首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Methamphetamine (MA) leads to multiple organs lesions and apoptosis. The aim of this study is to investigate if endoplasmic reticulum stress (ERS) – initiated apoptosis is involved in the chronic pulmonary injury induced by MA. In this study, rats were divided into a control group, methamphetamine 5 mg/kg group and methamphetamine 10 mg/kg group. This study found that the protein level of GRP78 is higher in M10 group than in control group. PERK signaling and the relevant apoptosis factors were also activated. Morphological measurements showed that protein BAX and CHOP accumulated in the alveolar epithelium and the alveolar walls with epithelium were damaged and that the number of pulmonary alveoli decreased. The findings showed that ERS and PERK pathway are activated and eventually lead to apoptosis. Severe ERS mediated the apoptosis of alveolar epithelium cells as well as decreasing numbers of pulmonary alveoli.  相似文献   

2.
Naringin has been reported as an effective anti-inflammatory compound. We previously showed that naringin had antitussive effect on experimentally induced cough in guinea pigs. However, the effects and mechanism of naringin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice are not fully understood. In this study, our aim was to evaluate the anti-inflammatory activities of naringin on LPS-induced ALI in mice and clarify its underlying mechanisms of action. We found that in vivo pretreatment with naringin markedly decreased the lung wet weight to dry weight ratio, and led to significant attenuation of LPS-induced evident lung histopathological changes. Meanwhile, naringin significantly reduced bronchoalveolar lavage fluid (BALF) total cell and neutrophil (PMN) counts after LPS challenge. Furthermore, naringin inhibited myeloperoxidase (MPO: a marker enzyme of neutrophil granule) and inducible nitric oxide synthase (iNOS) activities in lung tissue and alleviated LPS-induced tumor neurosis factor-α (TNF-α) secretion in BALF in a dose-dependent manner. Additionally, Western blotting showed that naringin efficiently blunt NF-κB activation by inhibiting the degradation of I?B-α and the translocation of p65. Taken together, these results suggest that naringin shows anti-inflammatory effects through inhibiting lung edema, MPO and iNOS activities, TNF-α secretion and pulmonary neutrophil infiltration by blockade of NF-κB in LPS-induced ALI.  相似文献   

3.
Phloretin, which can be isolated from apple trees, has demonstrable anti-inflammatory and anti-oxidant effects in macrophages. We previously reported that phloretin could inhibit the inflammatory response and reduce intercellular adhesion molecule 1 (ICAM-1) expression in interleukin (IL)-1β-activated human lung epithelial cells. In the present study we now evaluate whether phloretin exposure could ameliorate lipopolysaccharide (LPS)-induced acute lung injury in mice. Intra-peritoneal injections of phloretin were administered to mice for 7 consecutive days, prior to the induction of lung injury by intra-tracheal administration of LPS. Our subsequent analyses demonstrated that phloretin could significantly suppress LPS-induced neutrophil infiltration of lung tissue, and reduce the levels of IL-6 and tumor necrosis factor (TNF)-α in serum and bronchoalveolar lavage fluid. We also found that phloretin modulated myeloperoxidase activity and superoxide dismutase activity, with decreased gene expression levels for chemokines, proinflammatory cytokines, and ICAM-1 in inflamed lung tissue. Phloretin also significantly reduced the phosphorylation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK), thus limiting the inflammatory response, while promoting expression of heme oxygenase (HO)-1 and nuclear factor erythroid 2-related factor 2, both of which are cytoprotective. Our findings suggest that, mechanistically, phloretin attenuates the inflammatory and oxidative stress pathways that accompany lung injury in mice via blockade of the NF-κB and MAPK pathways.  相似文献   

4.
Quercetin (QC) is a dietary flavonoid abundant in many natural plants. A series of studies have shown that it has been shown to exhibit several biological properties, including anti-inflammatory, anti-oxidant, cardio-protective, vasodilatory, liver-protective and anti-cancer activities. However, so far the possible therapeutic effect of QC on psoriasis has not been reported. The present study was undertaken to evaluate the potential beneficial effect of QC in psoriasis using a generated imiquimod (IMQ)-induced psoriasis-like mouse model, and to further elucidate its underlying mechanisms of action. Effects of QC on PASI scores, back temperature, histopathological changes, oxidative/anti-oxidative indexes, pro-inflammatory cytokines and NF-κB pathway in IMQ-induced mice were investigated. Our results showed that QC could significantly reduce the PASI scores, decrease the temperature of the psoriasis-like lesions, and ameliorate the deteriorating histopathology in IMQ-induced mice. Moreover, QC effectively attenuated levels of TNF-α, IL-6 and IL-17 in serum, increased activities of GSH, CAT and SOD, and decreased the accumulation of MDA in skin tissue induced by IMQ in mice. The mechanism may be associated with the down-regulation of NF-κB, IKKα, NIK and RelB expression and up-regulation of TRAF3, which were critically involved in the non-canonical NF-κB pathway. In conclusion, our present study demonstrated that QC had appreciable anti-psoriasis effects in IMQ-induced mice, and the underlying mechanism may involve the improvement of antioxidant and anti-inflammatory status and inhibition on the activation of the NF-κB signaling. Hence, QC, a naturally occurring flavone with potent anti-psoriatic effects, has the potential for further development as a candidate for psoriasis treatment.  相似文献   

5.
Ginsenoside Rg3 (GRg3), one of the major active saponins isolated from ginseng (the root of Panax ginseng C.A. Meyer, Araliaceae), has been reported with many health benefits. Currently, the protective effect of GRg3 on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice was investigated. The results indicated that GRg3 treatment could greatly attenuate LPS-induced histopathological alterations in the lung in a concentration-dependent manner. LPS-induced increase of lung wet-to-dry weight ratio (W/D ratio) was also dose-dependently reduced by GRg3 treatment. LPS-induced increases of the total cells, neutrophils and macrophages in the bronchoalveolar lavage fluids (BALFs) were significantly inhibited by GRg3 treatment in a dose-dependent fashion. The levels of pro-inflammatory cytokines including TNF-α, IL-1β and IL-6 in BALFs increased after LPS-induced ALI, which was inhibited by GRg3. Western blot results showed that during ALI LPS activated NF-κB pathway in the lung tissues by upregulating NF-κB p65 phosphorylation and its downstream COX-2 expression; however, these effects of LPS were inhibited by GRg3 treatment. Taken together, these findings in present study suggested that GRg3 provided protective effects against LPS-induced ALI in animal model and might harbor the potential to be considered as drug for the treatment of ALI in clinic.  相似文献   

6.
Crocetin, a carotenoid compound, has been shown to reduce expression of inflammation and inhibit the production of reactive oxygen species. In the present study, the effect of crocetin on acute lung injury induced by lipopolysaccharide (LPS) was investigated in vivo. In the mouse model, pretreatment with crocetin at dosages of 50 and 100 mg/kg reduced the LPS-induced lung oedema and histological changes, increased LPS-impaired superoxide dismutase (SOD) activity, and decreased lung myeloperoxidase (MPO) activity. Furthermore, treatment with crocetin significantly attenuated LPS-induced mRNA and the protein expressions of interleukin-6 (IL-6), macrophage chemoattractant protein-1 (MCP-1), and tumour necrosis factor-α (TNF-α) in lung tissue. In addition, crocetin at different dosages reduced phospho-IκB expression and NF-κB activity in LPS-induced lung tissue alteration. These results indicate that crocetin can provide protection against LPS-induced acute lung injury in mice.  相似文献   

7.
Evidence to date suggests thatβ-arrestins act beyond their role as adapter proteins.Arginine vasopressin(AVP)may be a factor in inflammation and fibrosis in the pathogenesis of heart failure.In the present study we investigated the effect of AVP on inflammatory cytokine IL-6 production in murine hearts and the impact ofβ-arrestin 2-dependent signaling on AVP-induced IL-6 production.We found that administration of AVP(0.5 U/kg,iv)markedly increased the levels of IL-6 mRNA in rat hearts with the maximum level occurred at 6 h.Inβ-arrestin 2 KO mouse hearts,deletion ofβ-arrestin 2 decreased AVP-induced IL-6 mRNA expression.We then performed in vitro experiments in adult rat cardiac fibroblasts(ARCFs).We found that AVP(10?9–10?6 M)dose-dependently increased the expression of IL-6 mRNA and protein,activation of NF-κB signaling and ERK1/2 phosphorylation,whereas knockdown ofβ-arrestin 2 blocked AVP-induced IL-6 increase,NF-κB activation and ERK1/2 phosphorylation.Pharmacological blockade of ERK1/2 using PD98059 diminished AVP-induced NF-κB activation and IL-6 production.The selective V1A receptor antagonist SR49059 effectively blocked AVP-induced NF-κB phosphorylation and activation as well as IL-6 expression in ARCFs.In AVP-treated mice,pre-injection of SR49059(2 mg/kg,iv)abolished AVP-induced NF-κB activation and IL-6 production in hearts.The above results suggest that AVP induces IL-6 induction in murine hearts via the V1A receptor-mediatedβ-arrestin2/ERK1/2/NF-κB pathway,thus reveal a novel mechanism of myocardial inflammation in heart failure involving the V1A/β-arrestin 2/ERK1/2/NF-κB signaling pathway.  相似文献   

8.
Tumor necrosis factor alpha (TNFα) has been reported to induce necroptosis and autophagy, but its mechanisms remain unclear. In this study, we found that TNFα significantly induced necroptosis and autophagy in murine fibrosarcoma L929 cells. The necroptosis inhibitor necrostatin-1 (Nec-1) completely blocked TNFα-induced necroptosis and autophagy, but inhibition of autophagy with 3-methyladenine (3MA) or Beclin 1 small interfering RNA (siRNA) promoted necroptosis, indicating that autophagy acted as a negative regulator of TNFα-induced necroptosis. The cytotoxicity of TNFα was accompanied by decreased expressions of phosphorylated p38 mitogen-activated protein kinase (p-p38) and nuclear factor-kappa B (NF-κB), and inhibition of p38 and NF-κB activation by chemical inhibitors or siRNA augmented these necroptotic and autophagic responses to TNFα in the cells. The pan-caspase inhibitor z-VAD-fmk (zVAD) exacerbated TNFα-induced necroptosis and autophagy. Combined treatment with TNFα and zVAD further decreased the expressions of p-p38 and NF-κB compared with TNFα alone treatment. Consequently, these results indicated that suppression of the p38-NF-κB survivial signaling pathway promoted necroptotic and autophagic cell death in TNFα-treated L929 cells.  相似文献   

9.

Aim:

Radiation-induced brain injury (RIBI) is the most common and severe adverse effect induced by cranial radiation therapy (CRT). In the present study, we examined the effects of the traditional Chinese medicine Shenqi Fuzheng Injection (SFI) on RIBI in mice, and explored the underlying mechanisms.

Methods:

C57BL/6J mice were subjected to a single dose of 20-Gy CRT. The mice were treated with SFI (20 mL·kg-1·d-1, ip) for 4 weeks. Morris water maze test was used to assess the cognitive changes. Evans blue leakage and a horseradish peroxidase (HRP) assay were used to evaluate the integrity of the blood-brain barrier (BBB). The expression of inflammatory factors and microglial activation in brain tissues were detected using RT-PCR, Western blotting and immunofluorescence staining.

Results:

CRT caused marked reductions in the body weight and life span of the mice, and significantly impaired their spatial learning. Furthermore, CRT significantly increased the BBB permeability, number of activated microglia, expression levels of TNF-α and IL-1β, and the levels of phosphorylated p65 and PIDD-CC (the twice-cleaved fragment of p53-induced protein with a death domain) in the brain tissues. Four-week SFI treatment (administered for 2 weeks before and 2 weeks after CRT) not only significantly improved the physical status, survival, and spatial learning in CRT-treated mice, but also attenuated all the CRT-induced changes in the brain tissues. Four-week SFI pretreatment (administered for 4 weeks before CRT) was less effective.

Conclusion:

Administration of SFI effectively attenuates irradiation-induced brain injury via inhibition of the NF-κB signaling pathway and microglial activation.  相似文献   

10.
Pinocembrin, one of the primary flavonoids in propolis, possesses many biological activities, including anti-inflammation, anti-oxidation and immunoregulation. This study aimed to evaluate whether pinocembrin could attenuate ovalbumin (OVA)-induced allergic airway inflammation in mice and to explore the possible mechanism. BALB/c mice sensitized and challenged with OVA were administered intraperitoneally with pinocembrin. Airway inflammation and airway hyperresponsiveness were examined. T-helper type (Th) 2 cytokines in bronchoalveolar lavage fluid (BALF) and OVA-specific immunoglobulin E (IgE) in serum were determined. The activation of nuclear factor kappa B (NF-κB) p65 were also measured. Our results showed that pinocembrin resulted in significant inhibition of pathophysiological signs of allergic asthma, including increased pulmonary eosinophilia infiltration, mucus hypersecretion and airway hyperresponsiveness (AHR). Treatment with pinocembrin significantly reduced Th2 cytokines interleukin (IL)-4, IL-5 and IL-13 in BALF, and OVA-specific IgE in serum. Moreover, pinocembrin treatment suppressed phosphorylation of inhibitor-κBα (IκBα) and NF-κB subunit p65 activation in lung tissue of OVA-sensitized mice. These data suggest that pinocembrin may inhibit allergic airway inflammation, and providing potential benefits in the treatment of inflammatory disease.  相似文献   

11.
Pogostone, a major component of Pogostemon cablin, has been demonstrated to possess antibacterial, anti-fungal, immunosuppressive and anti-inflammatory properties. To investigate the potential therapeutic effect of pogostone on lipopolysaccharide (LPS)-induced acute lung injury (ALI), mice were pretreated with pogostone prior to LPS exposure. After LPS challenge, the lungs were excised and the histological changes, wet to dry weight ratios, MPO activity reflecting neutrophil infiltration, and MDA activity reflecting oxidative stress were examined. The inflammatory cytokines in the BALF were determined by ELISA assay. Moreover, the expressions of p65 and phosphorylated p65 subunit of NF-κB, and Nrf2 in the nucleus in lung tissues were measured by Western blot analysis, and meanwhile the dependent genes of NF-κB and Nrf2 were assessed by RT-qPCR. The results showed that pretreatment with pogostone markedly improved survival rate, attenuated the histological alterations in the lung, reduced the MPO and MDA levels, decreased the wet/dry weight ratio of lungs, down-regulated the level of pro-inflammatory mediators including TNF-a, IL-1β and IL-6. Furthermore, pretreatment with pogostone enhanced the Nrf2 dependent genes including NQO-1, GCLC and HO-1 but suppressed NF-κB regulated genes including TNF-α, IL-1β and IL-6. The mechanism behind the protective effect was correlated with its regulation on the balance between Keap1–Nrf2 and NF-κB signaling pathways. Therefore, pogostone may be considered as a potential therapeutic agent for preventing and treating ALI.  相似文献   

12.
Adult hippocampal dentate granule neurons are generated from neural stem cells (NSCs) in the mammalian brain, and the fate specification of adult NSCs is precisely controlled by the local niches and environment, such as the subventricular zone (SVZ), dentate gyrus (DG), and Toll-like receptors (TLRs). Epigallocatechin-3-gallate (EGCG) is the main polyphenolic flavonoid in green tea that has neuroprotective activities, but there is no clear understanding of the role of EGCG in adult neurogenesis in the DG after neuroinflammation. Here, we investigate the effect and the mechanism of EGCG on adult neurogenesis impaired by lipopolysaccharides (LPS). LPS-induced neuroinflammation inhibited adult neurogenesis by suppressing the proliferation and differentiation of neural stem cells in the DG, which was indicated by the decreased number of Bromodeoxyuridine (BrdU)-, Doublecortin (DCX)- and Neuronal Nuclei (NeuN)-positive cells. In addition, microglia were recruited with activatingTLR4-NF-κB signaling in the adult hippocampus by LPS injection. Treating LPS-injured mice with EGCG restored the proliferation and differentiation of NSCs in the DG, which were decreased by LPS, and EGCG treatment also ameliorated the apoptosis of NSCs. Moreover, pro-inflammatory cytokine production induced by LPS was attenuated by EGCG treatment through modulating the TLR4-NF-κB pathway. These results illustrate that EGCG has a beneficial effect on impaired adult neurogenesis caused by LPSinduced neuroinflammation, and it may be applicable as a therapeutic agent against neurodegenerative disorders caused by inflammation.  相似文献   

13.
Stroke is the most common cerebrovascular disease with high morbidity and mortality around the world. However, the underlying mechanisms involved in nerve injury and cerebral ischaemia/reperfusion (I/R) during cerebrovascular disease are still not completely clear. In the present study, we investigate the role of kinesin family member 2 (KIF2) in the neuroprotection after cerebral I/R injury. KIF2 was aberrantly expressed in the cerebral tissues from middle cerebral artery occlusion (MCAO) rat model in a time dependent manner. A similar changing pattern was found in the cultured hypoxic neurons as well as SK-N-SH cells in vitro. Compared to the control, KIF2 inhibition significantly increased the level of malonic dialdehyde (MDA), and reduced the level of superoxide dismutase (SOD) as well as glutathione peroxidase (GSH-px) activity in cerebral tissues of MCAO rat model. The reactive oxygen species (ROS) level was also up-regulated after KIF2 siRNA knockdown in cultured hypoxic SK-N-SH cells. The apoptosis rates of hypoxic neurons and SK-N-SH cells as well as activated-caspase-3 level were obviously increased after KIF2 silencing. Furthermore, we found that the nuclear factor-kappa B (NF-κB) pathway was involved in KIF2-mediated neuroprotection after cerebral I/R injury, and induced apoptosis of hypoxic SK-N-SH cells by KIF2 silencing could be attenuated by the specific inhibitor BAY11-7082 of NF-κB. In conclusion, we demonstrate that KIF2 could mediate the neuroprotection in cerebral I/R injury by inhibiting activation of NF-κB pathway. This might provide a novel therapeutic target for cerebral I/R injury.  相似文献   

14.
Fraxin, the effective component of the Chinese traditional medicine Cortex Fraxini, is reported to have anti-inflammatory effects. This study assessed the anti-inflammatory effect of fraxin on the lipopolysaccharide (LPS)-induced inflammatory response in A549 cells and the protective efficacy on LPS-induced acute lung injury (ALI) in mice. Fraxin reduced LPS-induced TNF-α, IL-6 and IL-1β production in A549 cells and alleviated the LPS-induced wet/dry (W/D) weight ratio and the effects observed via histopathological examination of the lung in vivo. Furthermore, fraxin reduced the protein concentrations in the broncho-alveolar lavage (BAL) fluid and cytokine production in the sera. Fraxin also clearly attenuated the oxidation index, including the activity of myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH). Immunohistochemistry analysis showed that fraxin suppressed LPS-induced inflammatory damage. The expression of proteins involved in the NF-κB and NLRP3 inflammatory corpuscle signalling pathways was consistent between the lung tissues and cell samples. Overall, fraxin played a protective role in LPS-induced lung injury by inhibiting the NF-κB and NLRP3 signalling pathways.  相似文献   

15.
Many studies have shown that aflatoxin B1 (AFB1) can cause cytotoxicity in numerous cells and organs induced by oxidative stress. However, the toxic effects and related mechanism of AFB1 on the microglia cells in the spinal cords have not been studied yet. Our results showed that AFB1 significantly reduced the number of microglia cells, increased the oxidants (malonaldehyde and hydrogen peroxide) but decreased the anti-oxidants (superoxide dismutase and total antioxidant capacity) in a dose dependent manner in mice spinal cords. In addition, AFB1 significantly increased the oxidative stress, promoted apoptosis and cell cycle arrest in G2-M phase, and activated NF-κB phosphorylation in BV2 microglia cells. However, the addition of active oxygen scavenger N-acetylcysteine can significantly reduce the ROS production, improve cell cycle arrest, reduce apoptosis, and the expression of phosphorylated NF-κB in BV2 microglia cells. These results indicate that AFB1 induces microglia cells apoptosis through oxidative stress by activating NF-κB signaling pathway.  相似文献   

16.
17.
Recent studies show that mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) signaling pathways are two pivotal roles contributing to the development of lipopolysaccharide (LPS)-induced acute lung injury (ALI). The present study aimed to investigate the protective effect of kaempferol (Kae), a naturally occurring flavonoid compound, on ALI and explore its possible mechanisms. Male BALB/c mice with ALI, induced by intranasal instillation of LPS, were treated or not with Kae (100mg/kg, intragastrically) 1h prior to LPS exposure. Kae treatment attenuated pulmonary edema of mice with ALI after LPS challenge, as it markedly decreased the lung W/D ratio of lung samples, protein concentration and the amounts of inflammatory cells in BALF. Similarly, LPS mediated overproduction of proinflammatory cytokines in BALF, including TNF-α, IL-1β and IL-6, was strongly reduced by Kae. Histological studies demonstrated that Kae substantially inhibited LPS-induced alveolar wall thickness, alveolar hemorrhage and leukocytes infiltration in lung tissue with evidence of reduced myeloperoxidase (MPO) activity. Kae also efficiently increased superoxide dismutase (SOD) activity of lung sample when compared with LPS group, which was obviously reduced by LPS administration. In addition, Western blot analysis indicated that the activation of MAPKs and NF-κB signaling pathways stimulated by LPS was significantly blocked by Kae. Taken together, our results suggest that Kae exhibits a protective effect on LPS-induced ALI via suppression of MAPKs and NF-κB signaling pathways, which may involve the inhibition of tissue oxidative injury and pulmonary inflammatory process.  相似文献   

18.

Aim:

To study the molecular mechanisms underlying α-tocopheryl succinate (α-TOS)-induced apoptosis in erbB2-positive breast cancer cells and to determine whether α-TOS and the human recombinant TNF-related apoptosis-inducing ligand (hrTRAIL) act synergically to induce cell death of erbB2-expressing breast cancer cells.

Methods:

The annexin V binding method was used to measure apoptosis induced by α-TOS and/or hrTRAIL. RT-PCR and Western blotting were performed to detect gene and protein expression. A colorimetric assay was performed to detect caspase activity. The TransAMTM NF-κB p65 kit was used to assess NF-κB activation.

Results:

α-TOS (100 μmol/L) significantly inhibited NF-κB nuclear translocation in erbB2-expressing breast cancer cells; this inhibition is expected to result in the inactivation of NF-κB. α-TOS (50 and 100 μmol/L) inhibited the expression of Flice-like inhibitory protein (FLIP) and cellular inhibitor of apoptosis protein 1 (c-IAP1) in erbB2-positive cells. α-TOS (100 μmol/L) inhibited Akt activation and augmented the activity of caspase 3 and caspase 8 in breast cancer cells expressing erbB2. α-TOS (50 μmol/L) and hrTRAIL (30 mg/mL) acted synergically to induce apoptosis in breast cancer cells. α-TOS also decreased the hrTRAIL-induced transient activation of NF-κB .

Conclusion:

Our results suggest that α-TOS mediates the apoptosis of erbB2-positive breast cancer cells and acts synergically with hrTRAIL via the NF-κB pathway.  相似文献   

19.

Aim:

Sirtuin 1 (Sirt1) is the class III histone/protein deacetylase that interferes with the NF-κB signaling pathway, thereby has anti-inflammatory function. This study was undertaken to investigate whether Sirt1 could protect osteoblasts against TNF-α-induced injury in vitro.

Methods:

Murine osteoblastic cell line, MC3T3-E1, was used. Overexpress of Sirt1 protein in MC3T3-E1 cells was made by transfection the cells with Sirt1-overexpressing adenovirus. The levels of mRNAs and proteins were determined with qRT-PCR and Western blotting, respectively. The activity of NF-κB was examined using NF-κB luciferase assay. The NO concentration was measured using the Griess method.

Results:

Treatment of MC3T3-E1 cells with TNF-α (2.5–10 ng/mL) suppressed Sirt1 protein expression in a concentration-dependent manner. TNF-α (5 ng/mL) resulted in an increase in apoptosis and a reduction in ALP activity in the cells. Overexpression of Sirt1 in the cells significantly attenuated TNF-α-induced injury through suppressing apoptosis, increasing ALP activity, and increasing the expression of Runx2 and osteocalcin mRNAs. Furthermore, overexpression of Sirt1 in the cells significantly suppressed TNF-α-induced NF-κB activation, followed by reducing the expression of iNOS and NO formation. Sirt1 activator resveratrol (10 μmol/L) mimicked the protection of the cells by Sirt1 overexpression against TNF-α-induced injury, which was reversed by the Sirt1 inhibitor EX-527 (5 μmol/L).

Conclusion:

Overexpression of Sirt1 protects MC3T3-E1 osteoblasts aganst TNF-α-induced cell injury in vitro, at least in part, via suppressing NF-κB signaling. Sirt1 may be a novel therapeutic target for treating rheumatoid arthritis-related bone loss.  相似文献   

20.
Acute lung injury (ALI) is a common lung disease accompanied by acute and persistent pulmonary inflammatory response syndrome, which leads to alveolar epithelial cells and capillary endothelial cell damage. Yam glycoprotein, separated from traditional Chinese yam, has been shown to have anti-inflammatory and immunomodulatory effects. In this experiment, we mainly studied the therapeutic effect and mechanism of a glycoprotein on the lipopolysaccharide (LPS)-induced ALI mice. An oral glycoprotein method was used to treat the mouse ALI model induced by LPS injection in the peritoneal cavity. Afterward, we measured the wet/dry (W/D) ratio, the activity of myeloperoxidase (MPO), the oxidative index superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-PX) and the production of inflammatory cytokines interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6) to evaluate the effect of yam glycoprotein on lung tissue changes. We examined the protein expression of TLR4, ASC, NF-κBp65, p-NF-κBp65, Caspase-1, IκB, NLRP3, p-IκB, and β-actin by western blot analysis. Immunohistochemical analyses of NLRP3 and p-p65 in lung tissue were carried out to assess the mechanism of glycoprotein action. This result suggests that glycoprotein markedly depressed LPS-induced lung W/D ratio, MPO activity, MDA content SOD and GSH-Px depletion, and the contents of inflammatory cytokines IL-1β, IL-6, and TNF-α. Moreover, glycoprotein blocked TLR4/NF-κBp65 signaling activation and NLRP3inflammasome expression in LPS-induced ALI mice. As this particular study shows, glycoprotein has a safeguarding effects on LPS-induced ALI mice, possibly via activating NLRP3inflammasome and TLR4/NF-κB signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号