首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Nanoparticulate drug delivery systems (Nano-DDSs) have emerged as possible solution to the obstacles of anticancer drug delivery. However, the clinical outcomes and translation are restricted by several drawbacks, such as low drug loading, premature drug leakage and carrier-related toxicity. Recently, pure drug nano-assemblies (PDNAs), fabricated by the self-assembly or co-assembly of pure drug molecules, have attracted considerable attention. Their facile and reproducible preparation technique helps to remove the bottleneck of nanomedicines including quality control, scale-up production and clinical translation. Acting as both carriers and cargos, the carrier-free PDNAs have an ultra-high or even 100% drug loading. In addition, combination therapies based on PDNAs could possibly address the most intractable problems in cancer treatment, such as tumor metastasis and drug resistance. In the present review, the latest development of PDNAs for cancer treatment is overviewed. First, PDNAs are classified according to the composition of drug molecules, and the assembly mechanisms are discussed. Furthermore, the co-delivery of PDNAs for combination therapies is summarized, with special focus on the improvement of therapeutic outcomes. Finally, future prospects and challenges of PDNAs for efficient cancer therapy are spotlighted.  相似文献   

6.
7.
《Drug discovery today》2023,28(1):103395
Target Protein Degradation TPD is a new avenue and revolutionary for therapeutics because redefining the principles of classical drug discovery and guided by event-based target activity rather than the occupancy-driven activity. Since the discovery of the first PROTAC in 2001, TPD represents a rapidly growing technology, with applications in both drug discovery and chemical biology. Over the last decade, many questions have been raised and today the knowledge gained by each team has elucidated a number of them, although there is still a long way to go. The objective of this work is to present the challenges that the PROTAC strategy has very recently addressed in drug design and discovery by presenting extremely recent results from the literature and to provide guidelines in the drug design of new PROTACs as successful therapeutic modality for medicinal chemists.  相似文献   

8.
《药学学报(英文版)》2021,11(9):2798-2818
Inflammatory bowel disease (IBD) is a chronic intestinal disease with painful clinical manifestations and high risks of cancerization. With no curative therapy for IBD at present, the development of effective therapeutics is highly advocated. Drug delivery systems have been extensively studied to transmit therapeutics to inflamed colon sites through the enhanced permeability and retention (EPR) effect caused by the inflammation. However, the drug still could not achieve effective concentration value that merely utilized on EPR effect and display better therapeutic efficacy in the inflamed region because of nontargeted drug release. Substantial researches have shown that some specific receptors and cell adhesion molecules highly expresses on the surface of colonic endothelial and/or immune cells when IBD occurs, ligand-modified drug delivery systems targeting such receptors and cell adhesion molecules can specifically deliver drug into inflamed sites and obtain great curative effects. This review introduces the overexpressed receptors and cell adhesion molecules in inflamed colon sites and retrospects the drug delivery systems functionalized by related ligands. Finally, challenges and future directions in this field are presented to advance the development of the receptor-mediated targeted drug delivery systems for the therapy of IBD.  相似文献   

9.
《药学学报(英文版)》2021,11(8):2469-2487
Lipid-based formulations (LBFs) have demonstrated a great potential in enhancing the oral absorption of poorly water-soluble drugs. However, construction of in vitro and in vivo correlations (IVIVCs) for LBFs is quite challenging, owing to a complex in vivo processing of these formulations. In this paper, we start with a brief introduction on the gastrointestinal digestion of lipid/LBFs and its relation to enhanced oral drug absorption; based on the concept of IVIVCs, the current status of in vitro models to establish IVIVCs for LBFs is reviewed, while future perspectives in this field are discussed. In vitro tests, which facilitate the understanding and prediction of the in vivo performance of solid dosage forms, frequently fail to mimic the in vivo processing of LBFs, leading to inconsistent results. In vitro digestion models, which more closely simulate gastrointestinal physiology, are a more promising option. Despite some successes in IVIVC modeling, the accuracy and consistency of these models are yet to be validated, particularly for human data. A reliable IVIVC model can not only reduce the risk, time, and cost of formulation development but can also contribute to the formulation design and optimization, thus promoting the clinical translation of LBFs.  相似文献   

10.
《药学学报(英文版)》2021,11(8):2306-2325
Blood–brain barrier (BBB) strictly controls matter exchange between blood and brain, and severely limits brain penetration of systemically administered drugs, resulting in ineffective drug therapy of brain diseases. However, during the onset and progression of brain diseases, BBB alterations evolve inevitably. In this review, we focus on nanoscale brain-targeting drug delivery strategies designed based on BBB evolutions and related applications in various brain diseases including Alzheimer's disease, Parkinson's disease, epilepsy, stroke, traumatic brain injury and brain tumor. The advances on optimization of small molecules for BBB crossing and non-systemic administration routes (e.g., intranasal treatment) for BBB bypassing are not included in this review.  相似文献   

11.
《Drug discovery today》2021,26(8):1857-1874
Duocarmycins are a class of DNA minor-groove-binding alkylating molecules. For the past decade, various duocarmycin analogues have been used as payloads in the development of antibody–drug conjugates (ADCs). Currently, more than 15 duocarmycin-based ADCs have been studied preclinically, and some of them such as SYD985 have been granted Fast-Track Designation status. Nevertheless, progress in duocarmycin-based ADCs also faces challenges, with setbacks including the termination of BMS-936561/MDX-1203. In this review, we discuss issues associated with the efficacy, pharmacokinetic profile, and toxicological activity of these biotherapeutics. Furthermore, we summarize the latest advances in duocarmycin-based ADCs that have different target specificities and linker chemistries. Evidence from preclinical and clinical studies has indicated that duocarmycin-based ADCs are promising biotherapeutics for oncological application in the future.  相似文献   

12.
13.
BackgroundPatients with polypharmacy are challenged with the management of their daily medication. Medication management strategies for direct oral anticoagulants (DOAC) are especially important to guarantee medication adherence and to prevent thromboembolic events. Patients are often left alone with finding an appropriate strategy.Objective(s)To explore medication management strategies, to measure adherence to DOAC with the aim of deducing recommendations for practice.MethodsFace-to-face semi-structured interviews were conducted at the home of outpatients who were taking ≥4 medications daily including a DOAC, and self-managing their medication. A small electronic device (Time4Med?) was given to record medication intake during the four following weeks. During a second home visit, participants saw a graph of their medication intake as dot chart, and obtained a feedback. Interviews were transcribed verbatim and thematically analysed. Medication adherence was calculated with electronic data.ResultsEighteen individuals (61.1% female; median age 77.5 years) were interviewed and reported 30 different medication management strategies, together with triggers, advantages and limitations. They combined at least five strategies, composed of internal (memory-based) and external (packaging-based or intake-based) strategies. The number of strategies was neither associated with the number of medications nor with medication adherence. Taking adherence was <100% for eight patients (44.4%). The inability of any medication management strategy to adapt to ageing and cognitive decline emerged as its most dramatic limitation, especially because individuals would fail to notice when their strategy became unsuited.ConclusionsElderly patients develop manifold medication management strategies, which can inspire future medication users. Limitations are present such as forgetting medication intake in spite of a management strategy. The moment to adapt the strategy to ageing or cognitive decline is crucial and often goes unnoticed. It is therefore decisive that healthcare professionals regularly re-evaluate the appropriateness of the medication management strategies during counselling or ideally during home visits.  相似文献   

14.
15.
《药学学报(英文版)》2021,11(8):2449-2468
Orally administered drug entities have to survive the harsh gastrointestinal environment, penetrate the enteric epithelia and circumvent hepatic metabolism before reaching the systemic circulation. Whereas the gastrointestinal stability can be well maintained by taking proper measures, hepatic metabolism presents as a formidable barrier to drugs suffering from first-pass metabolism. The pharmaceutical academia and industries are seeking alternative pathways for drug transport to circumvent problems associated with the portal pathway. Intestinal lymphatic transport is emerging as a promising pathway to this end. In this review, we intend to provide an updated overview on the rationale, strategies, factors and applications involved in intestinal lymphatic transport. There are mainly two pathways for peroral lymphatic transport—the chylomicron and the microfold cell pathways. The underlying mechanisms are being unraveled gradually and nowadays witness increasing research input and applications.  相似文献   

16.
BackgroundCisplatin (CSP) is a potent anticancer drug widely used in treating glioblastoma multiforme (GBM). However, CSP's clinical efficacy in GBM contrasted with low therapeutic ratio, toxicity, and multidrug resistance (MDR). Therefore, we have developed a system for the active targeting of cisplatin in GBM via cisplatin loaded polymeric nanoplatforms (CSP-NPs).MethodsCSP-NPs were prepared by modified double emulsion and nanoprecipitation techniques. The physiochemical characterizations of CSP-NPs were performed using zeta sizer, scanning electron microscopy (SEM), drug release kinetics, and drug content analysis. Cytotoxicity, induction of apoptosis, and cell cycle-specific activity of CSP-NPs in human GBM cell lines were evaluated by MTT assay, fluorescent microscopy, and flow cytometry. Intracellular drug uptake was gauged by fluorescent imaging and flow cytometry. The potential of CSP-NPs to inhibit MDR transporters were assessed by flow cytometry-based drug efflux assays.ResultsCSP-NPs have smooth surface properties with discrete particle size with required zeta potential, polydispersity index, drug entrapment efficiency, and drug content. CSP-NPs has demonstrated an ‘initial burst effect’ followed by sustained drug release properties. CSP-NPs imparted dose and time-dependent cytotoxicity and triggered apoptosis in human GBM cells. Interestingly, CSP-NPs significantly increased uptake, internalization, and accumulations of anticancer drugs. Moreover, CSP-NPs significantly reversed the MDR transporters (ABCB1 and ABCG2) in human GBM cells.ConclusionThe nanoparticulate system of cisplatin seems to has a promising potential for active targeting of cisplatin as an effective and specific therapeutic for human GBM, thus eliminating current chemotherapy's limitations.  相似文献   

17.
18.
《药学学报(英文版)》2020,10(5):850-860
Organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1/3) as important uptake transporters play a fundamental role in the transportation of exogenous drugs and endogenous substances into cells. Rat OATP1B2, encoded by the Slco1b2 gene, is homologous to human OATP1B1/3. Although OATP1B1/3 is very important, few animal models can be used to study its properties. In this report, we successfully constructed the Slco1b2 knockout (KO) rat model via using the CRISPR/Cas9 technology for the first time. The novel rat model showed the absence of OATP1B2 protein expression, with no off-target effects as well as compensatory regulation of other transporters. Further pharmacokinetic study of pitavastatin, a typical substrate of OATP1B2, confirmed the OATP1B2 function was absent. Since bilirubin and bile acids are the substrates of OATP1B2, the contents of total bilirubin, direct bilirubin, indirect bilirubin, and total bile acids in serum are significantly higher in Slco1b2 KO rats than the data of wild-type rats. These results are consistent with the symptoms caused by the absence of OATP1B1/3 in Rotor syndrome. Therefore, this rat model is not only a powerful tool for the study of OATP1B2-mediated drug transportation, but also a good disease model to study hyperbilirubinemia-related diseases.  相似文献   

19.
《Drug discovery today》2022,27(1):326-336
Tuberculosis (TB), an airborne infectious disease mainly caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of human morbidity and mortality worldwide. Given the alarming rise of resistance to anti-TB drugs and latent TB infection (LTBI), new targets and novel bioactive compounds are urgently needed for the treatment of this disease. We provide an overview of the recent advances in anti-TB drug discovery, emphasizing several newly validated targets for which an inhibitor has been reported in the past five years. Our review presents several attractive directions that have potential for the development of next-generation therapies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号