a concentration-dependent decrease in [Ca2+]i in the presence of TG. Similar results were obtained with HT29 cells. This decrease of [Ca2+]i could be caused by a reduced Ca2+ influx, either due to a reduced driving force for Ca2+ in the presence of depolarizing agonists or due to agonist-regulated decrease in Ca2+ permeability. Using the fura-2 Mn2+ quenching technique we demonstrated that ATP did not slow the TG-induced Mn2+ quench. This indicates that the agonist-induced [Ca2+]i decrease in the presence of TG was not due to a reduced influx of Ca2+ into the cell, but rather due to stimulation of Ca2+ export. We used the cell attached nystatin patch clamp technique in CFPAC-1 cells to examine whether, in the presence of TG, the above agonists still led to the previously described electrical changes. The cells had a mean membrane voltage of –49±3.6 mV (n=9). Within the first 3 min ATP was still able to induce a depolarization which could be attributed to an increase in Cl conductance. This was expected, since at this time after TG stimulation all Ca2+ agonists still liberated some [Ca2+]i. When TG incubation was prolonged, agonist application led to strongly attenuated or to no electrical responses. Therefore, the agonist-stimulated [Ca2+]i decrease cannot be explained by the reduction of the driving force for Ca2+ into the cell. In the same cells hypotonic swelling (160 mosmol/l, n=15) still induced a further [Ca2+]i increase in the presence of TG and concomitantly induced Cl and K+ conductances. We conclude that the agonist-induced decrease of [Ca2+]i in the presence of TG probably unmasks a stimulation of [Ca2+]i export.  相似文献   

16.
 The mechanism of an endothelin-1- (ET-1-) induced intracellular Ca2+ ([Ca2+]i) increase and the receptor subtype(s) responsible for this effect in single human melanocytes were studied using fura-2/AM. ET-1 induced a transient increase in [Ca2+]i in a concentration-dependent manner. The transient [Ca2+]i increase was followed by a sustained plateau level of [Ca2+]i which was higher than the initial [Ca2+]i level. IRL-1620, a specific ET-B receptor agonist, increased [Ca2+]i in a dose-dependent manner. BQ-788, a specific ET-B receptor antagonist, abolished the ET-1-induced [Ca2+]i increase, but BQ-123, a specific ET-A receptor antagonist, failed to prevent it. U73122, an inhibitor of phospholipase C (PLC), inhibited the ET-1-induced [Ca2+]i rise in a dose-dependent manner. Prior depletion of intracellular Ca2+ stores with thapsigargin, an inhibitor of Ca2+-ATPase of the endoplasmic reticulum, abolished the ET-1-induced Ca2+ transient, whereas removal of extracellular Ca2+ with EGTA eliminated the sustained rise. These results suggest that in cultured human melanocytes the binding of ET-1 to ET-B receptors and the subsequent activation of PLC mediate ET-1-induced [Ca2+]i increase. The transient [Ca2+]i increase is attributed to mobilization of Ca2+ from inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ stores, and the sustained [Ca2+]i level may be related to the influx of extracellular Ca2+. Received: 21 July 1997 / Received after revision and accepted: 16 September 1997  相似文献   

17.
Ca2+ and cGMP have opposite roles in many physiological processes likely due to a complex negative feedback regulation between them. Examples of opposite functions induced by Ca2+ and cGMP are smooth muscle contraction and relaxation, respectively. A main Ca2+ storage involved in contraction is sarcoplasmic reticulum (SR); nevertheless, the role of cGMP in the regulation of SR-Ca2+ has not been completely understood. To evaluate this role, intracellular Ca2+ concentration ([Ca2+]i) was determinated by a ratiometric method in isolated myocytes from bovine trachea incubated with Fura-2/AM. The release of Ca2+ from SR induced by caffeine was transient, whereas caffeine withdrawal was followed by a [Ca2+]i undershoot. Caffeine-induced Ca2+ transient peak and [Ca2+]i undershoot after caffeine were reproducible in the same cell. Dibutyryl cGMP (db-cGMP) blocked the [Ca2+]i undershoot and reduced the subsequent caffeine peak (SR-Ca2+ loading). Both, the opening of SR channels with ryanodine (10 μM) and the blockade of SR-Ca2+ ATPase with cyclopiazonic acid inhibited the [Ca2+]i undershoot as well as the SR-Ca2+ loading. The addition of db-cGMP to ryanodine (10 μM) incubated cells partially restored the SR-Ca2+ loading. Cyclic GMP enhanced [Ca2+]i undershoot induced by the blockade of ryanodine channels with 50 μM ryanodine. In conclusion, the reduction of SR-Ca2+ content in airway smooth muscle induced by cGMP can be explained by the combination of SR-Ca2+ loading and the simultaneous release of SR-Ca2+. The reduction of SR-Ca2+ content induced by cGMP might be a putative mechanism limiting releasable Ca2+ in response to a particular stimulus.  相似文献   

18.
Entry of lymphocytes into secondary lymphoid organs (SLOs) involves intravascular arrest and intracellular calcium ion ([Ca2+]i) elevation. TCR activation triggers increased [Ca2+]i and can arrest T‐cell motility in vitro. However, the requirement for [Ca2+]i elevation in arresting T cells in vivo has not been tested. Here, we have manipulated the Ca2+ release‐activated Ca2+ (CRAC) channel pathway required for [Ca2+]i elevation in T cells through genetic deletion of stromal interaction molecule (STIM) 1 or by expression of a dominant‐negative ORAI1 channel subunit (ORAI1‐DN). Interestingly, the absence of CRAC did not interfere with homing of naïve CD4+ T cells to SLOs and only moderately reduced crawling speeds in vivo. T cells expressing ORAI1‐DN lacked TCR activation induced [Ca2+]i elevation, yet arrested motility similar to control T cells in vitro. In contrast, antigen‐specific ORAI1‐DN T cells had a twofold delayed onset of arrest following injection of OVA peptide in vivo. CRAC channel function is not required for homing to SLOs, but enhances spatiotemporal coordination of TCR signaling and motility arrest.  相似文献   

19.
Cytosolic free Ca2+ concentration ([Ca2+]i) was measured in freshly isolated rat ventricular cardiomyocytes during substrate-free anoxia. Cardiomyocytes were loaded with fura-2 and incubated in an anoxic chamber in which a pO2 equal to 0 mmHg was realized by inclusion of Oxyrase. [Ca2+]i was measured in individual cells using digital imaging fluorescence microscopy. During anoxia, the shape of cardiomyocytes changed from a relaxed-elongated form into a rigor configuration within 15 min after the onset of anoxia. After the cells had developed the rigor state, a delayed rise in [Ca2+]i reached a stable maximal level within 45 min. The mean values for the pre-anoxic and maximal anoxic [Ca2+ i were 52±3 nM (N=42) and 2115±59 nM (N=45), respectively. The purported Na+ overload blocker R 56865, significantly reduced maximal anoxic [Ca2+]i to 553±56 nM (P<0.05), implicating a role of elevated intracellular Na+ in the anoxia-induced increase in [Ca2+]i. Veratridine (30 M), which induces Na+ overload, increased [Ca2+]i to 787±39 nM. The compound R 56865 reduced veratridine-induced increases in [Ca2+]i to 152±38 nM. Upon reperfusion, after 45 min of anoxia, two distinct responses were observed. Most often, [Ca2+]i decreased upon reperfusion without a change in morphology or viability, while in the minority of cases, [Ca2+]i increased further followed by hypercontraction and loss of cell viability. The mean value for [Ca2+]i 10 min after reperfusion of the former group, was 752±46 nM (N=38). The cardiomyocyte cell shape could be followed by monitoring changes in the total fura-2 fluorescence (340+380 nm signal). Within 15 min after the onset of anoxia, the total fluorescence signal increased suddenly, before [Ca2+]i started to rise, coinciding with the onset of rigor contraction induced by ATP depletion.  相似文献   

20.
钾通道对大鼠肺动脉平滑肌细胞[Ca2+]i的调节   总被引:1,自引:1,他引:1  
目的:探讨在常氧、低氧条件下钾通道对大鼠肺动脉平滑肌细胞(PASMCs)[Ca2+]i的调节。方法:采用钙荧光探针(Fura-2/AM)负载培养的大鼠PASMCs,观察常氧、低氧培养后3种钾通道抑制剂(4AP,TEA、Glib)对PASMCs[Ca2+]i的调节,同时用四唑盐(MTT)比色法比较4AP、TEA、Glib对大鼠PASMCs增殖的影响。结果:(1)常氧状态下,PASMCs[Ca2+]i为(156.91±8.60)nmol/L,低氧时为(294.01±16.81)nmol/L(P<0.01)。(2)常氧状态下,4AP可引起PASMCs[Ca2+]i升高,达(280.52±23.21)nmol/L(P<0.01),而TEA、Glib无此作用。(3)低氧时,4AP和TEA都可引起PASMCs[Ca2+]i的升高,分别为(422.41±24.28)nmol/L、(380.84±11.02)nmol/L(P<0.01),Glib无作用。(4)MTT比色法中,常氧和低氧状态下4AP均引起吸光度(A)值升高,分别是0.582±0.062,0.873±0.043(P<0.01)。TEA仅在低氧时A值升高(0.729±0.041,P<0.05),而Glib无论常氧还是低氧均无影响。结论:无论常氧还是低氧条件下,电压依赖性钾通道(KV)对PASMCs[Ca2+]i及其增殖起主要作用。钙激活的钾通道(KCa)在常氧条件下对[Ca2+]i不起调节作用,而在低氧下使[Ca2+]i降低,反应性地调节PASMCs增殖。ATP敏感性钾通道(KATP)无论在常氧还是低氧情况下对[Ca2+]i的调节不起作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号