首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Effects of microinjections of a single 2 or 10 nmol dose of N-methyl- -aspartate (NMDA) into the unilateral mesencephalic reticular formation (MRF) on behavior and electroencephalogram were examined in rats (n=18) during a 15 min period (Exp. 1), and subsequent effects of sound stimulation with key jingling applied at 15, 30, and 45 min after the injections were observed (Exp. 2). The microinjections of 2 nmol dose of NMDA (n=10) induced hyperactivity (9 of 10 rats) and running/circling (8 of 10 rats) in Exp. 1, and hyperactivity (3 of 10 rats) in Exp. 2. Moreover, the microinjections of 10 nmol dose of NMDA (n=8) induced not only hyperactivity (8 of 8 rats) and running/circling (7 of 8 rats) but also generalized tonic–clonic seizures (GTCS) (5 of 8 rats) in Exp. 1; these seizure patterns were also elicited by sound stimulation in Exp. 2. The seizure patterns were accompanied by electroencephalographic seizure discharges in the MRF and the motor cortex. In contrast, the control group rats (n=10) which received a single dose of saline microinjection into the unilateral MRF showed no behavioral or electroencephalographic changes in both Exp. 1 and 2. These findings suggest that the MRF has an important role in the development of GTCS, which follows hyperactivity and running/circling, and that potentiation of excitatory neurotransmission in the MRF participates in the development of audiogenic seizures as well as GTCS.  相似文献   

2.
Effects of microinjections of a single 2 or 10 nmol dose of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) into the unilateral mesencephalic reticular formation (MRF) on behavior and on the electroencephalogram were examined in rats (n=30) over a 15-min period (Exp. 1); subsequent effects of sound stimulation with key jingling applied at 15, 30, and 45 min after the injection were observed (Exp. 2). The microinjections of a 2 nmol dose of AMPA (n=15) induced hyperactivity (15 of 15 rats) and running/circling (10 of 15 rats) in Exp. 1, and hyperactivity (5 of 15 rats) in Exp. 2. Moreover, the microinjections of a 10 nmol dose of AMPA (n=15) induced hyperactivity (15 of 15 rats), running/circling (13 of 15 rats), generalized tonic-clonic seizures (GTCS) (4 of 15 rats), and amygdala kindling-like seizures (AMKS) (8 of 15 rats) in Exp. 1; electroencephalographic seizure discharges were predominantly observed in the MRF during hyperactivity, running/circling and GTCS, while those predominantly observed in the amygdala were during AMKS. In Exp. 2, hyperactivity (15 of 15 rats), running/circling (14 of 15 rats) and GTCS (6 of 15 rats) were elicited by sound stimulation, although AMKS were not. The control group of rats (n=15) which received a single dose of saline microinjection into the unilateral MRF showed no behavioral or electroencephalographic changes in both Exp. 1 and 2. These findings suggest that potentiation of excitatory amino acid neurotransmission induced by AMPA injection into the MRF plays an important role not only in the development of hyperactivity, running/circling, GTCS and AMKS, but also in the development of audiogenic seizures.  相似文献   

3.
It has been shown that NMDA antagonists block the tonic but not the clonic component of seizures when they are injected in the oral region of the rat pontine reticular formation (PRF). The participation of the caudal PRF in the effects of NMDA antagonists upon the tonic and the clonic components of generalized seizures induced by pentylenetetrazol (PTZ) is unknown. The aim of the present study was to evaluate the effects of unilateral microinjections of competitive and non-competitive NMDA antagonists, 2-amino-7-phosphonoheptanoic acid (AP-7) and dizocilpine (MK-801), respectively, into the nucleus reticularis pontis caudalis of the rat PRF upon seizures induced by PTZ (70 mg/kg i.p.). MK-801 induced a dose-related decrease both in the incidence of generalized tonic-clonic seizures (GTCS) and in the presence of spikes in the EEG. MK-801 also increased GTCS latency. On the contrary, AP-7 did not have effects on GTCS. Interestingly, it induced ipsilateral circling behavior. These results suggest that in the caudal region of the rat PRF only non-competitive NMDA antagonists should block the generation of tonic and clonic components of generalized seizures.  相似文献   

4.
Previous studies have reported that the repetition of running-bouncing and tonic-clonic seizures mediated by brainstem structures eventually elicits seizure activity in the forebrain. The purpose of the present study was to determine if the periaqueductal gray (PAG) region is a component of the neural network through which brainstem seizures elicit forebrain seizures. Bilateral microinjection of 40 nmol carbachol into the PAG region of rats induced arrested, staring behavior accompanied by epileptiform electrocorticogram (ECoG) afterdischarge recorded from the parietal cortex. In two animals limbic seizure activity similar to kindled amygdala seizures was also induced. The carbachol effect was dose-related as the 40 nmol dose induced a significantly greater duration of ECoG afterdischarge than a 20 nmol dose. The carbachol effect was mediated by muscarinic receptors as bilateral 50 nmol atropine microinjection 1 min prior to 40 nmol carbachol microinjection inhibited all seizure activity. Immunohistochemical detection of the proto-oncogene c-fos was used to verify that seizure activity was induced in forebrain regions. Rats with seizures induced by PAG carbachol microinjections exhibited dense c-fos-like immunoreactivity in the dentate gyrus but not the CA(1) or CA(3) regions, amygdala, piriform cortex, perirhinal cortex or hypothalamus. In addition, PAG microinjection of 10 nmol N-methyl-D-aspartic acid (NMDA) induced wild-running convulsions while 400 pmol bicuculline induced clonic spasms, myoclonic activity or limbic seizures. These results indicate that stimulation of the PAG, a brainstem structure, is sufficient to induce forebrain seizures. Since the forebrain seizures were induced by a single carbachol administration, it is proposed that the PAG serves as a pathway for caudal-rostral seizure generalization.  相似文献   

5.
Previous studies have demonstrated that generalized tonic-clonic seizures (GTCS) consisting of running/bouncing clonic and tonic extension can still be elicited in rats after brain transections which separate forebrain from brain stem, showing that forebrain circuitry is not required for GTCS. Inasmuch as sound-induced generalized tonic-clonic seizures in rodents are characterized by running-bouncing clonic and tonic convulsions, we have hypothesized that these are brain stem seizures that can occur independently of the forebrain. To test this hypothesis, we examined the response of two strains of genetically epilepsy-prone rats (GEPR-3s and GEPR-9s) to seizure-evoking auditory stimuli 3 h after a precollicular transection or sham surgery performed under ether anesthesia. In addition, the effect of a precollicular transection on audiogenic seizures was evaluated in normal rats made susceptible to such seizures by infusing NMDA into the inferior colliculus. Following the transection 58% of GEPR-9s displayed a sound-induced tonic-clonic convulsion and the remaining 42% exhibited a sound-induced seizure when subjected to stimulation 5 min after a subconvulsant dose of pentylenetetrazol (PTZ). While sham surgery and the precollicular transection both reduced sound-induced seizure severity in GEPR-3s, the full seizure response could be elicited by sound stimulation following a subconvulsant dose of PTZ. Moreover, the audiogenic seizures in normal rats rendered susceptible by NMDA were unaltered by the precollicular transection. These findings show that the anatomical circuitry required for generalized tonic-clonic seizures evoked by sound stimulation in rodents resides within the brain stem.  相似文献   

6.
The behavioral and electroencephalographic effects of N-methyl-D-aspartate (NMDA, 25 nmol/1 microliter) injection into the massa intermedia (MI) was examined in rats. The injection caused violent running/jumping and shrill vocalization without evidence of EEG seizure in the hippocampus (HP) and amygdala (AM). Animals with the injection site located in the reuniens nucleus subsequently developed generalized tonic and then clonic seizure, leading to fatal status epilepticus in some animals. Intermittent or continuous EEG discharge in the limbic system was found during clonic seizures. These findings suggest that the NMDA receptor in the reuniens nucleus in the MI participates in the generation and expression of convulsive seizure in rats.  相似文献   

7.
Profound cardiovascular and/or respiratory dysfunction is part of the terminal cascade in sudden unexpected death in epilepsy (SUDEP). Central control of ventilation is mediated by brainstem rhythm generators, which are influenced by a variety of inputs, many of which use the modulatory neurotransmitter serotonin to mediate important inputs for breathing. The aim of this study was to investigate epileptic seizure–induced changes in serum serotonin levels and whether there are potential implications for SUDEP. Forty‐one epileptic patients were pooled into 2 groups based on seizure type as (1) generalized tonic–clonic seizures (GTCS) of genetic generalized epilepsy and focal to bilateral tonic–clonic seizures (FBTCS; n = 19) and (2) focal seizures (n = 26) based on clinical signs using surface video‐electroencephalography. Postictal serotonin levels were statistically significantly higher after GTCS and FBTCS compared to interictal levels (P = .002) but not focal seizures (P = .941). The change in serotonin (postictal‐interictal) was inversely associated with a shorter duration of tonic phase of generalized seizures. The interictal serotonin level was inversely associated with a shorter period of postictal generalized electroencephalographic suppression. These data suggest that peripheral serum serotonin levels may play a role in seizure features and earlier postseizure recovery; these findings merit further study.  相似文献   

8.
N-methyl-D-aspartate (NMDA) receptors play a prominent role in the pathogenesis of epilepsy, yet few studies have used NMDA as a convulsant in whole animals. In developing rats, systemic NMDA induces seizures with a unique seizure phenotype ("emprosthotonic" or hyperflexion seizures) and electrographic pattern (electrodecrement). These features are not seen in kainic acid-induced seizures, suggesting that seizures activated by NMDA might cause different long-term consequences. Therefore, we investigated the effects of NMDA seizures during development on cognitive function and susceptibility to seizures in adulthood. Rat pups (P12-20) were injected with saline (n=36) or NMDA (n=64) at convulsant doses (15-30mg/kg, i.p.). After NMDA injection, a characteristic sequence of seizure activity was seen: initial behavioral arrest, followed by hyperactivity, agitation, and then emprosthotonus and generalized tonic-clonic seizures. Seizures were terminated 30min later by ketamine (50mg/kg, i.p.). On P85, rats underwent behavioral testing in the water maze. Rats that had experienced NMDA seizures as pups took significantly longer to learn the platform location over 5 days of testing, compared to controls. On P90, rats were injected with pentylenetetrazol (PTZ, 50mg/kg, i.p.) to assess their susceptibility to generalized seizures. NMDA-treated rats had decreased latency and increased duration of class V PTZ seizures. Cresyl violet-stained sections of cortex and hippocampus had no obvious cell loss or gliosis. In summary, NMDA causes a unique seizure phenotype in the developing brain, with subsequent deficits in spatial learning and an increased susceptibility to PTZ seizures in adulthood. This study provides additional evidence for long-term alterations of neuronal excitability and cognitive capacity associated with seizures during development.  相似文献   

9.
The role of glutamate receptors in the inferior colliculus (IC) in audiogenic and audiogenic-like seizures was investigated in adult rats with transient neonatal hypothyroidism by 0.02% propylthiouracil (PTU) treatment through mother's milk (PTU rats) and in naive rats treated intracisternally with N-methyl-d-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid (AMPA), or cyclothiazide, an inhibitor of rapid AMPA receptor desensitization. All rats showed audiogenic or audiogenic-like seizures characterized by running fit (RF) and generalized tonic-clonic seizures (GTCS). While systemically administered MK-801 inhibited GTCS, intracisternally administered NBQX inhibited RF and GTCS in both audiogenic and audiogenic-like seizures. Auditory stimulation shortened the latency to GTCS induced by AMPA, but not NMDA, at a subclinical dose and further elongated the shortened duration of RF, but not GTCS, induced by MK-801 pretreatment. Furthermore, Northern blot analysis was used to evaluate the expression of the immediate-early gene c-fos in the IC following induction of audiogenic or audiogenic-like seizures. The significant induction of c-fos mRNA by audiogenic seizures in PTU rats or by AMPA- or cyclothiazide-induced seizures in naive rats was prominent in the IC. MK-801 suppressed c-fos mRNA expression in the IC induced by audiogenic seizures in PTU rats or by AMPA-induced seizures in naive rats. NBQX suppressed the expression of c-fos mRNA in the IC induced by AMPA-induced seizures but did not suppress c-fos mRNA in PTU rats or rats with cyclothiazide-induced seizures. Auditory stimuli failed to affect c-fos mRNA induction by AMPA. The present study suggests that audiogenic-like seizures can be reproduced by glutamate receptor agonists in which AMPA receptors are primarily linked to the initiation of audiogenic seizures (RF) while NMDA receptors presumably located within the IC are involved in the propagation of GTCS in audiogenic seizures.  相似文献   

10.
To evaluate the possible contribution of dorsal striatal glutamate receptors to motor behavior, circling responses were observed in rats following unilateral intrastriatal microinjections of the agonist, N-methyl-D-aspartate (NMDA) or the antagonist, 2-amino-7-phosphonoheptanoic acid (APH). The role of dopamine (DA) in NMDA-produced circling also was evaluated. In experiment 1, an NMDA dose of 5.0 micrograms (in 0.5 microliter), but not 0.5 or 0.05 microgram produced significant contraversive circling. In experiment 2, an APH dose of 10.0 micrograms but not 1.0 or 0.1 microgram produced significant ipsiversive circling. In experiment 3, microinjection of the ineffective 0.1 microgram dose of APH or a dose (20 micrograms) of the DA antagonist, cis-flupenthixol, that did not produce circling when administered alone, significantly reduced the circling response produced by the 5.0 micrograms dose of NMDA. As NMDA produced circling in the same direction as that seen following similar unilateral injections of locomotion-stimulating DA agonists, the present results suggest that glutamate, acting via NMDA receptors in the dorsal striatum, may exert an excitatory influence on motor systems. The observation that a DA receptor blocker antagonized the NMDA response further suggests that the observed motor excitatory effect of glutamate at NMDA receptors requires concurrent stimulation of DA receptors in the same region of the striatum.  相似文献   

11.
Bilateral microinjections of DADL (D-Ala2-D-Leu5-enkephalin) and morphine were carried out in rats in a systematic fashion at histologically identified medial and lateral thalamic sites. DADL produced a dose-dependent (1.5-15.0 nmol), naloxone-reversible (1 mg/kg, i.p.) increase in the hot-plate (HP), tail-flick (TF) and catalepsy (CAT) response latencies with a predominance of activity occurring at lateral as opposed to medial thalamic sites. These effects were seen within 5 min of microinjection. At a significant number of sites, DADL precipitated convulsive seizure activity. Equimolar doses of morphine had a negligible effect on nociceptive indices and were not productive of seizures even at sites where DADL was found to be active. To further examine seizure activity, rats were prepared with bilateral frontal cortical electrodes and microinjected also at medial and lateral thalamic sites with equimolar doses of DADL and morphine (15 nmol). DADL was found to produce electrographically defined seizures unaccompanied by convulsive motor behavior (cataleptic seizures), as well as convulsive seizures. All animals in this group exhibiting analgesia and catalepsy had electrographic evidence of a seizure with markedly abnormal EEG tracings showing postictal spiking and changes in baseline frequency and amplitude. These seizures appeared to be naloxone-reversible. Morphine on the other hand was not productive of seizures, but did produce changes in electroencephalographic activity including spindle bursting, high-voltage slow-frequency activity as well as spiking. As noted, these changes were not associated with any effects on nociceptive measures.  相似文献   

12.
Given the evidence that the inferior colliculus (IC) and superior colliculus (SC) seem to play key roles in connecting auditory pathways and seizure output pathways in the neuronal network for audiogenic seizures (AS) in rats, we examined Fos activation in GABAergic cells and cells immunopositive for glutamate N-methyl-D-aspartate (NMDA) receptors in the IC and SC following AS using the double-labeling procedure. Generalized tonic-clonic seizures (GTCS), which developed as an advanced form of AS in some of the susceptible rats, induced an increase in Fos expression in three IC substructures-the dorsal cortex of IC (DCIC), central nucleus of IC (CIC), and external cortex of IC (ECIC)-and in one SC substructure, the deep gray layer of SC (DpG). Compared with the rats showing GTCS, rats exhibiting wild running (WR) without proceeding to GTCS showed a different pattern of AS-induced Fos expression. The DpG in the WR animals showed no significant increase in the levels of Fos-like immunoreactivity. The degrees of Fos activation that occurred in GABAergic cells and cells immunopositive for NMDA receptors were similar in the DCIC, CIC, ECIC, and DpG following AS. These results suggest that Fos activation in the DpG is involved in the development from WR to GTCS in AS-susceptible rats. They also provide some evidence that some GABAergic neurons in the IC and SC and glutamatergic afferents (via NMDA receptors) to these structures are activated by AS.  相似文献   

13.
N-Methyl-D-aspartate (NMDA) (10 to 20 nmol) or bicuculline (15 to 50 pmol) in 0.5 microliter was infused bilaterally into the inferior colliculus or the deep layers of superior colliculus (DLSC) in normal rats, and the response to high intensity acoustic stimulation was examined. Thirty-five percent of rats receiving NMDA infusions and 42% of animals receiving bicuculline infusions into the inferior colliculus exhibited sound-induced seizures exclusively that were behaviorally similar to audiogenic seizures displayed by genetically epilepsy-prone rats. Rats receiving microinjections into the DLSC did not display sound-specific seizures. A combined pattern of spontaneous and sound-induced seizures was seen in some rats with both drugs and loci of microinjection. These data and previous studies support a role for increased excitant amino acid action and decreased efficacy of GABA in the inferior colliculus as important mechanisms involved in genetic susceptibility to audiogenic seizures.  相似文献   

14.
Brainstem Experimental Seizures Produced by Microinjections of Carbachol   总被引:1,自引:1,他引:0  
Z. Elazar  Z. Feldman 《Epilepsia》1987,28(5):463-470
Microinjections of 2-10 micrograms of carbachol into the mesencephalic reticular formation (MRF) and pontine reticular formation (PRF) of rats consistently induced local electroencephalographic seizures. These seizures had organized, rhythmical patterns and were long lasting. They spread powerfully and bilaterally between the MRF and PRF and also to the hippocampus and cortex. The electroencephalographic seizures were accompanied by severe, long-lasting convulsions. These convulsions were clonic and bilateral, started in the head area and progressed rostro-caudally to become generalized to the entire body. Other nonconvulsive behaviors were activated by the seizures. Immobility and catalepsy were the most frequent nonconvulsive correlates of the brainstem carbachol seizures.  相似文献   

15.
Postictal generalized electroencephalographic suppression (PGES) may be involved in sudden unexpected death in epilepsy (SUDEP). We examined whether the occurrence of PGES depends on seizure type and whether PGES occurs more frequently in people with epilepsy who died suddenly. EEG recordings of people with pharmacoresistant focal epilepsies who died from SUDEP after presurgical video/EEG telemetry were compared with recordings of living controls. To test if PGES depends on seizure type, EEG recordings of people with temporal lobe epilepsy who had complex partial seizures (CPS) and secondarily generalized tonic-clonic seizures (GTCS) were reviewed. A total of 122 seizures in 57 individuals have been included. PGES was observed in 15% of all seizures in 26% of all individuals. Secondarily GTCS were significantly associated with PGES. Neither presence nor duration of PGES differed between the SUDEP and control groups. In conclusion, PGES is facilitated by secondarily GTCS, but does not seem to be an independent risk factor for SUDEP.  相似文献   

16.
Searching for new therapeutic strategies through modulation of glutamatergic transmission using effective neuroprotective agents is essential. Glutamatergic excitotoxicity is a common factor to neurodegenerative diseases and acute events such as cerebral ischemia, traumatic brain injury, and epilepsy. This study aimed to evaluate behavioral and electroencephalographic (EEG) responses of mice cerebral cortex and hippocampus to subconvulsant and convulsant application of NMDA and quinolinic acid (QA), respectively. Moreover, it aimed to evaluate if EEG responses may be related to the neuroprotective effects of NMDA. Mice were preconditioned with NMDA (75 mg/kg, i.p.) and EEG recordings were performed for 30 min. One day later, QA was injected (36.8 nmol/site) and EEG recordings were performed during 10 min. EEG analysis demonstrated NMDA preconditioning promotes spike-wave discharges (SWDs), but it does not display behavioral manifestation of seizures. Animals that were protected by NMDA preconditioning against QA-induced behavioral seizures, presented higher number of SWD after NMDA administration, in comparison to animals preconditioned with NMDA that did display behavioral seizures after QA infusion. No differences were observed in latency for the first seizure or duration of seizures. EEG recordings after QA infusion demonstrated there were no differences in the number of SWD, latency for the first seizure or duration of seizures in animals pretreated with saline or in animals preconditioned by NMDA that received QA. A negative correlation was identified between the number of NMDA-induced SWD and QA-induced seizures severity. These results suggest a higher activation during NMDA preconditioning diminishes mice probability to display behavioral seizures after QA infusion.  相似文献   

17.
The baroreflex activation with phenylephrine infusion produces a bradycardic response. In the present study, the role of NMDA receptors in the nucleus tractus solitarii (NTS) in the processing of the parasympathetic component of the baroreflex was evaluated using acid phosphonivaleric (AP-5), a selective NMDA receptor antagonist. Baroreflex activation was performed before and after bilateral microinjection of AP-5 into the intermediate commissural NTS (0.5 mm lateral to the midline). Microinjection of the vehicle (saline, 0.9%) or a dose of 2 nmol/50 nl of AP-5 into the NTS produced no effect on the gain of the baroreflex while a dose of 10 nmol/50 nl of AP-5 produced a significant reduction in the gain of the baroreflex 2 min after microinjection [-1.43+/-0.22 vs. -0. 43+/-0.03 bpm/mmHg, (n=6)], with a return to control levels 10 min after the microinjections. The dose of 10 nmol/50 nl was selective for NMDA receptors considering that the cardiovascular responses to microinjection of AMPA (0.05 pmol/50 nl), a non-NMDA receptor agonist, were not affected by this dose of AP-5 and the responses to microinjection of NMDA (2 nmol/50 nl) were blocked. The data show that the bradycardic response to baroreflex activation was blocked by AP-5 microinjected into the NTS, indicating that the neurotransmission of the parasympathetic component of the baroreflex is mediated by NMDA receptors in the NTS.  相似文献   

18.
Locomotor activity was investigated following microinjections of receptor-selective opioid agonists into the ventral pallidum (VP) of rats. In Expt. 1, male Long-Evans rats were treated with unilateral microinjections of the μ agonist [d-Ala2-MePhe4, Gly-ol5]-enkephalin (DAGO), the σ agonist [d-Pen2,d-Pen5]-enkephalin (DPDPE) or the κ agonist U50,488H, and the rate and duration of circling behavior were measured. DAGO (0.01, 0.1, 1.0 nmol) procedure a dose-dependent increse in contralateral circling; pretreatment with 1.0 mg/kg naltrexone blocked the circling induced by the highest dose. The behavioral effect was largest when injections were targeted at the VP rather than structures dorsal to the VP. In contrast to DAGO, intrapallidal DPDPE (0.01, 0.1, 1.0, 10.0 nmol) produced a slight increase in contralateral circling only at the highest dose and U50, 488H (0.01, 0.1, 1.0, 10.0 nmol) produced no effect. In Expt. 2, the effects of bilateral injections of DAGO, DPDPE and U50,488H were tested in photocell activity ☐es. DAGO produced a dose-dependent increase in locomotor activity and this increase was decreased by 1.0 mg/kg naltrexone. A slight increase in activity was observed with the highest dose of DPDPE, and a slight decrease was observed with the highest dose of U50,488H. These findings confirm that opiate actions in the VP contribute to opiate-induced locomotion and suggest that μ and to some extent σ receptors are involved in this behavior.  相似文献   

19.
PURPOSE: Evaluation of the efficacy and side effects profile of Clobazam in a 24-week open-labelled trial involving 26 cases of drug na?ve adult patients with epilepsy. METHODS: The study was an open labelled unicentre trial in which only drug na?ve cases with epilepsy were included. A total of 26 cases were recruited. One case was dropped because he did not complete the desired follow up. Seizure type and frequency were recorded and follow up was done at 4, 8, 12, 18 and 24 weeks after initiation of therapy. The change in seizure severity, the dose of Clobazam required and development of side effects were recorded. RESULTS: The seizure types included GTCS (n=16), complex partial seizures (n=4), focal motor seizures with secondary generalisation (n=3) and juvenile myoclonic epilepsy (n=2). Out of 25 patients, 16 (64%) became seizure free, while five (20%) had >50% reduction in their seizure frequency. Thus, these 21 patients (84%) were considered to be well controlled. The commonest side effect seen was sedation, which was noted in 4 of the 25 patients (16%). However, in none of these four patients sedation was significant enough to warrant stoppage of therapy. Weight gain, gait ataxia, loss of short-term memory and breakthrough seizures were noted in one patient each. CONCLUSIONS: The efficacy of Clobazam coupled with the lack of significant side effects noted in our study makes it merit consideration as monotherapy in adult patients with epilepsy.  相似文献   

20.
Purpose: For a long time, antidepressants have been thought to possess proconvulsant properties. This assumption, however, remains controversial, since anticonvulsant effects have been attributed to certain antidepressants. To date, it remains unclear which antidepressants can be used for the treatment of depression in patients with epilepsy. In this respect, studies investigating the convulsant liability of antidepressants in a chronic epilepsy model can give valuable information. The present study was designed to determine the seizure liability of citalopram and reboxetine in the kainic acid–induced post–status epilepticus model for temporal lobe epilepsy. Methods: Two months after the induction of status epilepticus, chronic epileptic rats (n = 16) were video‐electroencephalography (EEG) monitored during seven consecutive weeks. Weeks 1, 3, 5, and 7 served as sham weeks during which the rats received intraperitoneal saline injections for four consecutive days, followed by a 3‐day sham washout period during which no injections were given. During weeks 2, 4, and 6, rats received intraperitoneal injections with either citalopram (5, 10, and 15 mg/kg, once daily, n = 8) or reboxetine (10, 20, and 30 mg/kg, twice daily, n = 8) for 4 days, again followed by a washout period of 3 days. Drugs were administered in a randomly assigned fixed‐dose regimen per week. Each rat served as its own control. The drug doses were selected based on the doses reported to have antidepressant effects in rats. Key Findings: Citalopram significantly decreased the spontaneous seizure frequency at the highest dose tested, that is, the mean number of seizures decreased from 12.8 seizures to 8.8 seizures per week (31%) after treatment with 15 mg/kg citalopram. This dose also significantly decreased the cumulative seizure duration. Administration of 5 and 10 mg/kg citalopram did not alter the seizure frequency. The two highest doses of reboxetine significantly decreased the spontaneous seizure frequency, that is, 20 mg/kg reboxetine decreased the seizure frequency from 14.1 to 7.9 (44%) and 30 mg/kg reboxetine decreased the seizure frequency from 11.8 to 7.2 (39%). In addition, both doses significantly decreased the cumulative seizure duration. Administration of 10 mg/kg reboxetine did not alter seizure frequency. Citalopram and reboxetine had no effect on seizure severity and seizure duration in any of the doses tested. Significance: In general we can conclude that antidepressant doses of citalopram and reboxetine have, depending on the dose, an anticonvulsant effect or no effect on spontaneous seizures in the kainic acid–induced post–status epilepticus rat model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号