首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cerebral infarct volume is typically smaller in premenopausal females than in age-matched males after ischemic stroke, but the underlying mechanisms are poorly understood. In this study we provide evidence in mice that this gender difference only occurs when the ischemic brain is reperfused. The limited tissue salvage achieved by reperfusion in male mice is associated with increased expression of proinflammatory proteins, including cyclooxygenase-2 (Cox-2), Nox2, and vascular cell adhesion molecule-1 (VCAM-1), and infiltration of Nox2-containing T lymphocytes into the infarcted brain, whereas such changes are minimal in female mice after ischemia–reperfusion (I-R). Infarct volume after I-R was no greater at 72 h than at 24 h in either gender. Infarct development was Nox2 dependent in male but not in female mice, and Nox2 within the infarct was predominantly localized in T lymphocytes. Stroke resulted in an ∼15-fold increase in Nox2-dependent superoxide production by circulating, but not spleen-derived, T lymphocytes in male mice, and this was ∼sevenfold greater than in female mice. These circulating immune cells may thus represent a major and previously unrecognized source of superoxide in the acutely ischemic and reperfused brain of males (and potentially in postmenopausal females). Our findings provide novel insights into mechanisms that could be therapeutically targeted in acute ischemic stroke patients who receive thrombolysis therapy to induce cerebral reperfusion.  相似文献   

3.
NADPH oxidase is an important source of superoxide in the central nervous system. Although NADPH oxidase is localized near the postsynaptic site in neurons, little is known about the pathophysiological role of NADPH oxidase in synapses after cerebral ischemia and reperfusion. In the present study, we sought to determine the role of NADPH oxidase in oxidative damage to postsynaptic density (PSD) proteins, which were isolated from rats subjected to transient focal cerebral ischemia and reperfusion. The amounts of carbonylated PSD proteins were increased after transient focal cerebral ischemia and reperfusion. This change was accompanied by an increase in the level of NADPH oxidase subunits in the PSD. The administration of apocynin, an NADPH oxidase inhibitor, attenuated both the protein carbonylation in the PSD and cerebral infarct volume. We further demonstrated that the decreases seen in the amounts of PSD-associated proteins, such as neuroligin, N-cadherin, and SAP102, in the PSD were prevented by treatment with apocynin. These results suggest that pronounced activation of NADPH oxidase in the PSD after cerebral ischemia and reperfusion may be related to the focal oxidative damage to synaptic functions and subsequent development of ischemia and reperfusion-induced cerebral injury.  相似文献   

4.
目的探讨糖尿病对缺血所致脑损伤和痴呆相关蛋白表达的影响。方法通过高脂饮食结合小剂量链脲佐菌素(STZ)诱导大鼠糖尿病模型;用大鼠大脑中动脉栓塞(MCAO)模型诱导脑卒中。再灌注1周后,采用免疫组织化学染色观察糖尿病对脑缺血后梗塞灶体积以及皮层神经细胞内淀粉样蛋白(Aβ)及其生成关键酶β-分泌酶(BACE)表达的影响。结果脑缺血后,与正常对照组相比,糖尿病组实验动物梗塞灶体积增大,且皮层存在大量神经元样及活化的胶质细胞样细胞内表达Aβ和BACE。结论糖尿病加剧脑缺血损伤及皮层淀粉样蛋白的表达,可能与糖尿病患者卒中后更为严重的认知功能障碍产生有关。  相似文献   

5.
Targeting newly identified damage pathways in the ischemic brain can help to circumvent the currently severe limitations of acute stroke therapy. Here we show that the activity of 12/15‐lipoxygenase was increased in the ischemic mouse brain, and 12/15‐lipoxygenase colocalized with a marker for oxidized lipids, MDA2. This colocalization was also detected in the brain of 2 human stroke patients, where it also coincided with increased apoptosis‐inducing factor. A novel inhibitor of 12/15‐lipoxygenase, LOXBlock‐1, protected neuronal HT22 cells against oxidative stress. In a mouse model of transient focal ischemia, the inhibitor reduced infarct sizes both 24 hours and 14 days poststroke, with improved behavioral parameters. Even when treatment was delayed until at least 4 hours after onset of ischemia, LOXBlock‐1 was protective. Furthermore, it reduced tissue plasminogen activator‐associated hemorrhage in a clot model of ischemia/reperfusion. This study establishes inhibition of 12/15‐lipoxygenase as a viable strategy for first‐line stroke treatment. Ann Neurol 2013  相似文献   

6.
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) was originally identified in immune cells as playing an important microbicidal role. In stroke and cerebrovascular disease, inflammation is increasingly being recognized as contributing negatively to neurological outcome, with NOX as an important source of superoxide. Several labs have now shown that blocking or deleting NOX in the experimental stroke models protects from brain ischemia. Recent work has implicated glucose as an important NOX substrate leading to reperfusion injury, and that NOX inhibition can improve the detrimental effects of hyperglycemia on stroke. NOX inhibition also appears to ameliorate complications of thrombolytic therapy by reducing blood-brain barrier disruption, edema formation, and hemorrhage. Further, NOX from circulating inflammatory cells seems to contribute more to ischemic injury more than NOX generated from endogenous brain residential cells. Several pharmacological inhibitors of NOX are now available. Thus, blocking NOX activation may prove to be a promising treatment for stroke as well as an adjunctive agent to prevent its secondary complications.  相似文献   

7.
Free radicals and inflammatory mediators are involved in transient focal cerebral ischemia (FCI). Preadministration of N-acetylcysteine (NAC) has been found to attenuate the cerebral ischemia-reperfusion injury in a rat model of experimental stroke. This study was undertaken to investigate the neuroprotective potential of NAC administered after ischemic events in experimental stroke. FCI was induced for 30 min by occluding the middle cerebral artery (MCA). NAC (150 mg/kg) was administered intraperitoneally at the time of reperfusion followed by another dose 6 hr later. Animals were sacrificed after 24 hr of reperfusion. The cerebral infarct consistently involved the cortex and striatum. Infarction was assessed by staining the brain sections with 2,3,5-triphenyltetrazolium chloride. Animals treated with NAC showed a significant reduction in infarct area and infarct volume and an improvement in neurologic scores and glutathione level. Reduction in infarction was significant even when a single dose of NAC was administered at 6 hr of reperfusion. Immunohistochemical and quantitative real-time PCR studies demonstrated a reduction in the expression of proinflammatory cytokines such as tumor necrosis factor alpha (TNFalpha) and interleukin 1beta (IL-1beta) and inducible nitric oxide synthase (iNOS) in NAC compared to that in vehicle-treated animals. The expression of activated macrophage/microglia (ED1) and apoptotic cell death in ischemic brain was also reduced by NAC treatment. These results indicate that in a rat model of experimental stroke, administration of NAC even after ischemia onset protected the brain from free radical injury, apoptosis, and inflammation, with a wide treatment window.  相似文献   

8.
Cerebral ischemic preconditioning protects against stroke, but is clinically feasible only when the occurrence of stroke is predictable. Reperfusion plays a critical role in cerebral injury after stroke; we tested the hypothesis that interrupting reperfusion lessens ischemic injury. We found for the first time that such postconditioning with a series of mechanical interruptions of reperfusion significantly reduces ischemic damage. Focal ischemia was generated by permanent distal middle cerebral artery (MCA) occlusion plus transient bilateral common carotid artery (CCA) occlusion. After 30 secs of CCA reperfusion, ischemic postconditioning was performed by occluding CCAs for 10 secs, and then allowing for another two cycles of 30 secs of reperfusion and 10 secs of CCA occlusion. Infarct size was measured 2 days later. Cerebral blood flow (CBF) was measured in animals subjected to permanent MCA occlusion plus 15 mins of bilateral CCA occlusion, which demonstrates that postconditioning disturbed the early hyperemia immediately after reperfusion. Postconditioning dose dependently reduced infarct size in animals subjected to permanent MCA occlusion combined with 15, 30, and 60 mins of bilateral CCA occlusion, by reducing infarct size approximately 80%, 51%, and 17%, respectively. In addition, postconditioning blocked terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling-positive staining, a marker of apoptosis, in the penumbra 2 days after stroke. Furthermore, in situ superoxide detection using hydroethidine suggested that postconditioning attenuated superoxide products during early reperfusion after stroke. In conclusion, postconditioning reduced infarct size, most plausibly by blocking apoptosis and free radical generation. With further study it may eventually be clinically applicable for stroke treatment.  相似文献   

9.
Superoxide production via NADPH oxidase has been shown to play a role in neurotoxicity, ischemic stroke, and possibly Parkinson's and Alzheimer's diseases. In addition, NADPH oxidase-dependent production of superoxide may be necessary for normal brain functions, including neuronal differentiation and neuronal plasticity. To improve our understanding of NADPH oxidase in the brain, we studied the localization of the various protein components of NADPH oxidase in the central nervous system of the adult mouse using immunohistochemistry. We detected staining for the cytoplasmic NADPH proteins, p40(phox), p47(phox), and p67(phox), as well as the membrane-associated NADPH oxidase proteins, p22(phox) and gp91(phox) in neurons throughout the mouse brain. Staining of each of the NADPH oxidase proteins was observed in neurons in all regions of the neuraxis, with particularly prominent localizations in the hippocampus, cortex, amygdala, striatum, and thalamus. The expression of NADPH oxidase proteins in neurons suggests the possibility that enzymatic production of superoxide by a NADPH oxidase may play a role in both normal neuronal function as well as neurodegeneration in the brain.  相似文献   

10.
Ischemic preconditioning (IP) protects the brain from subsequent, prolonged, and lethal ischemia in experimental studies. Erythropoietin (EPO) participates in the brain's intrinsic response to injury and may play a role in preconditioning. By using a middle cerebral artery occlusion (MCAo) model of transient ischemic attack (TIA), we sought to determine whether EPO is required for IP in the protective response against focal ischemic stroke. Rats underwent three 10-min MCA occlusions or sham surgery. Three days later, animals underwent 2 hr of MCAo and 22 hr of reperfusion. Experimental TIAs reduced infarct volumes by 55% (P < 0.05), inhibited DNA fragmentation, and improved neurological outcome by 50% (P < 0.05) after ischemic stroke. EPO and its receptor were up-regulated by IP in the ipsilateral hemisphere by 24 hr after IP, before ischemic stroke and soluble EPO receptor attenuated neuroprotection by IP (88% reduction, P < 0.05). Pretreatment with the PI-3 kinase inhibitor wortmannin abolished the protective effect of IP against ischemic injury (P < 0.05). IP may be mediated in part by EPO through a PI-3 kinase pathway.  相似文献   

11.
We measured the time-dependent morphological changes of microglial cells reacting to ischemic cell damage after transient (2 h) middle cerebral artery occlusion in the rat by means of lectin histochemistry with the B4-isolectin from Griffonia simplicifolia as well as immunohistochemistry with monoclonal antibodies directed against monocyte/microphage (ED1) and major histocompatibility complex (MHC) class II (OX-6) antigens. As early as 1 h after onset of reperfusion, microglia were absent in the severely neuronal damaged preoptic area. However, ameboid-like microglia were evident in an adjacent area containing scattered shrunken neurons. Rod, round and ameboid-like microglia were present in the ischemic lesion between 2 to 10 h of reperfusion. Round and ameboid cells became predominant in the ischemic core lesion and were mingled with highly ramified microglia to the boundary at 22 h of reperfusion. Highly ramified microglia were found in an adjacent area containing morphologically intact neurons. Round and ameboid cells were localized to the inner boundary of the ischemic lesion surrounding the infarct zone at 46 of reperfusion. Round and ameboid cells were present throughout the entire ischemic lesion in the infarct zone from 70–166 h of reperfusion. A marked increase in number and in intensity of highly ramified microglial cells were present in the outer boundary of the lesion during this period. In addition, a significant increase in both ED1- and OX-6-immunoreactive cells in the ischemic region was detected after 10 h of reperfusion and persisted up to 166 h of reperfusion. These data demonstrate that microglia exhibit a time dependent change in morphology after reperfusion and that the severity of injury may be reflected in the state of microglial activation.  相似文献   

12.
Superoxide is the single-electron reduction product of molecular oxygen generated by mitochondria and the innate immune enzyme complex, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox), and its isoforms. Initially identified as critical to the host defense against infection, superoxide has recently emerged as an important signaling molecule and as a proposed mediator of central nervous system injury in stroke, neurodegenerative conditions, and aging itself. Complete understanding of superoxide in central nervous system disease has been hampered by lack of noninvasive imaging techniques to evaluate this highly reactive, short-lived molecule in vivo. Here we describe a novel optical imaging technique to monitor superoxide real time in intact animals using a fluorescent probe compound and fluorescence lifetime contrast-based unmixing. Specificity for superoxide was confirmed using validated mouse models with enhanced or attenuated brain superoxide production. Application of fluorescence lifetime unmixing removed autofluorescence, further enhanced sensitivity and specificity of the technique, permitted visualization of physiologically relevant levels of superoxide, and allowed superoxide in specific brain regions (e.g., hippocampus) to be mapped. Lifetime contrast-based unmixing permitted disease model-specific and brain region-specific differences in superoxide levels to be observed, suggesting this approach may provide valuable information on the role of mitochondrial and Nox-derived superoxide in both normal function and pathologic conditions in the central nervous system.  相似文献   

13.
Reactive astrocytes have been implicated in neuronal loss following ischemic stroke. However, the molecular mechanisms associated with this process are yet to be fully elucidated. In this work, we tested the hypothesis that astroglial NF-κB, a key regulator of inflammatory responses, is a contributor to neuronal death following ischemic injury. We compared neuronal survival in the ganglion cell layer (GCL) after retinal ischemia-reperfusion in wild-type (WT) and in GFAP-IκBα-dn transgenic mice, where the NF-κB classical pathway is suppressed specifically in astrocytes. The GFAP-IκBα-dn mice showed significantly increased survival of neurons in the GCL following ischemic injury as compared with WT littermates. Neuroprotection was associated with significantly reduced expression of pro-inflammatory genes, encoding Tnf-α , Ccl2 (Mcp1) , Cxcl10 (IP10) , Icam1 , Vcam1, several subunits of NADPH oxidase and NO-synthase in the retinas of GFAP-IκBα-dn mice. These data suggest that certain NF-κB-regulated pro-inflammatory and redox-active pathways are central to glial neurotoxicity induced by ischemic injury. The inhibition of these pathways in astrocytes may represent a feasible neuroprotective strategy for retinal ischemia and stroke.  相似文献   

14.
The ischemic penumbra has been documented in the laboratory animal as severely hypoperfused, nonfunctional, but still viable brain tissue surrounding the irreversibly damaged ischemic core. Saving the penumbra is the main target of acute stroke therapy, and is the theoretical basis behind the reperfusion concept. In experimental focal ischemia, early reperfusion has been reported to both prevent infarct growth and aggravate edema formation and hemorrhage, depending on the severity and duration of prior ischemia and the efficiency of reperfusion, whereas neuronal damage with or without enlarged infarction also may result from reperfusion (so-called reperfusion injury). Activated neutrophils contribute to vascular reperfusion damage, yet posthypoxic cellular injury occurs in the absence of inflammatory species. Protein synthesis inhibition occurs in neurons during reperfusion after ischemia, underlying the role that these pathways play in prosurvival and proapoptotic processes that may be differentially expressed in vulnerable and resistant regions of the reperfused brain tissue. Ischemia-induced decreases in the mitochondrial capacity for respiratory activity probably contribute to the ongoing impairment of energy metabolism during reperfusion and possibly also the magnitude of changes seen during ischemia. From these experimental data, the concept of single-drug intervention cannot be effective. Further experimental research is needed, especially of the study of biochemical markers of the injury process to establish the role of several drugs.  相似文献   

15.
Ischemic stroke is a major, urgent neurologic disorder in which reactive oxygen species (ROS) are deeply involved in the detrimental effects. Platinum nanoparticle (nPt) species are a novel and strong scavenger of such ROS, so we examined the clinical and neuroprotective effects of nPts in mouse ischemic brain. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min. Upon reperfusion, nPt or vehicle was administered intravenously. At 48 hr after the tMCAO, motor function, infarct volume, immunohistochemistry of neurovascular components (endothelial NAGO, tight junctional occludin, and basal laminal collagen IV), and zymography for MMP-9 activity were examined. Superoxide anion generation at 2 hr after tMCAO was determined with oxidized hydroethidine. Compared with vehicle, treatment with nPts significantly improved the motor function and greatly reduced the infarct volume, especially in the cerebral cortex. Immunohistochemical analyses revealed that tMCAO resulted in a minimal decrease of NAGO and occludin but a great decrease of collagen IV and a remarkable increase of MMP-9. Treatment with nPts greatly reduced this decrease of collagen IV and activation of MMP-9 and, with large reductions of MMP-9 activation on zymography and superoxide production. The present study demonstrates that treatment with nPts ameliorates the neurological scores with a large reduction in infarct size as well as the preservation of outer components of the neurovascular unit (collagen IV) and inactivation of MMP-9. A strong reduction of superoxide anion production by nPts could account for such remarkable neurobehavioral and neuroprotective effects on ischemic stroke.  相似文献   

16.
Poststroke depression and lesion location revisited   总被引:12,自引:0,他引:12  
Seventy patients with one brain infarct on magnetic resonance imaging (MRI) were studied 3 months after ischemic stroke by a standardized protocol to detail side, site, type, and extent of the brain infarct, as well as severity of white matter lesions and brain atrophy. Depression was diagnosed by DSM-III-R and DSM-IV criteria. The brain infarcts that affected structures of the frontal-subcortical circuits, (i.e., the pallidum and caudate, especially on the left side) predisposed stroke patients to depression. The size of the infarcts at these sites in the depressed patients was larger. Using a logistic regression analysis, the authors found that a brain infarct that affected pallidum was a strong independent MRI correlate for poststroke depression (odds ratio = 7.2).  相似文献   

17.
Stroke is a leading cause of death and disability and new therapies are desperately needed. Given the complex nature of ischemic brain injury, it has been postulated that cell-based therapies may be useful. However, cell resources, invasive extraction procedures, immunological rejection, tumorigenesis and ethical challenges make it unlikely that many stem cell types could serve as a practical source for therapy. By contrast, these issues do not pertain to human amnion epithelial cells(h AECs), which are placenta-derived stem cells. We recently assessed the effects of systemically delivered hAECs on stroke outcome using four animal models of stroke. We demonstrated that when injected intravenously after ischemia onset, hAECs migrate preferentially to the spleen and injured brain to limit apoptosis and inflammation, and attenuate early brain infiltration of immune cells, progression of infarction and systemic immunosuppression and to ultimately ameliorate functional deficits. When administration of hAECs is delayed by 1-3 days poststroke, long-term functional recovery can still be enhanced in young and aged mice of either sex. Moreover, our proof-of-principle findings suggest that h AECs are effective at limiting post-stroke infarct development in non-human primates. Overall, the results suggest that hAECs could be a viable clinical stroke therapy.  相似文献   

18.
We studied the role of superoxide radicals in the pathogenesis of ischemic brain injury using a model of focal cerebral ischemia in 102 rats and liposome-entrapped CuZn-superoxide dismutase, which can penetrate the blood-brain barrier and cell membranes efficiently. The bolus intravenous administration of 25,000 units of liposome-entrapped CuZn-superoxide dismutase elevated superoxide dismutase activities in the blood and brain 1, 2, 8, and 24 hours later as well as in the ischemic hemisphere and contralateral cortex. Determined 24 hours after right middle cerebral and bilateral common carotid artery occlusion by the lack of staining for mitochondrial dehydrogenase activity with 2,3,5-triphenyltetrazolium chloride, infarct sizes were reduced by 33%, 25%, and 18% in the anterior, middle, and posterior brain slices, respectively, by treatment with liposome-entrapped CuZn-superoxide dismutase. Our data demonstrate that superoxide radicals are important determinants of infarct size following focal cerebral ischemia and that liposome-entrapped CuZn-superoxide dismutase may have pharmacologic value for the treatment of focal cerebral ischemic injury.  相似文献   

19.
The mechanism contributing to blood-brain barrier (BBB) disruption, involved in poststroke edema and hemorrhagic transformation, is important but elusive. We investigated microRNA-21 (miR-21)-mediated mechanism in the disruption of BBB following cerebral ischemia-reperfusion (I/R) injury. Rats with cerebral I/R injury were prepared after middle cerebral artery occlusion and subsequent reperfusion. The underlying regulatory mechanisms of miR-382 were investigated with treatment of miR-382 mimics, miR-382 inhibitors, or SB203580 (an inhibitor of the MAPK signaling pathway) prior to I/R modeling. Compared with sham-operated rats, rats following I/R showed increased Longa’s scores, ischemic hemisphere volume, cerebral infarct volume, EB content in brain tissues, enhanced levels of p38, iNOS, and MMP-9. The ectopic expression of miR-21 by mimics and MAPK signaling inhibition by SB203580 reduced Longa’s scores, ischemic hemisphere volume, cerebral infarct volume, EB content in brain tissues, decreased levels of p38, MAP2K3, iNOS, and MMP-9. The luciferase activity determination showed miR-21 bound to MAP2K3 in its 3′UTR. miR-21 downregulation mediated by inhibitors appeared to yield an opposed trend. We also found that MAPK signaling inhibition by SB203580 could rescue rats with treatment of miR-382 inhibitors. The study highlights the neuroprotective role of MiR-21 during cerebral I/R injury and its preventive effect against BBB disruption by blocking the MAPK signaling pathway via targeted inhibition of MAP2K3, potentially opening a novel therapeutic avenue for the treatment of cerebral ischemia.  相似文献   

20.
选择性COX2抑制剂对脑缺血再灌注损伤的影响   总被引:3,自引:0,他引:3  
目的 :观察脑缺血再灌注损伤中COX2的表达以及选择性COX2抑制剂SC5 812 5对脑缺血再灌注后脑梗死体积、PGE2 含量的影响。方法 :应用小鼠短暂性局灶性脑缺血模型 ;脑梗死体积的测定采用TTC染色法 ;ELISA测定PGE2 含量 ;DNA单链损伤的测定采用PANT染色。结果 :缺血前 3 0min和缺血后 2h用药组脑梗死体积显著缩小 ,缺血后 6h延迟用药组脑梗死体积无明显变化。脑缺血再灌注后PGE2 含量显著升高。SC5 812 5的治疗显著降低了PGE2 的水平。SC5 812 5并可显著抑制缺血后DNA单链损伤的程度。结论 :提示COX2参与了脑缺血再灌注损伤 ,选择性COX2抑制剂在小鼠局灶性脑缺血再灌注损伤的模型中起着重要作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号