首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Neurofibromatosis 2 (NF2) is an autosomal dominant disease characterized by bilateral vestibular schwannomas and other nonmalignant tumors of the brain, spinal cord, and peripheral nerves. Although the average age of onset of NF2 is 20 years, some individuals may become symptomatic in childhood. We studied 5 unrelated NF2 patients who became symptomatic before age 13. All 5 had multiple tumors in addition to vestibular schwannoma, and none had a positive family history. Sequence analysis of the NF2 gene revealed identical nonsense mutation of exon 6 in 3 patients. Because this mutation destroys a restriction site, genomic DNA from the 2 other children was directly tested for this change and identical alterations were detected. Although the work of our laboratory and others has not, in general, detected identical mutations in unrelated patients, this mutation seems to occur particularly frequently in the pediatric population and thus may be associated with an especially severe phenotype. Restriction analysis in children with NF2 may be a cost effective way of identifying their mutation. Further work is needed to characterize the effects of this change on the NF2 protein product and its relationship to this severe phenotype.  相似文献   

3.
Epilepsy as part of the phenotype associated with ATP1A2 mutations   总被引:2,自引:0,他引:2  
PURPOSE: Mutations in the ATP1A2 gene have been described in families with familial hemiplegic migraine (FHM). FHM is a variant of migraine with aura characterized by the occurrence of hemiplegia during the aura. Within several FHM families, some patients also had epileptic seizures. In this study we tested the hypothesis that mutations in ATP1A2 may be common in patients presenting with epilepsy and migraine. METHODS: We selected 20 families with epilepsy and migraine and performed mutation analysis of ATP1A2 in the probands by direct sequencing of all exons and splice-site junctions. RESULTS: Novel ATP1A2 mutations were found in two of the 20 families (10%). The p.Gly900Arg mutation was present in a family with epilepsy and FHM, and the p.Cys702Tyr mutation occurred in a family with occipitotemporal epilepsy and migraine with and without visual aura. In the two families together, six mutation carriers had the combination of epilepsy and migraine, two had only epilepsy, and six had only migraine. DISCUSSION: This study shows that a history of migraine and a family history of both epilepsy and migraine should be obtained in all patients presenting with epilepsy in the epilepsy clinic. It may be worthwhile to screen patients with a combination of epilepsy and migraine and a positive family history of either migraine or epilepsy for mutations in the ATP1A2 gene.  相似文献   

4.
5.
Mutations in NKX2-1 cause neurological, pulmonary, and thyroid hormone impairment. Recently, the disease was named brain-lung-thyroid syndrome. Here, we report three patients with brain-lung-thyroid syndrome. All patients were unable to walk until 24 months of age, and still have a staggering gait, without mental retardation. They have also had choreoathetosis since early infancy. Genetic analysis of NKX2-1 revealed a novel missense mutation (p.Val205Phe) in two patients who were cousins and their maternal families, and a novel 2.6-Mb deletion including NKX2-1 on chromosome 14 in the other patient. Congenital hypothyroidism was not detected on neonatal screening in the patient with the missense mutation, and frequent respiratory infections were observed in the patient with the deletion in NKX2-1. Oral levodopa did not improve the gait disturbance or involuntary movement. The results of (99m)Tc-ECD single-photon emission computed tomography (ECD-SPECT) analyzed using the easy Z-score imaging system showed decreased cerebral blood flow in the bilateral basal ganglia, especially in the caudate nuclei, in all three patients, but no brain magnetic resonance imaging (MRI) abnormalities. These brain nuclear image findings indicate that NKX2-1 haploinsufficiency causes dysfunction of the basal ganglia, especially the caudate nuclei, resulting in choreoathetosis and gait disturbance in this disease.  相似文献   

6.
7.
Congenital muscular dystrophy type 1A is caused by mutations in the LAMA2 gene, which encodes the α2-chain of laminin. We report two patients with partial laminin-α2 deficiency and atypical phenotypes, one with almost exclusive central nervous system involvement (cognitive impairment and refractory epilepsy) and the second with marked cardiac dysfunction, rigid spine syndrome and limb-girdle weakness. Patients underwent clinical, histopathological, imaging and genetic studies. Both cases have two heterozygous LAMA2 variants sharing a potentially pathogenic missense mutation c.2461A>C (p.Thr821Pro) located in exon 18. Brain MRI was instrumental for the diagnosis, since muscular examination and motor achievements were normal in the first patient and there was a severe cardiac involvement in the second. The clinical phenotype of the patients is markedly different which could in part be explained by the different combination of mutations types (two missense versus a missense and a truncating mutation).  相似文献   

8.
9.
10.
11.
Stop codon mutations in the gene encoding the prion protein (PRNP) are very rare and have thus far only been described in two patients with prion protein cerebral amyloid angiopathy (PrP-CAA). In this report, we describe the clinical, histopathological and pathological prion protein (PrPSc) characteristics of two Dutch patients carrying novel adjacent stop codon mutations in the C-terminal part of PRNP, resulting in either case in hereditary prion protein amyloidoses, but with strikingly different clinicopathological phenotypes. The patient with the shortest disease duration (27 months) carried a Y226X mutation and showed PrP-CAA without any neurofibrillary lesions, whereas the patient with the longest disease duration (72 months) had a Q227X mutation and showed an unusual Gerstmann-Sträussler-Scheinker disease phenotype with numerous cerebral multicentric amyloid plaques and severe neurofibrillary lesions without PrP-CAA. Western blot analysis in the patient with the Q227X mutation demonstrated the presence of a 7 kDa unglycosylated PrPSc fragment truncated at both the N- and C-terminal ends. Our observations expand the spectrum of clinicopathological phenotypes associated with PRNP mutations and show that a single tyrosine residue difference in the PrP C-terminus may significantly affect the site of amyloid deposition and the overall phenotypic expression of the prion disease. Furthermore, it confirms that the absence of the glycosylphosphatidylinositol anchor in PrP predisposes to amyloid plaque formation.  相似文献   

12.
Most cases of Friedreich ataxia (FRDA) are due to expansions of a GAA trinucleotide repeat sequence in the FRDA gene coding for frataxin, a protein of poorly understood function which may regulate mitochondrial iron transport. However, between 1% and 5% of mutations are single base changes in the sequence of the FRDA gene, causing missense, nonsense, or splicing mutations. We describe three new mutations, IVS4nt2 (T to G), R165C , and L182F , which occur in patients in association with GAA expansions. These cases, and a further five reported cases of point mutations causing FRDA, demonstrate that splicing, nonsense, or initiation codon mutations (which cause a complete absence of functional frataxin) are associated with a severe phenotype. Missense mutations, even in highly evolutionally conserved amino acids, may cause a mild or severe phenotype. Received: March 24, 1998 / Accepted: May 28, 1998  相似文献   

13.
Congenital muscular dystrophies due to defects in genes encoding proteins involved in α-dystroglycan (α-DG) glycosylation are a heterogeneous group of muscle disorders variably associated with central nervous system and eye abnormalities. One of the more severe is muscle-eye-brain disease (MEB). Mutations in genes coding for proven or putative glycosyltransferases (POMT1, POMT2, POMGnT1, fukutin, FKRP, and LARGE), the DPM3 gene encoding a DOL-P-Man synthase subunit, and the DAG1 gene encoding α-dystroglycan, have been associated with altered α-DG glycosylation. We report new POMGnT1 mutations and evaluate protein expression in 3 patients and 2 foetuses with variably severe MEB features. We identify two new point mutations (c.643C>T, c.1863delC), one new intragenic rearrangement (deletion of exons 2-8), and a new intron retention (between exons 21 and 22) resulting from a known point mutation c.1895+1G>T. Our study provides further evidence that rearrangements of the POMGnT1 gene are relatively common. Importantly, if heterozygous, they can be missed on standard genomic DNA sequencing. POMGNT1 protein analysis in 3 patients showed that the severity of the phenotype does not correlate with protein expression. Cerebral MRI is important for identifying MEB and α-dystroglycanopathy phenotypes in children and foetuses, and hence for directing the genetic analysis.  相似文献   

14.
15.
MeCP2 mutations in children with and without the phenotype of Rett syndrome   总被引:11,自引:0,他引:11  
BACKGROUND: Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked methyl CpG binding protein 2 (MeCP2) gene. METHODS: One hundred sixteen patients with classical and atypical RTT were studied for mutations of the MeCP2 gene by using DHPLC and direct sequencing. RESULTS:Causative mutations in the MeCP2 gene were identified in 63% of patients, representing a total of 30 different mutations. Mutations were identified in 72% of patients with classical RTT and one third of atypical cases studied (8 of 25). The authors found 17 novel mutations, including a complex gene rearrangement found in one individual involving two deletions and a duplication. The duplication was identical to a region within the 3' untranslated region (UTR), and represents the first report of involvement of the 3' UTR in RTT. The authors also report the identification of MeCP2 mutations in two males; a Klinefelter's male with classic RTT (T158M) and a hemizygous male infant with a Xq27-28 inversion and a novel 32 bp frameshift deletion [1154(del32)]. Studies examining the relationship between mutation type, X-inactivation status, and severity of clinical presentation found significant differences in clinical presentation between different types of mutations. Mutations in the amino-terminus were significantly correlated with a more severe clinical presentation compared with mutations closer to the carboxyl-terminus of MeCP2. Skewed X-inactivation patterns were found in two asymptomatic carriers of MeCP2 mutations and six girls diagnosed with either atypical or classical RTT. CONCLUSION:This patient series confirms the high frequency of MeCP2gene mutations causative of RTT in females and provides data concerning the molecular basis for clinical variability (mutation type and position and X-inactivation patterns).  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号