首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the effect of FGF in the early development of the sensory neurons of the auditory system, we established a culture preparation of ganglionic neuroblasts engaged in migration and process outgrowth. The presumed anlage of the cochlear ganglion was dissected from E11 otocysts, just as the neuronal precursors were migrating. The cultures were divided into 4 groups and supplemented for 7-9 days with either hrFGF-1 or hrFGF-2 or both or with defined medium only (control group). Measurements of the increase in explant growth, neuroblast migration, and neurite outgrowth were made by time-lapse imaging techniques in living cultures. Either FGF-1 or FGF-2 alone stimulated early migration and outgrowth of the ganglion cells by 5-10x. The effect of combining FGF-1 and FGF-2 was greater than either alone, but less than additive, consistent with a shared receptor. BrdU labeling confirmed that the effect was on migration, not on proliferation. Adding a neutralizing antibody for FGF-2 to the cultures inhibited migration and neurite outgrowth, suggesting an endogenous FGF-2 activity in these functions. Immunocytochemical observations in vitro and in situ with antibodies to FGF-1, FGF-2, or FGF receptor (R1) demonstrated immunopositive staining of the migrating ganglionic neuroblasts, their processes, and growth cones at corresponding stages (E13). Also non-neuronal cells, hair cells, and Schwann cells (in situ) expressed FGF-1 and FGF-2. Evidently both FGF-1 and FGF-2 play important roles in the migration and initial differentiation of cochlear ganglion neurons in the mouse.  相似文献   

2.
We studied the interactions of neurotrophin-3 (NT3) with brain-derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF-2), and their effects on tyrosine kinase C (TrkC) expression during cochlear ganglion development. Otocysts were explanted from white leghorn chicken embryos at stages when the neuronal precursors normally start to migrate. Cultures were fed with various combinations of NT3, BDNF, and FGF-2. NT3 appeared to have a greater effect on neurite outgrowth than on migration and was enhanced by BDNF. The results from in situ hybridization and immunostaining for TrkC receptor revealed up-regulation of the mRNA and protein by combining NT-3 and BDNF. NT-3 combined with FGF-2 produced down-regulation of receptor. Neutralizing antibody to NT3 had an inhibitory effect on neuronal development, suggesting that endogenous NT3 is normally active during the period examined. The findings suggest an interactive role of NT3 in early neuronal development. The trophic synergism of NT3 and BDNF may result from up-regulation of TrkC. This hypothesis is consistent with immunostaining in the embryonic basilar papilla, which localized TrkC to the initial axonal invasion sites. While the growth factors each produce particular trophic effects, the interactions of these factors define a critical sequence of developmental events based on modulation of receptor expression.  相似文献   

3.
4.
The pattern of sensory neuron extensions and connections is established during embryonic development through complex and varied guidance cues that control motility of growth cones and neurite morphogenesis. Semaphorins and neurotrophins are molecules that act as such cues. Collapsin response mediator proteins (CRMPs) are thought to be part of the semaphorin signal transduction pathway implicated in semaphorin-induced growth cone collapse. In this report, we present evidence that CRMPs are also involved in the neurite extension controlled by neurotrophins. We found that specific antibodies and the dominant-negative mutant protein for CRMP2 both potentiated the neurite extension induced by NGF, while specific antibodies and the corresponding mutant protein for CRMP1 both abolished the neurite extension induced by NT3. Our data suggest that CRMP2 has a negative effect on neurite extension induced by NGF and CRMP1 participates in the neurite formation/extension induced by NT3. These results point to a function for CRMPs in the regulation of neurite outgrowth induced by neurotrophins in sensory neurons.  相似文献   

5.
Administration of epidermal growth factor receptor (EGFR) inhibitors (e.g. AG1478/PD168393) promotes central nervous system (CNS) axon regeneration in vivo by an unknown mechanism. Here, we show that EGFR activation is not required for AG1478-/PD168393-induced neurite outgrowth in cultures of dorsal root ganglion neurons (DRGN) with added inhibitory CNS myelin extract (CME), but is mediated by the paracrine and autocrine actions of the glia-/neuron-derived neurotrophins (NT) NGF, BDNF and NT-3 through Trk signalling in DRGN potentiated by elevated cAMP levels. The DRGN neurite growth seen in CME-inhibited cultures treated with AG1478 is eradicated by blocking Trk signalling but undiminished after siRNA knockdown of > 90% EGFR. Moreover, addition of the combined triplet of NT restores neurite outgrowth in CME-inhibited cultures, when cAMP levels are raised. Accordingly, we suggest that chemical EGFR inhibitors act independently of EGFR, inducing glia and neurons to secrete NT and raising cAMP levels in DRG cultures, leading to Trk-dependent disinhibited DRGN neurite outgrowth.  相似文献   

6.
Enhanced spiral ganglion neuron (SGN) survival and regeneration of peripheral axons following deafness will likely enhance the efficacy of cochlear implants. Overexpression of Bcl‐2 prevents SGN death but inhibits neurite growth. Here we assessed the consequences of Bcl‐2 targeted to either the mitochondria (GFP‐Bcl‐2‐Maob) or the endoplasmic reticulum (ER, GFP‐Bcl‐2‐Cb5) on cultured SGN survival and neurite growth. Transfection of wild‐type GFP‐Bcl‐2, GFP‐Bcl‐2‐Cb5, or GFP‐Bcl‐2‐Maob increased SGN survival, with GFP‐Bcl‐2‐Cb5 providing the most robust response. Paradoxically, expression of GFP‐Bcl‐2‐Maob results in SGN death in the presence of neurotrophin‐3 (NT‐3) and brain‐derived neurotrophic factor (BDNF), neurotrophins that independently promote SGN survival via Trk receptors. This loss of SGNs is associated with cleavage of caspase 3 and appears to be specific for neurotrophin signaling, insofar as coexpression of constitutively active mitogen‐activated kinase kinase (MEKΔEE) or phosphatidyl inositol‐3 kinase (P110), but not other prosurvival stimuli (e.g., membrane depolarization), also results in the loss of SGNs expressing GFP‐Bcl‐2‐Maob. MEKΔEE and P110 promote SGN survival, whereas P110 promotes neurite growth to a greater extent than NT‐3 or MEKΔEE. However, wild‐type GFP‐Bcl‐2, GFP‐Bcl‐2‐Cb5, and GFP‐Bcl‐2‐Maob inhibit neurite growth even in the presence of neurotrophins, MEKΔEE, or P110. Historically, Bcl‐2 has been thought to act primarily at the mitochondria to prevent neuronal apoptosis. Nevertheless, our data show that Bcl‐2 targeted to the ER is more effective at rescuing SGNs in the absence of trophic factors. Additionally, Bcl‐2 targeted to the mitochondria results in SGN death in the presence of neurotrophins. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
In the developing nervous system, neurotrophin 3 (NT3) and brain‐derived neurotrophic factor (BDNF) have been shown to interact with each other and with different parts of a neuron or glia and over considerable distances in time and space. The auditory system provides a useful model for analyzing these events, insofar as it is subdivided into well‐defined groups of specific neuronal types that are readily related to each other at each stage of development. Previous work in our laboratory suggested that NT3 and its receptor TrkC in the mouse cochlear nucleus (CN) may be involved in directing neuronal migration and initial targeting of inputs from cochlear nerve axons in the embryo. NT3 is hard to detect soon after birth, but TrkC lingers longer. Here we found NT3 and TrkC around P8 and the peak around P30. Prominent in ventral CN, associated with globular bushy cells and stellate cells, they were localized to different subcellular sites. The TrkC immunostain was cytoplasmic, and that of NT3 was axonal and perisomatic. TrkC may be made by CN neurons, whereas NT3 has a cochlear origin. The temporal pattern of their development and the likelihood of activity‐dependent release of NT3 from cochlear axons suggest that it may not be critical in early synaptogenesis; it may provide long‐term trophic effects, including stabilization of synapses once established. Activity‐related regulation could coordinate the supply of NT3 with inner ear activity. This may require interaction with other neurotrophins, such as BDNF. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Inflammation is part of the physiological wound healing response following mechanical lesioning of the peripheral nervous system. However, cytokine effects on axonal regeneration are still poorly understood. Because cytokines influence the expression of neurotrophins and their receptors, which play a major role in axonal outgrowth after lesioning, we investigated the hypothesis that cytokines influence specifically neurotrophin-dependent axon elongation. Therefore, we have characterized neurotrophin-dependent neurite outgrowth of murine dorsal root ganglia (DRG) in vitro and investigated the influence of pro- and anti-inflammatory cytokines on these outgrowth patterns. Embryonic day 13 (E13) DRG were cultured in Matrigel for 2 days and axonal morphology, density and elongation were determined using an image analysis system. Nerve growth factor (NGF), neurotrophin-3 (NT-3) and -4 (NT-4) were applied alone (50 ng/mL), in double or in triple combinations. NT-3, NT-4 and NT-3 + NT-4 combined induced a moderate increase in axonal outgrowth (P < 0.001) compared with controls, while NGF and all combinations including NGF induced an even more pronounced increase in axonal outgrowth (P < 0.001). After characterizing these outgrowth patterns, interleukin (IL)-1beta, IL-4, IL-6, interferon-gamma (IFNgamma) and tumour necrosis factor-alpha (TNFalpha) (50 or 500 ng/mL) were added to the different neurotrophin combinations. Low doses of TNFalpha and IL-6 influenced neurite extension induced by endogenous neurotrophins. IL-4 increased NT-4-induced outgrowth. IL-6 stimulated NT-3 + NT-4-induced outgrowth. IFNgamma stimulated neurite extension in the presence of NT-3 + NT-4 and NT-3 + NGF. TNFalpha inhibited NT-3-, NT-3 + NGF-, NT-4 + NGF- and NT-3 + NT-4 + NGF-induced outgrowth. These data suggest that inflammation following nerve injury modulates re-innervation via a cytokine/neurotrophin axis.  相似文献   

9.
This study describes the developmental expression of three neurotrophins, brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3) and neurotrophin (NT-4) in the rat auditory brain-stem using immunohistochemistry. At postnatal day 0 (PND 0), neurotrophins expression was virtually absent from all auditory nuclei in the brainstem, even though some positive neurons were observed in the mesencephalic trigeminal nucleus at this age. However, BDNF, NT-3 and NT-4 positive neurons were observed in most brainstem auditory nuclei by PND 6. At the following stages, there was a general increase in the intensity of the neurotrophins immunoreactivity and BDNF labeling was particularly prominent in most cochlear nucleus neurons. A differential pattern of staining emerged in cochlear nucleus subdivisions, with more intense staining present in the ventral part. The superior olivary complex nuclei followed a similar pattern of BDNF staining compared to the cochlear nucleus. In the adult, BDNF heavily labeled most neurons of the superior olivary nuclei and moderately labeled neurons of the inferior colliculus (IC). NT-3 and NT-4 showed a similar pattern of staining in most auditory brainstem nuclei. The first staining was observed by PND 6 in some neuronal cell bodies. NT-3 and NT-4 immunoreactivity increased in the following stages and in the adult moderate labelings were observed in most neurons of the cochlear nucleus, the superior olivary nuclei and the IC. These results show that neurotrophins are expressed 1 week before the onset of hearing and the increase of their expressions correlate with the appearance of sound-evoked activity in the system. The temporal distribution of neurotrophins does not correlate with neuronal birth, axonal outgrowth or the formation of connection in the auditory structures, suggesting a role primarily in the maintenance and/ or modulation of postnatal and adult functions.  相似文献   

10.
To investigate the possibility that the neurotrophin tyrosine kinase receptors are also recognition molecules by virtue of their immunoglobulin-like domains, the ability of TrkA and TrkB to influence neurite outgrowth was tested in vitro. Cell monolayers of fibroblasts transfected to express either the TrkA or TrkB receptor reduced neurite outgrowth of phaeochromocytoma PC12 cells by 50–60% when compared to mock transfected fibroblasts or fibroblasts transfected with the epidermal growth factor receptor. Neurite outgrowth from cerebellar neurons was inhibited by 30–40% on these substrates. When a recombinantly expressed fragment of TrkA comprising the two immunoglobulin-like domains was coated as a substrate in combination with poly-L-lysine and laminin, neurite outgrowth was inhibited in a dose-dependent manner. This inhibition of neurite outgrowth was not mediated via an interaction with laminin as there is no specific binding of the TrkA fragment to laminin. The adhesion of cell bodies to this substrate was not affected by the immunoglobulin-like domains. These observations suggest that the mammalian neurotrophin receptors not only influence neurite outgrowth by neurotrophin triggered activation of the receptor, but also by cell surface recognition processes conveyed by the immunoglobulin-like domains.  相似文献   

11.
Neurite outgrowth from dorsal root ganglion (DRG) explants is a method of evaluating neurotrophic activity of growth factors and neurotrophin mimetics. The drawbacks to this approach are the difficulties in quantifying the response. Neurite counts are time consuming and labour intensive, and the accuracy is often questionable due to branching and fasciculation of the neurites. We report here a method of semi-quantitative analysis of neurite outgrowth from chick DRG explants, using image analysis to quantify the area occupied by neurites emanating from the ganglion. This method is rapid, takes into account both the length and number of neurites, and is unaffected by neurite fasciculation or branching. Primary explants of chick DRGs were treated with the neurotrophins nerve growth factor (NGF) or neurotrophin-3 (NT-3) and with the compound K252a. K252b was tested for potentiation of the response to NT-3. The results show a dose dependent outgrowth of neurites from explants treated with NGF, NT-3 and K252a, and potentiation of the NT-3 response by K252b. These responses were quantified by neurite area quantification using image analysis. We conclude that neurite area measurement using image analysis provides a robust means of evaluating neurotrophic activity of growth factors and neurotrophin mimetics in vitro.  相似文献   

12.
Although neurons of the PNS no longer require neurotrophins such as Nerve Growth Factor (NGF) for their survival, such factors are involved in regulating axonal sprouting and regeneration after injury. In addition to the neurotrophin receptors, sensory neurons are reported to express IGF-1, EGF and FGF receptors. To investigate the influence of growth factors in addition to NGF, we examined the effects of IGF-1 EGF and FGF on neurite growth from adult rat dorsal root ganglion sensory neurons in both dissociated cultures and in compartmented cultures. As expected, NGF elicited robust neuritic growth in both the dissociated and compartmented cultures. The growth response to IGF-1 was similar, although there was minimal neurite growth in response to EGF or FGF. In addition, IGF-1 (but neither FGF nor EGF), when applied to cell bodies in compartmented cultures, potentiated the distal neurite growth into NGF-containing side compartments. This potentiation was not seen when these factors were provided along with NGF in the side compartments of compartmented cultures, or in the dissociated cultures. To determine the contribution of signaling intermediates downstream of receptor activation, we used inhibitors of the potential effectors and Western blotting. The PI 3-kinase inhibitor, LY294002 attenuated neurite growth evoked by NGF, IGF and EGF in dissociated cultures, although the MAP kinase kinase (MEK) inhibitor PD098059 diminished the growth in only IGF. Immunoprecipitation and Western blotting results demonstrated differential activation of MAPK, PI 3-kinase, PLCgamma1 and SNT by the different factors. Activation of PI 3-kinase and SNT by both NGF and IGF-1 correlated with their effects on neurite growth. These results support the hypothesis that the PI 3-kinase pathway plays an important role in neuritogenesis.  相似文献   

13.
Mutations of the neurotrophin receptor tyrosine kinase TrkA (NTRK1) cause congenital sensory neuropathy with insensitivity to pain and anhydrosis (CIPA), also called hereditary sensory and autonomous neuropathy type IV (HSAN IV). The neuronal splice variant of TrkA, TrkAII, binds two neurotrophin ligands, nerve growth factor (NGF) and neurotrophin-3 (NT3). Several studies have demonstrated NGF signaling defects in CIPA-associated TrkA mutants. To date, however, no study has examined NT3/TrkA signaling of CIPA mutants. As the interaction of NT3 and TrkA temporally and spatially precedes the interaction of NGF with TrkA, we examined the signaling of NT3 in a CIPA-associated TrkA mutant. Intriguingly, we revealed remarkable defects in NT3-induced ERK1/2 phosphorylation and neurite outgrowth. The impact of our findings is twofold. First, our data call for a re-examination of previously described TrkAII CIPA mutants regarding their NT3 signaling capability. Second, we envision that CIPA/HSAN IV polyneuropathies might fall into two different subgroups: one with diminished NT3/TrkAII signaling, in which axons actually do not reach their targets, and a second group with sufficient NT3/TrkAII signaling but diminished NGF/TrkAII signaling, in which axons do reach their targets, yet degenerate after successful target engagement.  相似文献   

14.
Climbing fiber development: do neurotrophins have a part to play?   总被引:1,自引:0,他引:1  
The climbing fiber input to the cerebellum is crucial for its normal function but those factors which control the development of this precisely organized pathway are not fully elucidated. The neurotrophins are a family of peptides, which have many roles during development of the nervous system, including the cerebellum. Since the cerebellum and inferior olive express neurotrophins and their receptors, we propose that neurotrophins are involved in the regulation of climbing fiber development. Here we review the temporo-spatial expression of neurotrophins and their receptors at key ages during climbing fiber development and then examine evidence linking neurotrophins to climbing fiber development, including some of the intracellular pathways involved. During prenatal development the expression of neurotrophins in the hindbrain coupled with their function in neurogenesis and migration, is consistent with a role of NT3 in inferior olivary genesis. Subsequently, cerebellar expression of two neurotrophins, NT3 and NT4, is concurrent with olivary receptor expression and the time of olivary axonal outgrowth and this continues postnatally during early climbing fiber synaptogenesis on Purkinje cells. The expression-pattern of neurotrophins changes with age, with falling NGF, NT3 and NT4 but increasing granule cell BDNF. Importantly, olivary expression of neurotrophin receptors, and therefore climbing fiber responsiveness to neurotrophins, falls specifically during maturation of the climbing fiber-Purkinje cell synapse. The function of BDNF is less certain, but experimental studies indicate that it has a role in climbing fiber innervation of Purkinje cells, particularly synaptogenesis and synaptic plasticity. Its importance is highlighted by the overlap of BDNF signalling with several cellular pathways, which regulate climbing fiber maturation. From the data presented, we propose not only that neurotrophins are involved in climbing fiber development, but also that several act in a specific temporal order.  相似文献   

15.
The neural cell adhesion molecule L1 plays an important role in axon growth, neuronal survival, and synaptic plasticity. We recently demonstrated that the L1 fibronectin type III (FN3) modules interact directly with the fibroblast growth factor (FGF) receptor (FGFR). Sequence alignment of individual L1 FN3 modules with various FGFs suggested that four sequence motifs located in the third and fifth L1 FN3 modules might be involved in interactions with FGFR. The present study found that corresponding synthetic peptides, termed elcamins 1, 2, 3, and 4, bind and activate FGFR in the absence of FGF1. Conversely, in the presence of FGF1, elcamins inhibited receptor phosphorylation, indicating that the peptides are FGFR partial agonists. Elcamins 1, 3, and 4 dose dependently induced neurite outgrowth in cultured primary cerebellar neurons. The neuritogenic effect of elcamins was dependent on FGFR activation, insofar as the effect was abolished by the receptor inhibition. Thus, the identified peptides act as L1 mimetics with regard to activation of FGFR and induction of neurite outgrowth. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
A previous study showed that basic fibroblast growth factor (FGF-2) promotes the effects of brain-derived neurotrophic factor (BDNF) on migration and neurite outgrowth from the cochleovestibular ganglion (CVG). This suggests that FGF-2 may up-regulate the receptor for BDNF. Thus we have examined TrkB expression during CVG formation and otic innervation in vitro and in the chicken embryo using immunohistochemistry. Following anatomical staging according to Hamburger-Hamilton, results were compared with mRNA expression in vitro using in situ hybridization. In the embryo at stage 16 (E2+) clusters of either lightly stained or immunonegative cells occurred within the otocyst and among those migrating to the CVG. By stage 22 (E3.5), immunostaining was concentrated in the CVG perikarya and invaded the processes growing into the otic epithelium but not into the rhombencephalon. Subsequently TrkB expression decreased in the perikarya and became localized in the leading processes of the fibers invading the epithelium and in the structures participating in synapse formation with the hair cells. In vitro there was moderate immunostaining and modest in situ hybridization for trkB in the neuroblasts migrating from the otocyst under control conditions. In contrast, neuroblasts previously exposed to FGF-2 exhibited accelerated migration and differentiation, with increased trkB mRNA expression. Morphological differentiation was associated with more intense immunostaining of processes than cell bodies. Evidently TrkB shifts its expression sequentially from sites engaged in migration, ganglion cell differentiation, axonal outgrowth, epithelial innervation, and synapse formation. FGF-2 may promote the role of BDNF in these developmental events by upregulating the TrkB receptor.  相似文献   

17.
The expression of neurotrophins and neurotrophin receptors is essential for the proper establishment and function of many sensory systems. To determine which neurotrophins and neurotrophin receptors are expressed in taste buds, and in taste buds of mice following denervation, antibodies directed against the neurotrophins and their receptors were applied to adult mouse gustatory tissue. Immunohistochemistry reveals that nerve growth factor (NGF)-like immunoreactive (LIR), tyrosine kinase (trk) A-LIR, trkB-LIR, and p75-LIR elongated, differentiated taste cells are present within all lingual taste buds, whereas neither neurotrophin (NT)-3- nor trkC-LIR was detected in taste cells. Double-label immunohistochemistry using markers of different taste cell types in brain-derived neurotrophic factor (BDNF)LacZ mice reveals that BDNF (beta-gal) and trkB colocalize, mainly in type III taste cells. NGF, pro-NGF, and trkA coexist in type II taste cells, i.e., those expressing phospholipase Cbeta2 (PLCbeta2). p75-LIR also is present in both BDNF and NGF taste cell populations. To determine the neural dependence of neurotrophin expression in adult taste buds, glossopharyngeal nerves were cut unilaterally. During the period of denervation (10 days to 3 weeks), taste buds largely disappear, and few neurotrophin-expressing cells are present. Three weeks after nerve transection, nerve fascicles on the operated side of the tongue exhibit BDNF-LIR, NGF-LIR, and ubiquitin carboxyl terminal hydrolase (PGP 9.5)-LIR. However, BDNF-LIR staining intensity but not NGF-LIR or PGP 9.5-LIR is increased in nerve fascicles on the operated compared with the unoperated side. Five weeks following nerve transection, NT and NT receptor expression resumes and appears normal in taste buds and nerves. These results indicate that neurotrophin expression in taste buds is dependent on gustatory innervation, but expression in nerves is not dependent on contact with taste buds.  相似文献   

18.
Most neurotrophic factors are members of one of three families: the neurotrophins, the glial cell-line derived neurotrophic factor family ligands (GFLs) and the neuropoietic cytokines. Each family activates distinct but overlapping cellular pathways. Several studies have shown additive or synergistic interactions between neurotrophic factors from different families, though generally only a single combination has been studied. Because of possible interactions between the neurotrophic factors, the optimum concentration of a factor in a mixture may differ from the optimum when applied individually. Additionally, the effect of combinations of neurotrophic factors from each of the three families on neurite extension is unclear. This study examines the effects of several combinations of the neurotrophin nerve growth factor (NGF), the GFL glial cell-line derived neurotrophic factor (GDNF) and the neuropoietic cytokine ciliary neurotrophic factor (CNTF) on neurite outgrowth from young rat dorsal root ganglion (DRG) explants. The combination of 50 ng ml(-1) NGF and 10 ng ml(-1) of each GDNF and CNTF induced the highest level of neurite outgrowth at a 752 +/- 53% increase over untreated DRGs and increased the longest neurite length to 2031 +/- 97 microm compared to 916 +/- 64 microm for untreated DRGs. The optimum concentrations of the three factors applied in combination corresponded to the optimum concentration of each factor when applied individually. These results indicate that the efficacy of future therapies for nerve repair would be enhanced by the controlled release of a combination of neurotrophins, GFLs and neuropoietic cytokines at higher concentrations than used in previous conduit designs.  相似文献   

19.
The neurotrophin brain-derived neurotrophic factor (BDNF) binds to two cell surface receptors: TrkB receptors that promote neuronal survival and differentiation and p75NTR that induces apoptosis or survival. BDNF, as well as the other members of the neurotrophin family, is synthesized as a larger precursor, pro-BDNF, which undergoes posttranslational modifications and proteolytic processing by furin or related proteases. Both mature neurotrophins and uncleaved proneurotrophins are secreted from cells. The bioactivities of proneurotrophins could differ from those of mature, cleaved neurotrophins; therefore, we wanted to test whether pro-BDNF would differ from mature BDNF in its neurotrophin receptor binding and activation. A furin-resistant pro-BDNF, secreted from COS-7 cells, bound to TrkB-Fc and p75NTR-Fc, but not to TrkA-Fc or TrkC-Fc. Likewise, pro-BDNF elicited prototypical TrkB responses in biological assays, such as TrkB tyrosine phosphorylation, activation of ERK1/2, and neurite outgrowth. Moreover, mutation of the R103 residue of pro-BDNF abrogated its binding to TrkB-Fc but not to p75NTR-Fc. Taken together, these data indicate that pro-BDNF binds to and activates TrkB and could be involved in TrkB-mediated neurotrophic activity in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号