首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Insulinoma-associated protein (IA)-2beta, also known as phogrin, is an enzymatically inactive member of the transmembrane protein tyrosine phosphatase family and is located in dense-core secretory vesicles. In patients with type 1 diabetes, autoantibodies to IA-2beta appear years before the development of clinical disease. The genomic structure and function of IA-2beta, however, is not known. In the present study, we determined the genomic structure of IA-2beta and found that both human and mouse IA-2beta consist of 23 exons and span approximately 1,000 and 800 kb, respectively. With this information, we prepared a targeting construct and inactivated the mouse IA-2beta gene as demonstrated by lack of IA-2beta mRNA and protein expression. The IA-2beta(-/-) mice, in contrast to wild-type controls, showed mild glucose intolerance and impaired glucose-stimulated insulin secretion. Knockout of the IA-2beta gene in NOD mice, the most widely studied animal model for human type 1 diabetes, failed to prevent the development of cyclophosphamide-induced diabetes. We conclude that IA-2beta is involved in insulin secretion, but despite its importance as a major autoantigen in human type 1 diabetes, it is not required for the development of diabetes in NOD mice.  相似文献   

2.
Kubosaki A  Nakamura S  Notkins AL 《Diabetes》2005,54(Z2):S46-S51
IA-2 and IA-2beta are members of the transmembrane protein tyrosine phosphatase family located in dense core vesicles of neuroendocrine cells, including the beta-cells of pancreatic islets. In the present study, by mating C57BL/6Nci IA-2(+/-) with IA-2beta(+/-) mice, we generated double knockout mice (IA-2(-/-)/IA-2beta(-/-)) to study the effect of the combined deletion of these two proteins on insulin secretion and blood glucose levels. The double knockout mice appeared healthy at birth and showed normal growth and development. Histological examination and immunostaining for insulin, glucagon, somatostatin, and pancreatic polypeptide revealed no difference between the double knockout and wild-type mice. Nonfasting blood glucose and insulin levels also were within the normal range. However, compared with the wild-type mice, the double knockout mice showed glucose intolerance and an absent first-phase insulin release curve. No evidence of insulin resistance was observed nor were there alterations in fasting blood glucose, insulin, or leptin levels in the double knockout mice maintained on a high-fat diet compared with the wild-type mice maintained on the same diet. In addition, to determine whether the combined deletion of IA-2 and IA-2beta played any role in the development of diabetes in NOD mice, we generated double knockout mice on the NOD/LtJ background. The incidence of diabetes in these mice was not significantly different than that in the wild-type mice. Taken together, our experiments show that the dense core vesicle proteins IA-2 and IA-2beta, alone or in combination, are involved in insulin secretion, but neither alone nor in combination are they required for the development of diabetes in NOD mice.  相似文献   

3.
4.
Fetuin inhibits insulin-induced insulin receptor (IR) autophosphorylation and tyrosine kinase activity in vitro, in intact cells, and in vivo. The fetuin gene (AHSG) is located on human chromosome 3q27, recently identified as a susceptibility locus for type 2 diabetes and the metabolic syndrome. Here, we explore insulin signaling, glucose homeostasis, and the effect of a high-fat diet on weight gain, body fat composition, and glucose disposal in mice carrying two null alleles for the gene encoding fetuin, Ahsg (B6, 129-Ahsg(tm1Mbl)). Fetuin knockout (KO) mice demonstrate increased basal and insulin-stimulated phosphorylation of IR and the downstream signaling molecules mitogen-activated protein kinase (MAPK) and Akt in liver and skeletal muscle. Glucose and insulin tolerance tests in fetuin KO mice indicate significantly enhanced glucose clearance and insulin sensitivity. Fetuin KO mice subjected to euglycemic-hyperinsulinemic clamp show augmented sensitivity to insulin, evidenced by increased glucose infusion rate (P = 0.077) and significantly increased skeletal muscle glycogen content (P < 0.05). When fed a high-fat diet, fetuin KO mice are resistant to weight gain, demonstrate significantly decreased body fat, and remain insulin sensitive. These data suggest that fetuin may play a significant role in regulating postprandial glucose disposal, insulin sensitivity, weight gain, and fat accumulation and may be a novel therapeutic target in the treatment of type 2 diabetes, obesity, and other insulin-resistant conditions.  相似文献   

5.
Evidence of islet cell autoimmunity in elderly patients with type 2 diabetes   总被引:19,自引:0,他引:19  
In light of an occurring growth of elderly people affected by type 2 diabetes and recent observations indicating that type 2 diabetes may be a disease of the innate immune system, we evaluated whether signs of islet cell autoimmunity are associated with an abnormal glucose control, the presence of insulin requirement, or an activation of the acute-phase response in older individuals with type 2 diabetes. GAD65 and IA-2 autoantibodies along with the acute-phase response markers fibrinogen and C-reactive protein were tested in 196 serum samples from patients with type 2 diabetes and in 94 nondiabetic control subjects over the age of 65 years from the Pittsburgh cohort of the Cardiovascular Health Study. Of the diabetic patients, 12% (24 of 196) had autoantibodies against GAD65 and/or IA-2, a prevalence significantly higher than that found in nondiabetic individuals (1 of 94, 1.1%; P = 0.001). Type 2 diabetic patients who were positive for GAD65 and/or IA-2 autoantibodies (Ab+), as compared with those negative for these autoantibodies (Ab-), had an abnormal oral glucose tolerance test (OGTT) (P = 0.03) before and a higher frequency of oral hypoglycemic treatment (P = 0.003) at the time of autoantibody testing. No differences were seen in the percentage of insulin requirement in the two groups. Moreover, a statistically significant increase in fibrinogen (P = 0.005) and C-reactive protein levels (P = 0.025) was found in type 2 diabetic patients with high levels of GAD65 and/or IA-2 autoantibodies as compared with Ab-patients and control subjects. In conclusion, in type 2 diabetic subjects > or =65 years old, the presence of islet cell autoimmunity is associated with an impairment of the acute-phase insulin secretion, as revealed by an OGTT. A pronounced activation of the acute-phase response, found to be associated with islet cell autoimmunity, may in part explain this defect in insulin secretion. These findings not only have direct implications for adequate classification and treatment of diabetes in the elderly, but also for understanding the autoimmune/inflammatory mechanisms involved in the pathogenesis of hyperglycemia.  相似文献   

6.
Joseph JW  Koshkin V  Zhang CY  Wang J  Lowell BB  Chan CB  Wheeler MB 《Diabetes》2002,51(11):3211-3219
Uncoupling protein 2 (UCP2) may act as an important regulator of insulin secretion. In this study, beta-cell function in UCP2-deficient mice was examined after a 45% high-fat diet (HFD) to assess its role during the development of diet-induced type 2 diabetes. HFD-fed UCP2 (-/-) mice have lower fasting blood glucose and elevated insulin levels when compared with wild-type (WT) mice. UCP2 (-/-) mice also have enhanced beta-cell glucose sensitivity compared with WT mice after HFD, a result that is due in part to the deterioration of glucose responsiveness in WT mice. HFD-fed UCP2 (-/-) mice have increased insulin secretory capacity as a result of increased pancreatic beta-cell mass and insulin content per islet. Islets from WT mice exposed to 0.5 mmol/l palmitate for 48 h have significantly reduced mitochondrial membrane potential, ATP concentrations, and glucose responsiveness compared with UCP2 (-/-) islets, suggesting that elevated UCP2 in WT mice increases proton leak and decreases mitochondrial ATP production. Highly increased carnitine palmitoyl transferase-1 gene expression in UCP2 (-/-) mice is suggestive of enhanced fatty acid oxidizing capacity, particularly after HFD stress. These results further establish UCP2 as a component in glucose sensing and suggest a possible new aspect of UCP2 function during the progression of type 2 diabetes.  相似文献   

7.
Family history of type 1 diabetes and autoantibodies to the islet antigens insulin (IAA), glutamate decarboxylase (GADA), and the protein tyrosine phosphatase-like protein IA-2 (IA-2A) are strong predictors of type 1 diabetes, but the rate of progression to diabetes in multiple islet autoantibody-positive relatives varies widely. We asked whether detailed characterization of islet autoantibodies that included determination of titer, epitope specificity, and IgG subclass would improve diabetes prediction in a large cohort of autoantibody-positive relatives. The study shows a strong association between risk and high titer, broad antibody responses to IA-2 and insulin. The highest risks were associated with high-titer IA-2A and IAA, IgG2, IgG3, and/or IgG4 subclass of IA-2A and IAA, and antibodies to the IA-2-related molecule IA-2beta. Using models based on these antibody characteristics, autoantibody-positive relatives can be classified into groups with risks of diabetes ranging from 7 to 89% within 5 years.  相似文献   

8.
9.
Recently, a role for uncoupling protein-3 (UCP3) in carbohydrate metabolism and in type 2 diabetes has been suggested. Mice overexpressing UCP3 in skeletal muscle showed reduced fasting plasma glucose levels, improved glucose tolerance after an oral glucose load, and reduced fasting plasma insulin levels. However, data regarding the expression of UCP3 in patients with type 2 diabetes is inconsistent, and so far, there have been no reports of UCP3 protein content. Here we compared, for the first time, the protein levels of UCP3 in vastus lateralis muscle in 14 male type 2 diabetic patients (age 49.8 +/- 2.1 years; BMI 27.2 +/- 1.2 kg/m(2); mean +/- SE) with 16 male control subjects (age 48.0 +/- 1.9 years; BMI 23.4 +/- 0.6 kg/m(2)). We found that UCP3 protein levels were twice as low in patients with type 2 diabetes compared with control subjects (117 +/- 16 vs. 58 +/- 12 AU; P = 0.007). There was no correlation between UCP3 content and BMI. In conclusion, UCP3 content is lower in type 2 diabetic patients compared with healthy control subjects. These results are consistent with a role for UCP3 in glucose homeostasis and suggest a role for UCP3 in type 2 diabetes.  相似文献   

10.
Low birth weight has been reported to be associated with impaired insulin secretion and insulin resistance. It has been proposed that this association results from fetal programming in response to the intrauterine environment (the thrifty phenotype hypothesis). To elucidate the relationship between birth weight and genetically determined defects in insulin secretion, we measured the birth weights of neonates derived from crosses of male pancreatic beta-cell type glucokinase knockout (Gck+/-) mice and female wild-type (WT) or Gck+/- mice. In 135 offspring, birth weights were lower in the presence of a fetal heterozygous mutation and higher in the presence of a maternal heterozygous mutation. Moreover, Gck-/- neonates had significantly smaller birth weights than WT or Gck+/- neonates (means +/- SE 1.49+/-0.03 [n = 30] vs. 1.63+/-0.03 [n = 30] or 1.63+/-0.02 [n = 50] g, respectively; P<0.01). Thus, Gck mutations in beta-cells may impair insulin response to glucose and alter intrauterine growth as well as glucose metabolism after birth. This study has confirmed the results of a previous report that human subjects carrying mutations in Gck had reduced birth weights and has provided direct evidence for a link between insulin and fetal growth. Moreover, birth weights were reduced in insulin receptor substrate-1 knockout mice despite normal insulin levels. Taken together, these results suggest that a genetically programmed insulin effect during embryogenesis determines fetal growth and provides a possible molecular link between birth weight and susceptibility to type 2 diabetes.  相似文献   

11.
alpha2-Heremans-Schmid glycoprotein (AHSG) is an abundant plasma protein synthesized predominantly in the liver. The AHSG gene, consisting of seven exons and spanning 8.2 kb of genomic DNA, is located at chromosome 3q27, a susceptibility locus for type 2 diabetes and the metabolic syndrome. AHSG is a natural inhibitor of the insulin receptor tyrosine kinase, and AHSG-null mice exhibit significantly enhanced insulin sensitivity. These observations suggested that the AHSG gene is a strong positional and biological candidate for type 2 diabetes susceptibility. Direct sequencing of the AHSG promoter region and exons identified nine common single nucleotide polymorphisms (SNPs) with a minor allele frequency > or =5%. We carried out a detailed genetic association study of the contribution of these common AHSG SNPs to genetic susceptibility of type 2 diabetes in French Caucasians. The major allele of a synonymous coding SNP in exon 7 (rs1071592) presented significant evidence of association with type 2 diabetes (P = 0.008, odds ratio 1.27 [95% CI 1.06-1.52]). Two other SNPs (rs2248690 and rs4918) in strong linkage disequilibrium with rs1071592 showed evidence approaching significance. A haplotype carrying the minor allele of SNP rs1071592 was protective against type 2 diabetes (P = 0.014). However, our analyses indicated that rs1071592 is not associated with the evidence for linkage of type 2 diabetes to 3q27.  相似文献   

12.
Lin HY  Xu Q  Yeh S  Wang RS  Sparks JD  Chang C 《Diabetes》2005,54(6):1717-1725
Epidemiological evidence suggests that sex differences exist in type 2 diabetes. Men seem to be more susceptible than women to the consequences of obesity and sedentary lifestyle, possibly because of differences in insulin sensitivity and regional body fat deposition. Thus, lacking androgen receptor (AR) in male individuals may promote insulin resistance. To determine whether lacking AR in male individuals contributes to in vivo insulin resistance, an AR knockout model (AR(-/y)) was used to study the correlation between AR and insulin resistance. Progressive reduced insulin sensitivity and impaired glucose tolerance were seen in AR(-/y) mice with advancing age. Aging AR(-/y) mice displayed accelerated weight gain, hyperinsulinemia, and hyperglycemia, and loss of AR contributes to increased triglyceride content in skeletal muscle and liver. Leptin is higher in serum of AR(-/y) mice. Treatment with exogenous leptin fails to stimulate weight loss in AR(-/y) mice in advanced age, suggesting leptin resistance in the AR(-/y/) mice. Exogenous dihydrotestosterone replacement fails to reverse the metabolic abnormalities and insulin resistance in AR(-/y) mice. Our in vivo studies demonstrate that androgen-AR plays key roles in the development of insulin and leptin resistance, which may contribute to the development of type 2 diabetes and cardiovascular disease.  相似文献   

13.
Insulin is a major disease determinant in type 1 diabetes, type 2 diabetes, and related disorders. The role of variations in the expression of the insulin gene has been proposed in genetic susceptibility to the three pathological conditions in humans. In contrast to humans, rodents express two proinsulin isoforms. One isoform, proinsulin 1, is expressed exclusively in islets. The second, proinsulin 2, is expressed in islets and in other tissues, especially the thymus. We took advantage of the expression of these two isoforms to introduce a null proinsulin 2 allele in NOD mice and to evaluate the consequence of a variation of proinsulin 2 gene expression on the development of type 1 diabetes on the NOD genetic background. Heterozygote NOD mutant mice carrying a null proinsulin 2 mutation showed an increased incidence of type 1 diabetes at successive backcross generations. Plasma glucose and insulin levels were identical in prediabetic mutant and in wild-type mice at 4 weeks of age. Variation in insulin gene expression is hypothesized to interfere with diabetes development at both the islet and the thymus level.  相似文献   

14.
Almind K  Kulkarni RN  Lannon SM  Kahn CR 《Diabetes》2003,52(6):1535-1543
Mice double heterozygous (DH) for deletion of insulin receptor and insulin receptor substrate-1 are lean, insulin resistant, and have a phenotype that strongly depends on the genetic background of the mouse. On the C57BL/6 (B6) background, DH mice develop marked hyperinsulinemia and diabetes, whereas on the 129S6 background, DH mice exhibit only mild elevations of insulin and remain free of diabetes. F2 male mice created by an intercross between these two strains exhibit a 60% incidence of diabetes and a bell-shaped distribution of insulin levels as related to glucose, reminiscent of that in humans with type 2 diabetes. These mice also exhibit a wide range of leptin levels as related to body weight. A genome-wide scan of F2 mice reveals a quantitative trait locus (QTL) related to hyperinsulinemia on chromosome 14 (D14Mit55) with a peak logarithm of odds (LOD) score of 5.6, accounting for up to 69% of this trait. A QTL with a LOD score of 3.7 related to hyperleptinemia is present on chromosome 7 at D12Mit38 (a marker previously assigned to chromosome 12) in the area of the uncoupling protein 2/3 gene cluster. This locus also interacts synergistically with D14Mit55 in development of hyperinsulinemia and with a QTL on chromosome 12 (D12Mit231) related to hyperglycemia. These data demonstrate how multiple genetic modifiers can interact and influence the development of diabetes and the phenotype of animals with genetically programmed insulin resistance and provide evidence as to the location and nature of these genes.  相似文献   

15.
Timing of onset of autoimmunity is a prerequisite for unmasking triggers and pathogenesis of type 1 diabetes. We followed 4,590 consecutive newborns with 8 or 3% HLA-DQB1 conferred risk for type 1 diabetes at 3-, 6-, or 12-month intervals up to 5.5 years of age. Islet cell autoantibodies (ICAs) and, in the 137 children with ICAs, insulin autoantibodies (IAAs), GAD65 autoantibodies (GADAs), and IA-2 protein autoantibodies (IA-2As) were measured. Children with high genetic risk developed ICAs more often than those with moderate risk (log-rank P = 0.0015); 85 and 91% remained ICA negative by 5 years of age, respectively. The time of appearance of biochemical autoantibodies was then compared with the appearance of ICAs. IAAs and GADAs emerged usually before ICAs (means -1.8 and -1.5 months, respectively) and IA-2As after ICAs (mean 2.0 months). Ninety-five percent of all IAAs, GADAs, and IA-2As seroconversions occurred in a cluster (-12 to 8 months) around the ICA seroconversion. We conclude that diabetes-associated autoantibodies emerged in children with predisposing HLA-DQB1 alleles after 3 months of age at a constant tempo, determined by the genetic risk level, usually in the order of IAA, GADA, ICA, and IA-2A. Seroconversion to multiple autoantibody positivity usually occurred tightly clustered in time.  相似文献   

16.
The genes responsible for insulin resistance are poorly defined. Plasma cell differentiation antigen (PC-1) glycoprotein inhibits insulin receptor signaling and is associated with insulin resistance. We describe here a novel polymorphism in exon 4 of the PC-1 gene (K121Q) and demonstrate that it is strongly associated with insulin resistance in 121 healthy nonobese (BMI <30 kg/m2) nondiabetic (by oral glucose tolerance test [OGTT]) Caucasians from Sicily. Compared with 80 KK subjects, Q allele carriers (n = 41, 39 KQ and 2 QQ) showed higher glucose and insulin levels during OGTT (P < 0.001 by two-way analysis of variance) and insulin resistance by euglycemic clamp (M value = 5.25 +/- 1.38 [n = 24] vs. 6.30 +/- 1.39 mg x kg(-1) x min(-1) [n = 49], P = 0.005). Q carriers had higher risk of being hyperinsulinemic and insulin resistant (odds ratio [CI]: 2.99 [1.28-7.0], P < 0.001). Insulin receptor autophosphorylation was reduced (P < 0.01) in cultured skin fibroblasts from KQ versus KK subjects. Skeletal muscle PC-1 content was not different in 11 KQ versus 32 KK subjects (33 +/- 16.1 vs. 17.5 +/- 15 ng/mg protein, P = 0.3). These results suggest a cause-effect relationship between the Q carrying genotype and the insulin resistance phenotype, and raise the possibility that PC-1 genotyping could identify individuals who are at risk of developing insulin resistance, a condition that predisposes to type 2 diabetes and coronary artery disease.  相似文献   

17.
Age-dependent associations between type 1 diabetes risk genes HLA, INS VNTR, and CTLA-4 and autoantibodies to GAD65 (GADAs), ICA512/IA-2, insulin, and islet cells were determined by logistic regression analysis in 971 incident patients with type 1 diabetes and 702 control subjects aged 0-34 years. GADAs were associated with HLA-DQ2 in young but not in older patients (P = 0.009). Autoantibodies to insulin were negatively associated with age (P < 0.0001) but positively associated with DQ8 (P = 0.03) and with INS VNTR (P = 0.04), supporting possible immune tolerance induction. ICA512/IA-2 were negatively associated with age (P < 0.0001) and with DQ2 (P < 0.0001) but positively associated with DQ8 (P = 0.04). Males were more likely than females to be negative for GADA (P < 0.0001), autoantibodies to islet cells (P = 0.04), and all four autoantibody markers (P = 0.004). The CTLA-4 3' end microsatellite marker was not associated with any of the autoantibodies. We conclude that age and genetic factors such as HLA-DQ and INS VNTR need to be combined with islet autoantibody markers when evaluating the risk for type 1 diabetes development.  相似文献   

18.
Peroxisome proliferator-activated receptor (PPAR)-delta regulates fatty acid oxidation and improves insulin sensitivity. We screened six single nucleotide polymorphisms (SNPs) of the PPAR-delta gene (PPARD) for an association with the conversion from impaired glucose tolerance (IGT) to type 2 diabetes in 769 subjects participating in the STOP-NIDDM trial. A 2.7-fold increase in the risk of diabetes was observed in female carriers of the C allele of rs6902123 (95% CI 1.44-5.30; adjusted P = 0.002). In the placebo group, subjects possessing both the 482Ser allele of the PPAR-gamma coactivator-1alpha gene (PGC-1A) and the rare allele of two SNPs of PPARD (rs6902123 and rs3734254) had up to 2.5-fold increased risk for diabetes. Furthermore, women carrying the C allele of rs6902123 of PPARD and the Pro12Pro genotype of the PPAR-gamma2 gene (PPARG2) had a 3.9-fold (95% CI 1.79-8.63; P = 0.001)-higher risk for diabetes than women with protective genotypes. Expression levels of PPAR-delta in subcutaneous adipose tissue of 87 offspring of Finnish patients with type 2 diabetes did not differ among the genotype groups of SNPs of PPARD. We conclude that SNPs in PPARD modify the conversion from IGT to type 2 diabetes, particularly in combination with the SNPs of PGC-1A and PPARG2.  相似文献   

19.
IA-2 and phogrin are tyrosine phosphatase-like proteins that may mediate interactions between secretory granules and cytoskeleton in islets and neuroendocrine tissues. We investigated factors that regulate IA-2 and phogrin expression and their relationship to maturation of insulin secretory responses that occur after birth. Islet content of IA-2, but not phogrin, increased during the first 10 days of life in rats, when insulin secretion in response to glucose increased to adult levels. In cultured 5-day-old rat islets, IA-2 protein and mRNA was increased by glucose and agents that potentiate insulin secretion by the cAMP pathway. Addition of insulin increased IA-2 protein levels and insulin biosynthesis without affecting IA-2 mRNA. Blocking insulin secretion with diazoxide or insulin action with insulin receptor antibodies inhibited glucose-induced increases in IA-2 protein, but not those of mRNA. Phogrin expression was unchanged by all agents. Thus, IA-2 is regulated at the mRNA level by glucose and elevated cAMP, whereas locally secreted insulin modulates IA-2 protein levels by stimulating biosynthesis. In contrast, phogrin expression is insensitive to factors that modify beta-cell function. These results demonstrate differential regulation of two closely related secretory granule components and identify IA-2 as a granule membrane protein subject to autocrine regulation by insulin.  相似文献   

20.
Xu J  Lu Y  Ding F  Zhan X  Zhu M  Wang Z 《World journal of surgery》2007,31(9):1872-1882
Background The objective of this study was to assess the effect of intrahepatic injection of bone-derived green fluorescent protein (GFP)-transgenic murine mesenchymal stem cells (GFP-mMSCs) containing the human insulin(ins) gene in streptozotocin-induced diabetic mice. Methods GFP-mMSCs were isolated from the bone marrow of GFP transgenic mice, expanded, and transfected with a recombinant retrovirus MSCV carrying the human insulin gene. C57BL/6J mice were made diabetic by an intraperitoneal administration of 160 mg/kg streptozotocin (STZ), followed by intrahepatic injection of transfected GFP-mMSCs. The variations in body weight and the blood glucose and serum insulin levels were determined after cell transplantation. GFP-mMSCs survival and human insulin expression in liver tissues were examined by fluorescent microscopy and immunohistochemistry. Results The body weight in diabetic mice that received GFP-mMSCs harboring the human insulin gene was increased by 6% within 6 weeks after treatment, and the average blood glucose levels in these animals were 10.40 ± 2.80 mmol/l (day 7) and 6.50 ± 0.89 mmol/l (day 42), respectively, while the average values of blood glucose in diabetic animals without treatment were 26.80 ± 2.49 mmol/l (day 7) and 25.40 ± 4.10 mmol/l (day 42), showing a significant difference (p < 0.05). Moreover, secretion of human insulin of GFP-mMSCs in serum and animal liver was detected by radioimmunoassay (RIA) and immunohistochemistry (IHC). Conclusions Experimental diabetes could be relieved effectively for up to 6 weeks by intrahepatic transplantation of murine mesenchymal stem cells expressing human insulin. This study implies a novel approach of gene therapy for type I diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号