首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We combined retrograde transport of horseradish peroxidase (HRP) with 5-hydroxytryptamine (5-HT) immunohistochemistry to study serotoninergic projections to the anterior thalamic nuclei (ATN) of the rat. Small iontophoretic injections of HRP into the anterodorsal thalamic nucleus resulted in double-labelled neurons predominantly in the ventromedial and also in the ventrolateral part of the ipsilateral dorsal raphé (DR). A smaller number of double-labelled neurons was also found in the dorsomedial part of the nucleus, predominantly ipsilaterally, and in the median raphé nucleus (MnR), close to the midline. After injection into the medial subdivision of the anteroventral thalamic nucleus, the pattern of labelling in DR and MnR was similar to that detected following injections into the anterodorsal thalamic nucleus. However, injection into the posterior subdivision of the anteroventral thalamic nucleus resulted in bilateral retrograde labelling of a few 5-HT-containing neurons in the dorsolateral part of the DR. Labelling in the ventromedial, ventrolateral and dorsomedial regions of DR and MnR was similar to that detected after injections into the medial subdivision of the anteroventral thalamic nucleus. After all injections into the ATN, double-labelled cells were found throughout the rostrocaudal extent of MnR and throughout the rostral two-thirds of DR. The caudal extension of DR was devoid of double-labelled cells. Although double-labelled cells were observed bilaterally in the dorsolateral part of the DR, the projection from DR to ATN was predominantly ipsilateral. These results show that there is an internal organization within DR such that subnuclei of the DR can be defined on the basis of their efferent projections to specific subdivisions of the ATN.  相似文献   

2.
Summary Unilateral stereotaxic lesions were made in the anterior thalamic nuclei of the cat, and the ensuing terminal degeneration traced to the medial cortex by the methods of Nauta-Gygax and Fink-Heimer. The anterodorsal nucleus projects to the retrosplenial, postsubicular and presubicular areas. These projections appear to be organized in the dorsoventral direction. The posterior portion of the retrosplenial area receives no fibers from the anterodorsal nucleus. Fibers from this nucleus are distributed largely in layer I and in layer III and the deep portion of layer II of the posterior limbic cortex. The anteroventral nucleus sends fibers to the cingular area and parts of the retrosplenial, postsubicular and presubicular areas. These projections appear to be organized in a topical manner mediolaterally. When the lesion involves the parvocellular part of the nucleus, degeneration spreads to the lower lip, bank and fundus of the splenial sulcus. There appears to be an anteroposterior organization in the cortical projections of the anteroventral nucleus. Fibers from the anteroventral nucleus are distributed most profusely in layers IV and III and in the superficial portion of layer I of the posterior limbic cortex. The anteromedial nucleus sends fine fibers to the anterior limbic region and to the cingular, retrosplenial, postsubicular and presubicular areas. The cortical projections of the anteromedial nucleus appear to be topographically organized in the dorsoventral direction. Fibers from the anteromedial nucleus are distributed largely in cortical layers V and VI of the anterior and posterior limbic regions.Abbreviations used in Figures a anterior - AD anterodorsal nucleus - AM anteromedial nucleus - AMD dorsolateral part of anteromedial nucleus - AMV ventromedial part of anteromedial nucleus - AV anteroventral nucleus - AVM magnocellular part of anteroventral nucleus - AVP parvocellular part of anteroventral nucleus - CC corpus callosum - Cg cingular area - CM medial central nucleus - Il infralimbic area - LA anterior limbic region - LD dorsal lateral nucleus - MD dorsal medial nucleus - Of orbitofrontal region - p posterior - Pr presubicular area - Prag precentral agranular area - Ps postsubicular area - Pt paratenial nucleus - Pv anterior paraventricular nucleus - R reuniens nucleus - Rs retrosplenial area - Rt thalamic reticular nucleus - SC cruciate sulcus - SM stria medullaris - Sm submedial nucleus - SS splenial sulcus - VA ventral anterior nucleus - VL ventral lateral nucleus - VM ventral medial nucleus  相似文献   

3.
Summary Afferent pathways to the rostral reticular thalamic nucleus (Rt) in the rat were studied using anterograde and retrograde lectin tracing techniques, with sensitive immunocytochemical methods. The analysis was carried out to further investigate previously described subregions of the reticular thalamic nucleus, which are related to subdivisions of the dorsal thalamus, in the paraventricular and midline nuclei and three segments of the mediodorsal thalamic nucleus. Cortical inputs to the rostral reticular nucleus were found from lamina VI of cingulate, orbital and infralimbic cortex. These projected with a clear topography to lateral, intermediate and medial reticular nucleus respectively. Thalamic inputs were found from lateral and central segments of the mediodorsal nucleus to the lateral and intermediate rostral reticular nucleus respectively and heavy paraventricular thalamic inputs were found to the medial reticular nucleus. In the basal forebrain, afferents were found from the vertical and horizontal limbs of the diagonal band, substantia innominata, ventral pallidum and medial globus pallidus. Brainstem projections were identified from ventrolateral periaqueductal grey and adjacent sites in the mesencephalic reticular formation, laterodorsal tegmental nucleus, pedunculopontine nucleus, medial pretectum and ventral tegmental area. The results suggest a general similarity in the organisation of some brainstem Rt afferents in rat and cat, but also show previously unsuspected inputs. Furthermore, there appear to be at least two functional subdivisions of rostral Rt which is reflected by their connections with cortex and thalamus. The studies also extend recent findings that the ventral striatum, via inputs from the paraventricular thalamic nucleus, is included in the circuitry of the rostral Rt, providing further evidence that basal ganglia may function in concert with Rt. Evidence is also outlined with regard to the possibility that rostral Rt plays a significant role in visuomotor functions.Abbreviations ac anterior commissure - aca anterior commissure, anterior - Acb accumbens nucleus - AI agranular insular cortex - AM anteromedial thalamic nucleus - AV anteroventral thalamic nucleus - BST bed nucleus of stria terminalis - Cg cingulate cortex - CG central gray - CL centrolateral thalamic nucleus - CM central medial thalamic nucleus - CPu caudate putamen - DR dorsal raphe nucleus - DTg dorsal tegmental nucleus - EP entopeduncular nucleus - f fornix - Fr2 Frontal cortex, area 2 - G gelatinosus thalamic nucleus - GP globus pallidus - Hb habenula - HDB horizontal limb of diagonal band - IAM interanterodorsal thalamic nucleus - ic internal capsule - INC interstitial nucleus of Cajal - IF interfascicular nucleus - IL infralimbic cortex - IP interpeduncular nucleus - LC locus coeruleus - LDTg laterodorsal tegmental nucleus - LH lateral hypothalamus - LHb lateral habenular nucleus - ll lateral lemniscus - LO lateral orbital cortex - LPB lateral parabrachial nucleus - MD mediodorsal thalamic nucleus - MDL mediodorsal thalamic nucleus, lateral segment - Me5 mesencephalic trigeminal nucleus - MHb medial habenular nucleus - mlf medial longitudinal fasciculus - MnR median raphe nucleus - MO medial orbital cortex - mt mammillothalamic tract - OPT olivary pretectal nucleus - pc posterior commissure - PC paracentral thalamic nucleus - PF parafascicular thalamic nucleus - PPTg pedunculopontine tegmental nucleus - PrC precommissural nucleus - PT paratenial thalamic nucleus - PV paraventricular thalamic nucleus - PVA paraventricular thalamic nucleus, anterior - R red nucleus - Re reuniens thalamic nucleus - RRF retrorubral field - Rt reticular thalamic nucleus - Scp superior cerebellar peduncle - SI substantia innominata - sm stria medullaris - SNR substantia nigra, reticular - st stria terminalis - TT tenia tecta - VL ventrolateral thalamic nucleus - VO ventral orbital cortex - VP ventral pallidum - VPL ventral posterolateral thalamic nucleus - VTA ventral tegmental area - 3 oculomotor nucleus - 3V 3rd ventricle - 4 trochlear nucleus  相似文献   

4.
Retrograde transport of horseradish peroxidase (HRP) was combined with choline acetyltransferase (ChAT) immunohistochemistry to study cholinergic projections to the anterior thalamic nuclei in the rat. Small iontophoretic injections of HRP placed into different subdivisions of the anterior thalamic nuclear complex resulted in distinct patterns of retrograde labelling in two major cholinergic cell groups of the mesopontine tegmentum, the laterodorsal tegmental nucleus (LDTg), in which a majority of the labelled cells was located, and the pedunculopontine tegmental nucleus (PPT). After injections into the posterior subdivision of the anteroventral thalamic nucleus (AVp), double-labelled neurons were present predominantly in the ipsilateral LDTg while a smaller number was found in the PPT. In the ipsilateral LDTg, 60–70% of ChAT-positive neurons were HRP-labelled, and 90–95% of the HRP-labelled neurons were ChAT-positive. In the contralateral LDTg, 30–40% of ChAT-positive neurons were HRP-labelled. After injections in the medial subdivision of the anteroventral thalamic nucleus (AVm), the pattern of labelling in LDTg was similar to that detected after injections in the AVp. The number of double-labelled neurons in the LDTg and PPT was much lower after injections into AVm than after injections into AVp. When injections were confined to the anterodorsal thalamic nucleus (AD), no HRP-labelled cells were present in the LDTg or PPT. These results show that the LDTg and PPT are the sources of the cholinergic input to the rat anterior thalamus. The major projection from LDTg and PPT is to the AVp, whereas there is a lighter cholinergic projection to the AVm. The AD does not receive a projection from cholinergic cells in the mesopontine tegmentum.Abbreviations AChE Acetylcholinestrase - AD anterodorsal thalamic · nucleus - AM anteromedial thalamic nucleus - ATN anterior thalamic nuclei - AVm medial subdivision of the anteroventral thalamic nucleus - AVp posterior subdivision of the anteroventral thalamic nucleus - CG central gray - ChAT choline acetyltransferase - DAB diaminobenzidine tetrahydrochloride - DR dorsal raphé nucleus - f fornix - HRP horseradish peroxidase - ic internal capsule - LD laterodorsal thalamic nucleus - LDTg laterodorsal tegmental nucleus - ml medial lemniscus - mlf medial longitudinal fasciculus - mt mamillothalamic tract - NRS normal rabbit serum - PPT pedunculopontine tegmental nucleus - PT paratenial thalamic nucleus - Re reuniens thalamic nucleus - Rh rhomboid thalamic nucleus - RPn raphé pontis nucleus - scp superior cerebellar peduncle - sm stria medullaris thalami - st stria terminalis - TAAB glutaraldehyde - TRN thalamic reticular nucleus - VL ventrolateral thalamic nucleus - VM ventromedial thalamic nucleus - xscp decussation of superior cerebellar peduncle  相似文献   

5.
Kimura A  Donishi T  Okamoto K  Tamai Y 《Neuroscience》2005,135(4):1325-1342
The functional significance of parallel and redundant information processing by multiple cortical auditory fields remains elusive. A possible function is that they may exert distinct corticofugal modulations on thalamic information processing through their parallel connections with the medial geniculate body and thalamic reticular nucleus. To reveal the anatomical framework for this function, we examined corticothalamic projections of tonotopically comparable subfields in the primary and non-primary areas in the rat auditory cortex. Biocytin was injected in and around cortical area Te1 after determining best frequency at the injection site on the basis of epicortical field potentials evoked by pure tones. The rostral part of area Te1 (primary auditory area) and area temporal cortex, area 2, dorsal (Te2D) (posterodorsal auditory area) dorsal to the caudal end of area Te1, which both exhibited high best frequencies, projected to the ventral zone of the ventral division of the medial geniculate body. The caudal end of area Te1 (auditory area) and the rostroventral part of area Te1 (a part of anterior auditory field), which both exhibited low best frequencies, projected to the dorsal zone of the ventral division of the medial geniculate body. In contrast to the similar topography in the projections to the ventral division of the medial geniculate body, collateral projections to the thalamic reticular nucleus terminated in the opposite dorsal and ventral zones of the lateral and middle tiers of the nucleus in each pair of the tonotopically comparable cortical subfields. In addition, the projections of the non-primary cortical subfields further arborized in the medial tier of the thalamic reticular nucleus. The results suggest that tonotopically comparable primary and non-primary subfields in the auditory cortex provide corticofugal excitatory effects to the same part of the ventral division of the medial geniculate body. On the other hand, corticofugal inhibition via the thalamic reticular nucleus may operate in different parts of the ventral division of the medial geniculate body or different thalamic nuclei. The primary and non-primary cortical auditory areas are presumed to subserve distinct gating functions for auditory attention.  相似文献   

6.
The projections of brainstem core neurons to relay and associational thalamic nuclei were studied in the cat and macaque monkey by combining the retrograde transport of wheat germ agglutinin conjugated with horseradish peroxidase with choline acetyltransferase immunohistochemistry. All major sensory (medial geniculate, lateral geniculate, ventrobasal), motor (ventroanterior, ventrolateral, ventromedial), associational (mediodorsal, pulvinar, lateral posterior) and limbic (anteromedial, anteroventral) thalamic nuclei of the cat were found to receive projections from cholinergic neurons located in the peribrachial area of the pedunculopontine nucleus and in the laterodorsal tegmental nucleus as well as from non-cholinergic neurons in the rostral (perirubral) part of the central tegmental mesencephalic field. Specific relay nuclei receive less than 10% of their brainstem afferents from non-cholinergic neurons located at rostral midbrain levels and receive 85-96% of their brainstem innervation from a region at midbrain-pontine junction where the cholinergic peribrachial area and laterodorsal tegmental nucleus are maximally developed. Of the total number of horseradish peroxidase-positive brainstem neurons seen after injections in various specific relay nuclei, the double-labeled (horseradish peroxidase + choline acetyltransferase) neurons represent approximately 70-85%. Three to eight times more numerous horseradish peroxidase-labeled brainstem cells were found after injections in associational (mediodorsal and pulvinar-lateral posterior complex) and diffusely cortically-projecting (ventromedial) thalamic nuclei of cat than after injections in specific relay nuclei. The striking retrograde cell labeling observed after injections in nuclei with associative functions and widespread cortical projections was due to massive afferentation from non-cholinergic parts of the midbrain and pontine reticular formation, on both ipsi- and contralateral sides. After wheat germ agglutinin-horseradish peroxidase injections in the associative pulvinar-lateral posterior complex and mediodorsal nucleus of Macaca sylvana, 45-50% of horseradish peroxidase-positive brainstem peribrachial neurons were also choline acetyltransferase-positive. While cells in the medial part of the cholinergic peribrachial area were found to project especially towards the pulvinar-lateral posterior nuclear complex in monkey, the retrograde cell labeling seen after the mediodorsal injection was mostly confined to the lateral part of both dorsal and ventral aspects of the peribrachial area.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Summary Potentially convergent inputs to cerebellar-receiving and basal ganglia-receiving areas of the thalamus were identified using horseradish peroxidase (HRP) retrograde tracing techniques. HRP was deposited iontophoretically into the ventroanterior (VA), ventromedial (VM), and ventrolateral (VL) thalamic nuclei in the cat. The relative numbers of labeled neurons in the basal ganglia and the cerebellar nuclei were used to assess the extent to which the injection was in cerebellar-receiving or basal ganglia-receiving portions of thalamus. The rostral pole of VA showed reciprocal connections with prefrontal portions of the cerebral cortex. Only the basal ganglia and the hypothalamus provided non-thalamic input to modulate these cortico-thalamo-cortical loops. In VM, there were reciprocal connections with prefrontal, premotor, and insular areas of the cerebral cortex. The basal ganglia (especially the substantia nigra), and to a lesser extent, the posterior and ventral portions of the deep cerebellar nuclei, provided input to VM and may modulate these corticothalamo-cortical loops. The premotor cortical areas connected to VM include those associated with eye movements, and afferents from the superior colliculus, a region of documented importance in oculomotor control, also were labeled by injections into VM. The dorsolateral portion of the VA-VL complex primarily showed reciprocal connections with the medial premotor (area 6) cortex. Basal ganglia and cerebellar afferents both may modulate this cortico-thalamo-cortical loop, although they do not necessarily converge on the same thalamic neurons. The cerebellar input to dorsolateral VA-VL was from posterior and ventral portions of the cerebellar nuclei, and the major potential brainstem afferents to this region of thalamus were from the pretectum. Mid- and caudo-lateral portions of VL had reciprocal connections with primary motor cortex (area 4). The dorsal and anterior portions of the cerebellar nuclei had a dominant input to this corticothalamo-cortical loop. Potentially converging brainstem afferents to this portion of VL were from the pretectum, especially pretectal areas to which somatosensory afferents project.List of Abbreviations AC central amygdaloid nucleus - AL lateral amygdaloid nucleus - AM anteromedial thalamic nucleus - AV anteroventral thalamic nucleus - BC brachium conjunctivum - BIC brachium of the inferior colliculus - Cd caudate nucleus - CL centrolateral thalamic nucleus - CM centre median nucleus - CP cerebral peduncle - CUN cuneate nucleus - DBC decussation of the brachium conjunctivum - DR dorsal raphe nuclei - EC external cuneate nucleus - ENTO entopeduncular nucleus - FN fastigial nucleus - FX fornix - GP globus pallidus - GR gracile nucleus - IC internal capsule - ICP inferior cerebellar peduncle - IP interpeduncular nucleus - IVN inferior vestibular nucleus - LD lateral dorsal thalamic nucleus - LGN lateral geniculate nucleus - LH lateral hypothalamus - LP lateral posterior thalamic complex - LRN lateral reticular nucleus - LVN lateral vestibular nucleus - MB mammillary body - MD mediodorsal thalamic nucleus - MG medial geniculate nucleus - ML medial lemniscus - MLF medial lengitudinal fasciculus - MT mammillothalamic tract - MVN medial vestibular nucleus - NDBB nucleus of the diagonal band of Broca - NIA anterior nucleus interpositus - NIP posterior nucleus interpositus - OD optic decussation - OT optic tract - PAC paracentral thalamic nucleus - PPN pedunculopontine region - PRO gyrus proreus - PRT pretectal region - PT pyramidal tract - PTA anterior pretectal region - PTM medial pretectal region - PTO olivary pretectal nucleus - PTP poterior pretectal region - Pul pulvinar nucleus - Put putamen - RF reticular formation - RN red nucleus - Rt reticular complex of the thalamus - S solitary tract - SCi superior colliculus, intermediate gray - SN substantia nigra - ST subthalamic nucleus - VA ventroanterior thalamic nucleus - VB ventrobasal complex - VL ventrolateral thalamic nucleus - VM ventromedial thalamic nucleus - III oculomotor nucleus - IIIn oculomotor nerve - 5S spinal trigeminal nucleus - 5T spinal trigeminal tract - VII facial nucleus  相似文献   

8.
 Small, stereotaxically guided injections of true blue (TB) were made into the retrosplenial granular cortex (RSg) and of diamidino yellow (DY) into the dorsal portion of the rostral pole of the thalamic reticular nucleus (TRN) in 16 adult rats to determine whether axons projecting from the anterior thalamic nuclear complex (ATN) to the TRN are branches of axons also projecting to the RSg. Following injections of the fluorescent dyes, serial coronal sections of the brain revealed single retrogradely labelled, and large numbers of double retrogradely labelled neuronal cell bodies in the ipsilateral anteroventral and anterodorsal nuclei and smaller numbers in the anteromedial nucleus of the ATN complex. In a se- cond series of six adult rats with similar double injections of TB and DY, two sections in three were immunoreacted, one with antiserum against glutamate and one with antiserum against aspartate, using indirect immunofluorescence with rhodamine to detect reactive cells. The great majority of both single and double retrogradely labelled cell bodies were also immunoreactive for aspartate or glutamate. In addition, a moderate to small number of non-immunolabelled neurons projecting to the TRN and/or to the RSg were also found in all three nuclei of the ATN complex. These results are compatible with the possibility that large numbers of neurons in the ATN send axonal branches to both the RSg and the TRN, and that many such neurons use glutamate and/or aspartate as transmitters. The findings also suggest that the projections from the ATN might be heterogeneous with respect to transmitter phenotype. Received: 27 June 1996 / Accepted: 5 February 1997  相似文献   

9.
Summary A double labeling method that permits accurate delineation of the terminals of medial lemniscal fibers was used to determine whether thalamic neurons projecting to motor cortex in the cat are in a position to be contacted by such terminals. Thalamic neurons in the VL nucleus were retrogradely labeled by injections of fluorogold placed in the cytoarchitectonically defined area 4, while lemniscal axons and their terminal boutons were anterogradely labeled, in a Golgi-like manner, from injections of Fast Blue placed under physiological control in different parts of the contralateral dorsal column nuclei. In additional experiments, spinothalamic fibers were similarly labeled by injections of Fast Blue in the spinal cord. The results reveal that there is no significant overlap in the distributions of lemniscal terminals and motor cortex-projecting neurons and that no somata or proximal dendrites of motor cortex-projecting neurons are in a position to receive lemniscal terminals. Spinothalamic terminals, on the other hand, end in clusters around motor cortex-projecting neurons in the VL nucleus as well as in other nuclei and are a more likely route for short latency somatosensory inputs to the motor cortex.Abbreviations AD anterodorsal nucleus - AM anteromedial nucleus - AP area postrema - AV anteroventral nucleus - C cuneate nucleus - CeM central medial nucleus - CL central lateral nucleus - CM centre médian nucleus - EC external cuneate nucleus - G gracile nucleus - L limitans nucleus - LD lateral dorsal nucleus - LP lateral posterior nucleus - MGM magnocellular medial geniculate nucleus - MD mediodorsal nucleus - MTT mamillothalamic tract - MV medioventral nucleus - Pc paracentral nucleus - Pf parafascicular nucleus - Po posterior nuclei - R reticular nucleus - RF fasciculus retroflexus - S solitary nucleus - SG suprageniculate nucleus - T spinal trigeminal nucleus - VA ventral anterior nucleus - VIN vestibular nuclei - VL ventral lateral nucleus - VMb basal ventral medial nucleus - VMp principal ventral medial nucleus - VPL ventral posterior lateral nucleus - VPM ventral posterior medial nucleus - ZI zona incerta - 1,2,3a,3b,4 fields of cerebral cortex - C4, C5, C6 spinal cord segments - 5SP,5ST spinal trigeminal nucleus and tract - 10, 12 vagal and hypoglossal nuclei  相似文献   

10.
Topographical arrangements of thalamostriatal projection neurons was examined in the rat by the retrograde tract-tracing method. After injecting Fluoro-Gold (FG) and/or cholera toxin beta-subunit (CTB) in different regions of the caudate-putamen (CPu), distribution of retrogradely labeled neurons was observed in the thalamus. The main findings were as follows: (1) Retrogradely labeled neurons were seen in the midline-intralaminar thalamic nuclei in all rats examined in the present study.Neurons in the ventral lateral and posterior thalamic nuclear groups were also labeled in the rats which were injected with the tracer into the dorsal part of Cpu, but not in the rats which were injected with the tracer into the nucleus accumbens (Acb) and its adjavent regions in the ventromedial part of the Cpu. (2) Topographical organization was observed in the projections from the midline-intralaminar thalamic nuclei to the CPu. After the tracer injection into the dorsal part of the CPu or the ventral part of the CPu (including the Acb), labeled neurons in the midline-intralaminar thalamic nuclei were distributed predominantly in the lateral part of the intralaminar nuclei or the midline nuclei, respectively. On the other hand, after the tracer injection into the medial or the lateral part of the CPu, labeled neurons in the midline-intralaminar nuclei were distributed mainly in the dorsal or the ventral part of these nuclei, respectively. (3) Topographical organization was also observed in the thalamostriatal projections from the ventral and Pos. After the tracer injection into the rostral part of the CPu, labeled neurons were distributed mainly in the rostral part of the ventral nuclear group. On the other hand, after the tracer injection into the caudal part of the CPu, labeled neurons were distributed mainly in the caudal part of the ventral nuclear group, as well as in the posterior nuclear group.  相似文献   

11.
R.L. Reep  S.S. Winans 《Neuroscience》1982,7(5):1265-1288
The agranular insular cortex is transitional in location and structure between the ventrally adjacent olfactory allocortex primutivus and dorsally adjacent sensory-motor isocortex. Its ventral anterior division receives major afferent projections from olfactory areas of the limbic system (posterior primary olfactory cortex, posterolateral cortical amygdaloid nucleus and lateral entorhinal cortex) while its dorsal anterior division does so from non-olfactory limbic areas (lateral and basolateral amygdaloid nuclei).The medial segment of the mediodorsal thalamic nucleus projects to both the ventral and dorsal divisions of the agranular insular cortex, to the former from its anterior portion and to the latter from its posterior portion. Other thalamic inputs to the two divisions arise from the gelatinosus, central medial, rhomboid and parafascicular nuclei. The dorsal division, but not the ventral division, receives input from neurons in the lateral hypothalamus and posterior hypothalamus.The medial frontal cortex projects topographically and bilaterally upon both ventral and dorsal anterior insular cortex, to the former from the ventrally located medial orbital and infralimbic areas, to the latter from the dorsally-located anterior cingulate and medial precentral areas, and to both from the intermediately located prelimbic area. Similarly, the ipsilateral posterior agranular insular cortex and perirhinal cortex project in a topographic manner upon the two divisions of the agranular insular cortex.Commissural input to both divisions originates from pyramidal neurons in the respective contralateral homotopical cortical area. In each case, pyramidal neurons in layer V contribute 90% of this projection and 10% arises from layer III pyramidals.In the brainstem, the dorsal raphe nucleus projects to the ventral and dorsal divisions of the agranular insular cortex and the parabrachial nucleus projects to the dorsal division.Based on their cytoarchitecture, pattern of afferent connections and known functional properties, we consider the ventral and dorsal divisions of the agranular insular cortex to be, respectively, periallocortical and proisocortical portions of the limbic cortex.  相似文献   

12.
The location of neurons in the caudal medulla oblongata that project to the superficial or deep dorsal horn was studied in the rat, by means of retrograde labelling from confined spinal injection sites. The tracer cholera toxin subunit B was injected into laminae I–III (fuve rats) or I–V (three rats) at C4–7 spinal segments. Neurons projecting to the superficial dorsal horn were located in the dorsomedial part of the dorsal reticular nucleus ipsilaterally, the subnucleus commissuralis of the nucleus tractus solitarius bilaterally, and a region occupying the lateralmost part of the ventrolateral reticular formation between the lateral reticular nucleus and the caudal pole of the spinal trigeminal nucleus, pars caudalis, bilaterally. Neurons projecting to the deep dorsal horn, which were only labelled when laminae I–V were filled by the tracer, occurred in the dorsomedial and ventrolateral parts of the dorsal reticular nucleus and in the ventral reticular nucleus bilaterally. A few cells were located in the above described lateralmost portion of the ventrolateral reticular formation bilaterally and in the ventral portion of the ipsilateral cuneate nucleus. In the light of previous data demonstrating that dorsal horn neurons project to the dorsal reticular nucleus, the ventrolateral reticular formation, and the nucleus tractus solitarius, and that neurons in these three medullary regions are involved in pain inhibition at the spinal level, the descending projections demonstrated here suggest the occurrence of spino-medullary-spinal loops mediating the analgesic actions elicited in each nucleus upon the arrival of nociceptive input from the dorsal horn.  相似文献   

13.
Distribution of labelled neurons in thalamic nuclei after the marker injection into the dog brain pallidal structures (globus pallidum, entopeduncular nucleus and ventral pallidum) was studied by retrograde axonic HRP and fluorochrome transport. Analysis of the material obtained allowed to conclude that in globus pallidum projections from motor thalamic nuclei (ventral anterior, ventral lateral, ventral medial and median centre) are dominating, although in ventral pallidum projections from limbic nuclei (parafascicular and median) are predominant. Entopeduncular nucleus receives projections from functionally different thalamic nuclei (intralaminar and nuclei of ventral and posterior groups). It is obvious that both segregated transmission of functionally specific information and possibility of its convergence at the level of pallidum might occur in organization of thalamo-palidal projections.  相似文献   

14.
The projections from the reticular thalamic nucleus and the ventral lateral geniculate nucleus to the lateral posterior-pulvinar thalamic complex were studied in the adult cat using the retrograde transport of horseradish peroxidase. Small, stereotaxically guided injections of the enzyme were placed in the various nuclei of this complex, including the pulvinar, lateralis intermedius oralis, lateralis intermedius caudalis, lateralis posterior lateralis, lateralis posterior medialis and lateralis medialis nuclei. The distribution of labeled neurons indicates that these nuclei receive topographically organized projections from the reticular and ventral lateral geniculate nuclei. The pulvinar nucleus receives only very scarce projections from the reticular thalamic nucleus originating in its posterodorsal and posteroventral sectors. The reticular projection to the nucleus lateralis intermedius oralis is even sparser. The nuclei lateralis intermedius caudalis, lateralis posterior lateralis and lateralis posterior medialis receive substantial projections from the suprageniculate sector of the reticular thalamic nucleus. The nucleus lateralis medialis receives an abundant projection from the three sectors (suprageniculate, pregeniculate and infrageniculate) of the reticular thalamic nucleus. Except for the lateralis intermedius caudalis, all nuclei of the lateral posterior-pulvinar complex receive consistent projections from the ventral lateral geniculate nucleus, the nucleus lateralis medialis receiving the densest one. Our findings suggest that visual, auditory, somatosensory, motor and limbic impulses from thalamic nuclei and from primary sensory and association cortical areas modulate the activity of the nucleus lateralis medialis via the reticular thalamic nucleus. The remaining nuclei of the lateral posterior-pulvinar complex are mainly modulated by sectors of the reticular thalamic nucleus that receive afferent connections from visual structures. The intrathalamic projections arising from the ventral lateral geniculate nucleus may be the way through which visuomotor inputs reach the different components of the lateral posterior-pulvinar thalamic complex.  相似文献   

15.
Projections from the medulla to the parabrachial complex of the rat were examined for their content of neuropeptide Y-, angiotensin II- or galanin-like immunoreactivity using combined retrograde tracing and immunohistochemical techniques. Rhodamine-labelled latex microspheres were stereotaxically injected into discrete nuclei of the parabrachial complex. After survival of two to five days, colchicine (100 micrograms in 10 microliters saline) was injected into the cisterna magna. One day later, rats were perfused and the brainstems were prepared for visualization of the retrograde tracer and immunoreactivity of one of the three peptides. Retrograde labelling verified that the area postrema, nucleus of the tractus solitarius, caudal spinal nucleus of the trigeminal nerve, parvocellular reticular nucleus, and ventrolateral medulla including the rostral ventrolateral medulla and nucleus paragigantocellularis project to the lateral parabrachial and K?lliker-Fuse nuclei. While most projections were primarily ipsilateral, a small proportion of the projections from the ventrolateral medulla was bilateral. Neurons containing neuropeptide Y-like immunoreactivity were found in the caudal and intermediate nucleus of the tractus solitarius, dorsal to the lateral reticular nucleus and in the nucleus paragigantocellularis. After bilateral microsphere injections into the lateral parabrachial and K?lliker-Fuse nuclei, double-labelled neurons were found dorsal to the lateral reticular nucleus of caudal and intermediate medullary levels, at the ventral surface of the medulla at intermediate levels and in the nucleus paragigantocellularis at rostral levels. Neurons with angiotensin II-like immunoreactivity were observed at the dorsomedial border of the caudal and intermediate nucleus of the tractus solitarius, in the area postrema and in the lateral reticular nucleus and nucleus paragigantocellularis. Of these neurons, small numbers in the nucleus of the tractus solitarius and ventrolateral medulla also projected to the lateral parabrachial and K?lliker-Fuse nuclei. Neurons containing galanin-like immunoreactivity were found in the caudal nucleus of the tractus solitarius, the area postrema, the spinal trigeminal nucleus, the raphe nuclei (pallidus and obscurus), the nucleus paragigantocellularis and dorsal to the lateral reticular nucleus. Of these cells, double-labelled neurons were found in the commissural and medial subdivisions of the caudal nucleus of the tractus solitarius and in the rostral ventrolateral medulla including the ventral surface and the nucleus paragigantocellularis. The results suggest that neuropeptide Y, angiotensin II and galanin may serve as neurochemical messengers in pathways from the medulla to the parabrachial complex. The location of double-labelled neurons suggests that the information relayed by these neurons is related to autonomic activity.  相似文献   

16.
A light microscopic study of the cellular localization of GABA in the thalamus of the squirrel monkey (Saimiri sciureus) was undertaken by means of the indirect peroxidase-antiperoxidase method using a highly purified antiserum directed against GABA-glutaraldehyde-lysyl-protein conjugate. GABA-immunoreactive cell bodies and axon terminals were visualized in all thalamic nuclei in the squirrel monkey but their relative density varied from one nucleus to the other. At the level of the anterior nuclear group, GABA-positive cells and terminals abounded in the anterodorsal nucleus but were much less numerous in the anteromedial and anteroventral nuclei. In the nuclei of the ventral group, GABA-immunoreactive cells were found to be smaller and less numerous than nonimmunoreactive neurons. In the ventral anterior nucleus, GABA-positive neuronal profiles formed typical clusters, whereas they were more uniformly distributed in the posterior nuclei of the ventral group. In the intralaminar nuclei, GABA-immunoreactive cells and terminals abounded in the dorsal portion of the paracentral and centrolateral nuclei, whereas more caudally, GABA-positive terminals pervaded the entire parafascicular nucleus. In the mediodorsal nucleus, GABA-positive cell bodies and axon terminals formed typical clusters of various sizes scattered within the lateral parvocellular portion of the nucleus, while GABA-immunoreactive neuronal profiles were less numerous and more uniformly distributed in the medial portion of this structure. In the nuclei of the posterior group, GABA-immunoreactive neuronal profiles were uniformly distributed except in the pulvinar where they abounded in the inferior and oral parts but were scarce in the medial part. In the dorsal lateral geniculate nucleus, the magnocellular layers received the most massive GABA-positive innervation and contained the largest number of GABA-immunoreactive cell bodies. In the ventral lateral geniculate nucleus, GABA-positive cells occurred only ventrolaterally while GABA-immunoreactive terminals pervaded the entire structure. In the medial geniculate nucleus, GABA-immunoreactive cell bodies and terminals abounded particularly within the ventromedial third of the structure. In the habenula, a few GABA-immunoreactive cell bodies and numerous GABA-positive terminals were scattered throughout the lateral habenular nucleus, whereas only a few GABA-immunoreactive terminals surrounded the closely packed unreactive cells in the medial habenular nucleus. In contrast to other thalamic nuclei all neurons in the reticular nucleus displayed GABA immunoreactivity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
本实验用HRP逆行性轴浆运输技术,对猫丘脑中央外侧核的传入纤维联系及其局部定位关系进行了观察。投射至丘脑中央外侧核尾侧区的主要核团包括:外侧膝状体腹核背侧带、丘脑网状核特别是它的背侧部、上丘深层,以同侧为主。板内核、丘脑下部外侧区和黑质网状部神经元的轴突终止在同侧丘脑中央外侧核吻侧区。丘脑中央外侧核全长的传入起自脑干网状结构和前庭神经核,呈双侧投射。前者以同侧为主,后者以对侧占优势。同侧未定带,顶盖前区、动眼神经核周围的细胞群、对侧三叉神经感觉主核、楔束核、薄束核以及小脑齿状核内也含有少量标记细胞。我们还观察到HRP注射中心区位于中央外侧核并扩散至丘脑腹前核者,同侧脚内核含大量HRP阳性细胞,而Gudden被盖腹侧核内充满密集的标记终末。这些结果表明,丘脑中央外侧核可能涉及多种感觉和运动功能。  相似文献   

18.
Fang PC  Stepniewska I  Kaas JH 《Neuroscience》2006,143(4):987-1020
Connections of motor areas in the frontal cortex of prosimian galagos (Otolemur garnetti) were determined by injecting tracers into sites identified by microstimulation in the primary motor area (M1), dorsal premotor area (PMD), ventral premotor area (PMV), supplementary motor area (SMA), frontal eye field (FEF), and granular frontal cortex. Retrogradely labeled neurons for each injection were related to architectonically defined thalamic nuclei. Nissl, acetylcholinesterase, cytochrome oxidase, myelin, parvalbumin, calbindin, and Cat 301 preparations allowed the ventral anterior and ventral lateral thalamic regions, parvocellular and magnocellular subdivisions of ventral anterior nucleus, and anterior and posterior subdivisions of ventral lateral nucleus of monkeys to be identified. The results indicate that each cortical area receives inputs from several thalamic nuclei, but the proportions differ. M1 receives major inputs from the posterior subdivision of ventral lateral nucleus while premotor areas receive major inputs from anterior parts of ventral lateral nucleus (the anterior subdivision of ventral lateral nucleus and the anterior portion of posterior subdivision of ventral lateral nucleus). PMD and SMA have connections with more dorsal parts of the ventral lateral nucleus than PMV. The results suggest that galagos share many subdivisions of the motor thalamus and thalamocortical connection patterns with simian primates, while having less clearly differentiated subdivisions of the motor thalamus.  相似文献   

19.
Neurochemical and key connectional characteristics of the anterior entopeduncular nucleus (Enta) of the turtle (Testudo horsfieldi) were studied by axonal tracing techniques and immunohistochemistry of parvalbumin, gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD). We showed that the Enta, which is located within the dorsal peduncle of the lateral forebrain bundle (Pedd), has roughly topographically organized reciprocal connections with the dorsal thalamic visual nuclei, the nucleus rotundus (Rot) and dorsal lateral geniculate nucleus (GLd). The Enta receives projections from visual telencephalic areas, the anterior dorsal ventricular ridge and dorsolateral cortex/pallial thickening. Most Enta neurons contained GABA and parvalbumin, and some of them were retrogradely labeled when the tracer was injected into the visual dorsal thalamic nuclei. Further experiments using double immunofluorescence revealed colocalization of GAD and parvalbumin in the vast majority of Enta neurons, and many of these cells showed retrograde labeling with Fluoro-gold injected into the Rot and/or GLd. According to these data, the Enta may be considered as a structural substrate for recurrent inhibition of the visual thalamic nuclei. Based on morphological and neurochemical similarity of the turtle Enta, caiman Pedd nucleus, the superior reticular nucleus in birds, and the thalamic reticular nucleus in mammals, we suggest that these structures represent a characteristic component which is common to the thalamic organization in amniotes.  相似文献   

20.
We described the NADPH-diaphorase-containing neurons and fibres in the brain of the frog Rana esculenta. In the telencephalon stained cells occurred in the olfactory bulb, all subdivisions of the pallium, the diagonal band, the medial septum and the striatum. The olfactory glomeruli showed the most intense enzyme reaction. The neuropil of the accessory olfactory bulb was also heavily stained and this staining extended to the rostral diencephalon through the ventral lateral pallium. Fibre staining was less intense in the medial pallium and the medial septum. In the diencephalon, NADPH-diaphorase staining was concentrated in the middle third of this part of the brain. The stained cells were embedded in a dense network of thin, stained fibres and terminals in the lateral anterior and central thalamic nuclei. Faintly stained cells were present also in the posterior preoptic nucleus, anterior thalamic nucleus, nucleus of Bellonci, corpus geniculatum thalamicum and the suprachismatic nucleus. In the mesencephalon, heavily stained cells occurred in the nucleus profundus mesencephali, anterodorsal, anteroventral and especially in the posterodorsal tegmental nuclei. Neuronal staining was less intense in the optic tectum and the torus semicircularis. Thick, intensely stained fibres occupied the lateral part of the tegmentum and the 7th layer of the tectum. A loose network of thin fibres occupied the periventricular area and all tegmental nuclei. In the rhombencephalon, the reticular nuclei and the inferior raphe nucleus showed the most intense staining, while some cells in the nucleus of the solitary tract and the dorsal column nuclei were less intensely stained. Heavy staining of fibres was characteristic of the spinal trigeminal tract, the solitary tract and the reticulospinal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号