首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectivesThe literature demonstrates that conventional luting of metal-based restorations using zinc phosphate cements is clinically successful over 20 years. This study compared the clinical outcomes of metal-based fixed partial dentures luted conventionally with zinc phosphate and self-adhesive resin cement.MethodsForty-nine patients (mean age 54 ± 13 years) received 49 metal-based fixed partial dentures randomly luted using zinc phosphate (Richter & Hoffmann, Berlin, Germany) or self-adhesive resin cement (RelyX Unicem Aplicap, 3M ESPE, Germany) at the University Medical Center Regensburg. The core build-up material was highly viscous glass ionomer; the finishing line was in dentin. The study included 42 posterior, 5 anterior crowns and two onlays. Forty-seven restorations were made of precious alloys, 2 of non-precious alloys. The restorations were clinically examined every year. The clinical performance was checked for plaque (0–5; PI, Quigley-Hein), bleeding (0–4; PBI; Mühlemann) and attachment scores. The examination included pulp vitality and percussion tests.StatisticsMeans of scores, standard deviation, cumulative survival and complication rates were calculated using life tables.ResultsThe mean observation time was 3.16 ± 0.6 years (min: 2.0; max: 4.5 years). During that time no restoration was lost, no recementation became necessary. One endodontic treatment was performed in the self-adhesive composite group after 2.9 years. At study end bleeding (1.44 RelyX Unicem vs. 1.25 zinc phosphate) and plaque (1.64 RelyX Unicem vs. 1.0 zinc phosphate) scores showed no statistically significant difference.SignificanceThe self-adhesive resin cement performed clinically as well and can be used as easily as zinc phosphate cement to retain metal-based restorations over a 38-month observation period.  相似文献   

2.
ObjectiveThe aim of this study was to investigate the effect of different luting agents on the bond strength of zirconium oxide posts in root canals after artificial ageing.Material and methodsThirty single-rooted extracted teeth were collected. Post spaces were prepared. Custom milled zirconium oxide posts (Cercon, Degudent) were fabricated. Specimens were divided into 3 groups (n = 10), according to the luting agents used: group RA, conventional resin luting agent (RelyX ARC); group RU, self-adhesive resin luting agent (RelyX Unicem); and group Z, zinc phosphate luting agent (DeTrey). Specimens were subjected to thermocycling and water storage at 37 °C. Specimens were horizontally sectioned into three sections and subjected to a push-out test with 0.5 mm/min crosshead speed. The failure mode was assessed by scanning electron microscopy. Data were analysed by using 2-way ANOVA.ResultsThe following bond strength values were obtained: group RA – 8.89 MPa, group RU – 10.30 MPa and group Z – 9.31 MPa. There was no significant difference in bond strength among the groups (P = 0.500). Adhesive failure mode at the cement/post bonded interface was seen in 100%, 66.67% and 83.3% of examined sections in groups RA, RU and Z, respectively. There was no significant difference in bond strength among different root regions (P = 0.367).ConclusionThe type of luting agent had no significant effect on the push-out bond strength of zirconium oxide posts after artificial ageing.Clinical significanceConventional luting agents, such as zinc phosphate cement, seem to provide comparable retention to resin luting agents for cementing custom milled zirconium oxide posts.  相似文献   

3.
《Dental materials》2020,36(10):e309-e315
PurposeTo determine the curing potential and color stability of resin-based luting materials for aesthetic restorations.Material and MethodsFour resin-based luting agents were tested: traditional dual-activated resin cement (RelyX ARC, ARC), amine-free dual-activated resin cement (RelyX Ultimate, ULT), light-activated resin cement (RelyX Veneer, VEN), and pre-heated restorative resin composite (Filtek Supreme, PHC). Degree of C = C conversion was determined by infrared spectroscopy (n = 3) with direct light exposure or with interposition of 1.5-mm-thick ceramic (e.max Press HT) between the luting material and light. The curing potential considered the ratio between these two scenarios. Color difference (n = 6) was determined by CIELAB (ΔEab) and CIEDE2000 (ΔE00) methods, by spectrophotometer measurements made 24 h after photoactivation and 90 days after storage in water. Data was submitted to ANOVA and Tukey’s test (α = 0.05).ResultsThe luting agents affected both conversion and color stability. With ceramic, ARC produced the highest conversion among the tested groups (75 ± 1%) and the pre-heated composite (PHC) the lowest one (51 ± 3%), but the curing potential was similar for all materials. ULT produced lower ΔEab than ARC. PHC presented the lowest color difference when considered both CIELAB and CIE2000 methods (ΔEab 2.1 ± 0.4; ΔE00 1.6 ± 0.2).SignificanceAll luting strategies presented high curing potential. Amine-free dual-activated material was able to reduce color difference than that formulated with the amine component. Pre-heated composite produced the least color variation after storage.  相似文献   

4.
ObjectivesTo analyze the microhardness of four dual-cure resin cements used for cementing fiber-reinforced posts under the following conditions: after 7 days of storage in water, after additional 24 h of immersion in 75% ethanol, and after 3 months of storage in water. Hardness measurements were taken at the cervical, middle and apical thirds along the cement line.MethodsRoot canals of 40 bovine incisors were prepared for post space. Fibrekor® glass fiber-reinforced posts (Jeneric/Pentron) of 1 mm in diameter were cemented using Panavia F 2.0 (Kuraray), Variolink (Ivoclar-Vivadent), Rely X Unicem (3M ESPE) or Duolink (Bisco) (N = 10). After 7 days of water storage at 37 °C, half the sample (N = 5) was longitudinally sectioned and the initial microhardness measured along the cement line from cervical to apex. These same samples were further immersed in 75% ethanol for 24 h and reassessed. The remaining half (N = 5) was kept unsectioned in deionized water at 37 °C for 3 months, followed by sectioning and measuring. Data were analyzed by a series of two-way ANOVA and Tukey tests at α = 5%.ResultsStatistically significant differences were identified among the cements, thirds and conditions. Significant interactions were also observed between cements and thirds and between cements and conditions. Panavia F exhibited significantly higher initial microhardness than the other three cements, which showed no statistical difference among themselves. Variolink and Duolink showed significantly higher microhardness values in the cervical third, without significant difference among the thirds for the other cements. Immersion in ethanol significantly reduced the hardness values for all cements, regardless of the thirds. Storage in water for 3 months had no influence on the hardness of most of the cements, with the exception of Unicem that showed a significant increase in the hardness values after this period.SignificanceResults showed heterogeneity in the microhardness of the cements inside the canal. All cements presented some degree of softening after ethanol treatment, which suggests instability of the polymer. The quality of curing of resin cements in the root canal environment seems unpredictable and highly material dependent.  相似文献   

5.

Objective

To investigate the relationship between physicochemical interactions of resin luting cements with dentine and retention of fibre posts in root canals.

Methods

Retention of fibre posts (RelyX Fiber Post) was assessed by the pull-out method. The diffusion zone of the cements and their chemical interaction with dentine were estimated by micro-Raman spectroscopy. Resin luting cements employing etch-and-rinse (Rely X Ultimate and Variolink II), self-etch (Rely X Ultimate and Panavia F2.0), or self-adhesive (RelyX Unicem 2) modes were investigated. Data were analyzed by analysis of variance followed by Tukey HSD tests.

Results

The retention of the fibre posts decreased in the following order: RelyX Ultimate, etch-and-rinse mode > RelyX Unicem 2  RelyX Ultimate, self-etch mode  Panavia F2.0  Variolink II (p < 0.05). One of the etch-and-rinse mode cements presented the deepest diffusion zone, while the other, along with the self-adhesive cement, produced the shallowest zone. Cements used in the self-etch mode showed intermediary diffusion into dentine (p < 0.05). All resin luting cements showed some degree of chemical interaction with dentine, the highest recorded for RelyX Ultimate used in the etch-and-rinse mode and the lowest for Panavia F2.0 (p < 0.05). The retention of fibre posts in the root canal could be attributed neither to the mode of interaction of the luting cements with dentine nor to their ability to diffuse into dentine.

Significance

Chemical interaction between the resin luting cement and the dentine paired with adequate post pretreatment contribute positively to the retention of fibre posts.  相似文献   

6.
PurposeThe purpose of this study was to compare the tensile strength of commercially pure titanium dowels and cores cemented with zinc phosphate or resin cements.MethodsTwenty-one extracted human canines were endodontically treated. The root preparations were accomplished using Largo reamers (10 mm in depth and 1.7 mm in diameter). Acrylic resin patterns for the dowel and cores were made, and specimens were cast in commercially pure titanium (n = 7) and divided in three groups: TZ–CP Ti dowels luted with zinc phosphate luting agent, TP–CP Ti dowels luted with Panavia F and TR–CP Ti dowels luted with RelyX U100. Tensile strengths were measured in a universal testing machine at a crosshead speed of 0.5 mm/min. The results (N) were statistically analyzed by ANOVA and Tukey tests (α = 0.01).ResultsThe ANOVA indicated that there were significant differences among the groups tested. A Tukey multiple comparison procedure was performed and revealed statistically significant higher retention values for the dowel luted with RelyX U100 when compared with zinc phosphate or Panavia F.ConclusionCast commercially pure titanium dowels and cores fixed with RelyX U100 cement presented superior bond strength retention when compared to zinc phosphate and Panavia F.  相似文献   

7.
PurposeTo investigate the polymerization efficiency through translucent and opaque glass fiber posts and the bond strength of a self-adhesive resin to root dentin.MethodsTranslucent and opaque silanated conical posts, identical in length, diameter and shape (n = 8), were cemented to incisor bovine roots using RelyX Unicem Clicker. Photoactivation was performed only through the posts. The roots were transversally sectioned (cervical, middle and apical thirds) and the push-out test was carried out. Data were analyzed using two-way ANOVA and Fisher's LSD method (5%). Failure modes were classified under magnification. An elastomer mold of a bovine incisor root was filled with flowable composite and the posts inserted into the mold. After photoactivation through the post and removal of unpolymerized material, the polymerization efficiency was estimated by percentage of mass gain (n = 5). Data were analyzed using t-test (5%).ResultsThe bond strength of the translucent post was higher than the opaque post for all root thirds. For both posts the bond strength at the cervical third was higher than at the middle and apical thirds. A predominance of adhesive failures was detected for all conditions. Mixed failures were more frequently observed for the opaque post. Almost all the composite polymerized and bonded to the extension of the translucent post, whereas polymerization of the composite was restricted to the cervical area of the opaque post.ConclusionsThe use of translucent post may positively influence the polymerization efficiency and bond strength of resin cement to intraradicular dentin.  相似文献   

8.

Statement of problem

Resin-based cements are frequently used in clinical practice. To reduce time and technique sensitivity, manufacturers have introduced the same brand of cement with different dispensing methods. The effect of this change on properties of the cement is unknown.

Purpose

The purpose of this in vitro study was to evaluate the mechanical properties of resin-based cements with different dispensing systems.

Material and methods

Specimens of resin-based cements (n=14) PANAVIA SA Cement Plus Handmix, PANAVIA SA Cement Plus Automix, RelyX Unicem Handmix, RelyX Unicem 2 Automix, G-CEM Capsule Automix, G-CEM LinkAce Automix, Variolink II Handmix, and Variolink Esthetic Automix were prepared for each mechanical test. They were examined after thermocycling (n=7/subgroup) for 20 000 cycles as to fracture toughness (FT) (ISO standard 6872; single-edge V-notched beam method), compressive strength (CS) (ISO 9917-1), and diametral tensile strength (DTS). The specimens were mounted and loaded at a crosshead rate of 1 mm/min (0.5 mm/min for FT) with a universal testing machine until failure occurred. The 2-and 1-way ANOVA followed by the Tukey HSD post hoc test were used to analyze data for statistical significance (α=05).

Results

Thermocycling had a significant effect in reducing the FT property of all resin-based cements except RelyX Unicem 2 and G-CEM LinkAce (P<.05). Variolink II and G-CEM LinkAce showed better FT properties than their automixed counterparts (P<.05). The overall CS of all automixed resin-based cements was better than that of their hand-mixed counterpart, except for Variolink II. PANAVIA SA Automixed and G-CEM LinkAce had higher DTS than their hand-mixed counterparts (P<.05).

Conclusions

Changing the dispensing method alters the mechanical properties of resin-based cements. The clinical significance of these results is yet to be determined.  相似文献   

9.
《Dental materials》2019,35(12):1769-1775
ObjectiveTo compare shear bond strength (SBS) and interfacial fracture toughness (IKIC) results when assessing the effect of surface roughness and thermocycling on the adherence of a resin composite luting agent (RCLA) to a CAD/CAM resin composite block (RCB).MethodsTetric CAD HT along with the recommended bonding system, Adhese Universal and Variolink Esthetic LC, were used. Surface roughness was achieved with 600/320/60 grit SiC papers. Samples were stored 24 h in 37 °C water or thermocycled 10000× (5 °C–55 °C) prior to testing. Results were analyzed by univariate ANOVA and Scheffé modified t-tests (α = 0.05). Fractured specimens were viewed with a stereo microscope and selected specimens with a scanning electron microscope.ResultsSBS results showed a significant difference between the 60 grit group and the other groups, both after 24 h and thermocycling. A large number of SBS samples showed cohesive fracture or subsurface damage in RCB. Thermocycling led to a significant decrease in SBS in all groups. IKIC results showed no significant differences due to surface preparation after 24 h storage in 37 °C. After thermocycling, there was a significant difference between the 60 and the 600 grit groups. All KIC samples fractured adhesively at the RCB surface. KIC of the RCLA was significantly higher than IKIC of all groups.SignificanceThe results endorse the use of fracture mechanics methodology for the assessment and characterization of adherence, while identifying difficulties in its implementation. The results suggest also that adherence to CAD/CAM RCB may be limited by the strength of the resin composite block — adhesive interface.  相似文献   

10.
ObjectivesTo evaluate the effect of surface conditioning on the microtensile bond strength of zirconium-oxide ceramic to dual-cured resin cements.MethodsEighteen cylinder-shaped zirconium-oxide ceramic blocks (Cercon® Zirconia, Dentsply) were treated as follows: (1) Sandblasting with 125 μm aluminum-oxide (Al2O3) particles; (2) tribochemical silica coating using 50 μm Al2O3 particles modified by silica; (3) no treatment. Each ceramic cylinder was duplicated in composite resin (Tetric Evo Ceram, Ivoclar-Vivadent) using a silicon mold. Composite cylinders were bonded to conditioned ceramics using: (1) Calibra (Densply Caulk); (2) Clearfil Esthetic Cement (Kuraray); (3) Rely × Unicem (3 M ESPE). After 24 h bonded specimens were cut into microtensile sticks that were loaded in tension until failure. Data were analyzed using two-way ANOVA and Student–Newman–Keuls test for multiple comparisons (p < 0.05). Failure mode was recorded and the interfacial morphology of debonded specimens was observed using a scanning electron microscope (SEM). Surface topography and ceramic average surface roughness were analyzed under an atomic force microscope (AFM).ResultsSignificant changes in zirconia surface roughness occurred after sandblasting (p < 0.001). Bond strength of Clearfil cement to zirconia was significantly higher than that of Rely × Unicem and Calibra, regardless of the surface treatment (p < 0.001). When using Calibra, premature failures occurred in non-treated and silica coated zirconia surfaces.SignificanceThe phosphate monomer-containing luting system (Clearfil Esthetic Cement) is recommended to bond zirconia ceramics and surface treatments are not necessary.  相似文献   

11.
《Dental materials》2014,30(12):e330-e336
ObjectiveTo evaluate the effect of hydrofluoric acid (HFA) etching time and resin cement bond on the flexural strength of IPS e.max® Press glass ceramic.MethodsTwo hundred and ten bars, 25 mm × 3 mm × 2 mm, were made from IPS e.max® Press ingots through lost-wax, hot-pressed ceramic fabrication technology and randomly divided into five groups with forty-two per group after polishing. The ceramic surfaces of different groups were etched by 9.5% hydrofluoric acid gel for 0, 20, 40, 60 and 120 s respectively. Two specimens of each group were selected randomly to examine the surface roughness and 3-dimensional topography with atomic force microscope (AFM), and microstructure was analyzed by the field emission scanning electron microscope (FE-SEM). Then each group were subdivided into two subgroups (n = 20). One subgroup of this material was selected to receive a thin (approximately 0.1 mm) layer of resin luting agent (Variolink N) whereas the other subgroup remained unaltered. Half of subgroup's specimens were thermocycled 10,000 times before a 3-point bending test in order to determine the flexural strength. Interface between resin cement and ceramic was examined with field emission scanning electronic microscope.ResultsRoughness values increased with increasing etching time. The mean flexural strength values of group 0 s, 20 s, 40 s, 60 s and 120 s were 384 ± 33, 347 ± 43, 330 ± 53, 327 ± 67 and 317 ± 41 MPa respectively. Increasing HF etching times reduced the mean flexural strength (p < 0.05). However, the mean flexural strength of each group, except group 0 s, increased significantly to 420 ± 31, 435 ± 50, 400 ± 39 and 412 ± 58 MPa after the application of dual-curing resin cement. In the present investigation, no significant differences after thermocycling on the flexural strengths were evident.SignificanceOvertime HF etching could have a wakening effect on IPS e.max® Press glass ceramic, but resin cement bonding to appropriately etched surface would strengthen the dental ceramic.  相似文献   

12.
ObjectiveThe purpose of this laboratory study is to evaluate the application of a pre-sintered surface augmentation to zirconia (Zir) and lithium disilicate (LDS) ceramics on the delamination strength of adhesive resin cement. The applied surface augmentation was the ruling of lines to the pre-sintered surface of the ceramics.MethodsNinety milled Zir and sixty pressed LDS specimens (3 mm × 0.5 mm × 25 mm) were created and divided into five groups (n = 30). Group 1: Zir no surface treatment (control Zir-NT); Group 2: Zir airborne particle abraded (Zir-APA) with 30 μm CoJet; Group 3: Zir pre-sintered surface augmentation (Zir-SA); Group 4: LDS etched (control LDS-etched) and; Group 5: LDS with pre-sintered surface augmentation and etching (LDS-SA). A resin adhesive cement (3 mm × 1 mm × 8 mm) was then applied and cured to the ceramic specimens. The delamination strength values of the resin cement from the ceramic were recorded. The delamination strength data were analysed statistically using one-way ANOVA and Turkey post hoc analysis.ResultsThe mean delamination strength and standard deviation, when comparing only the Zir-SA to the resin cement were statistically different (p < 0.001); Zir-SA 63.42 ± 11.85, Zir-NT 26.82 ± 12.07, and Zir-APA 48.11 ± 17.85 MPa. Comparison between LDS groups were not significantly different (p = 0.193); LDS-etched 33.49 ± 16.07 and LDS-SA 28.83 ± 10.15 MPa. The delaminated Weibull modulus was highest for surface augmentation Zir specimens (m = 13.56) but decreasing to less than half for Zir-APA (m = 6.27) and Zir-NT (m = 5.68). The Weibull values for the LDS-SA and LDS-etched specimens was 5.63 and 3.38 respectively.SignificanceIncorporating the pre-sintered surface augmentation to zirconia improved the delamination strength and reliability of Zir to the resin cement but not for LDS.  相似文献   

13.
PurposeThe stress relaxation and compressive strength of resin, resin-modified glass ionomer, glass ionomer, polycarboxylate, and zinc oxide eugenol cements were measured to determine the characteristics of these materials after setting.MethodsA total of 19 luting cements including 12 permanent cements and 7 temporary cements were used. Cylindrical cement specimens (10 mm long and 6 mm in diameter) were obtained by chemical setting or light curing. The specimens were stored for 24–36 h in water at 37 °C and were then used for the stress relaxation and compression tests. The stress relaxation test was carried out using three constant cross-head speeds of 5, 50, and 100 mm/min. Upon reaching the preset dislocation of 0.5 mm, the cross-head movement was stopped, and the load was recorded for 60 s. Fractional stress loss at 1 s was calculated from the relaxation curves. The compressive strength and modulus were measured at a cross-head speed of 1 mm/min. Data were analyzed with the Kruskal–Wallis test and Holm's test.ResultsA zinc oxide eugenol cement [TempBOND NX] exhibited the largest fractional stress loss. A resin cement [ResiCem] showed the largest compressive strength, while a glass ionomer cement [HY-BOND GLASIONOMER CX] showed the largest compressive modulus among all tested cements (p < 0.05).ConclusionThe fractional stress loss could not be classified by the cement type. Two implant cements [Multilink Implant and IP Temp Cement] showed similar properties with permanent resin cements and temporary glass ionomer cements, respectively. Careful consideration of the choice of cement is necessary.  相似文献   

14.
ObjectivesTo calculate the probability of interface imperfections within SEM cross-sections of adhesively luted GFP depending on the level of analysis and the cement application method by means of LOM (light-optical microscopic evaluation method).Material and methodsFour groups of artificial root canals received GFPs (n = 5) under following experimental conditions: I = RelyX? Unicem, applied with application aid, II = RelyX? Unicem, III = Panavia F 2.0 and IV = Variolink II. In groups II–IV only posts were loaded with cement (i.e. conventional post cementation). After GFP cementation, standardized photographs were taken perpendicularly to post surface under light-optical microscope from two opposite sides. The length of homogenous cement interface areas were measured using surface-analyzing software. The homogenous areas were related to length of apical, middle, cervical post section and to complete post length to generate the probabilities (%) of hitting imperfections when using SEM cross-section analysis.ResultsThe probabilities (%) of hitting imperfections within SEM cross-sections for cervical, middle, and apical level of analysis were: I = 78, 64, 82; II = 89, 98, 99; III = 72, 91, 99; and IV = 85, 91, 97, respectively. For complete post length median values of probabilities (%) were: I = 75; II = 95; III = 87; and IV = 91.SignificanceThe probabilities show, that SEM cross-section evaluation concerning detection of cement interface imperfections of adhesively luted GFPs depends on the cement application method and the level of analysis and seeming therefore not always unrestricted representative for the whole specimen.  相似文献   

15.

Objectives

Monolithic zirconia, polymer-infiltrated ceramic and acrylate polymer cemented with resin composite cement have recently been identified as prosthetic treatment options for zirconia implants. The aim of the present study is to determine in vitro, to what extent bacteria adhere to these materials.

Methods

Disks made of zirconia (Vita YZ [YZ]), polymer-infiltrated ceramic (Vita Enamic [VE]), acrylate polymer (Vita CAD-Temp [CT]), self-adhesive cement (RelyX Unicem 2 Automix [RUN]) and of two different adhesive cements (RelyX Ulimate [RUL] and Vita Adiva F-Cem [VAF]) were produced. The biofilm formation of three bacterial species (Streptococcus sanguinis, Fusobacterium nucleatum, Porphyromonas gingivalis) on each material was assessed over 72 h using a flow chamber system. The biofilms were quantified by crystal violet staining (optical density 595 nm) and visualized using SEM. The inorganic composition of the different materials was analyzed and the wettability of the specimens was measured.

Results

For the restorative materials lowest biofilm formation was found on CT: OD 0.5 ± 0.1, followed by VE: OD 0.8 ± 0.1 and YZ: OD 1.4 ± 0.3. The biofilm formation on resin composite cements was significantly lower on VAF: OD 0.6 ± 0.1 than for RUL: OD 0.9 ± 0.1 and RUN: OD 1.0 ± 0.1. A high wettability of the specimens with saliva/serum mixture tended to result in a higher biofilm formation. Correlations were obtained between the organic/inorganic composition of the materials and the polar/dispersive part of the surface free energy.

Significance

Three-species biofilm formation on restorative and cement materials strongly relies on the materials composition. If the restorative material CT and cement VAF also prevent excessive biofilm formation in a clinical situation should be further investigated.  相似文献   

16.
ObjectivesThis study investigated the effect of extreme cooling methods on the flexural strength, reliability and shear bond strength of veneer porcelain for zirconia.MethodsVita VM9 porcelain was sintered on zirconia bar specimens and cooled by one of the following methods: inside a switched-off furnace (slow), at room temperature (normal) or immediately by compressed air (fast). Three-point flexural strength tests (FS) were performed on specimens with porcelain under tension (PT, n = 30) and zirconia under tension (ZT, n = 30). Shear bond strength tests (SBS, n = 15) were performed on cylindrical blocks of porcelain, which were applied on zirconia plates. Data were submitted to one-way ANOVA and Tukey's post hoc tests (p < 0.05). Weibull analysis was performed on the PT and ZT configurations.ResultsOne-way ANOVA for the PT configuration was significant, and Tukey's test revealed that fast cooling leads to significantly higher values (p < 0.01) than the other cooling methods. One-way ANOVA for the ZT configuration was not significant (p = 0.06). Weibull analysis showed that normal cooling had slightly higher reliability for both the PT and ZT configurations. Statistical tests showed that slow cooling decreased the SBS value (p < 0.01) and showed less adhesive fracture modes than the other cooling methods.Clinical SignificanceSlow cooling seems to affect the veneer resistance and adhesion to the zirconia core; however, the reliability of fast cooling was slightly lower than that of the other methods.  相似文献   

17.
ObjectivesTo evaluate the degree of cure (%DC) of four self-etching, self-adhesive resin cements, and one conventional resin cement, in their self- and dual-curing mode.MethodsThe self-etching, self-adhesive resin cements studied were RelyX? Unicem (3M? ESPE? AG), Maxcem? (Kerr Corporation), Biscem? (Bisco, Inc.) and Multilink® Sprint (Ivoclar Vivadent® AG) and the classic resin cement was Multilink® Automix (Ivoclar Vivadent® AG). Twelve specimens of each material (1.8 mm × 4 mm × 4 mm) were prepared in room temperature (23 ± 1) °C following the manufacturers’ instructions. Six of them were treated as dual-cured, thus irradiated for 20 s with a halogen light curing unit and left undisturbed for 5 min. The other six were treated as self-cured and were not irradiated, but left in dark and dry conditions for 10 min. The assessment of the %DC was made using micro-ATR FTIR spectrometry.ResultsThe %DC in their self-curing mode was very low (10.82–24.93%), with Multilink Sprint exhibiting the highest values among the five. In the dual-curing mode the values obtained were also low (26.40–41.52%), with the exception of Multilink Automix (61.36%). Maxcem was found to have the lowest DC.SignificanceThe low %DC found raises questions as to whether these materials can be successfully used in clinical applications, where light attenuation takes place. Increased irradiation times could potentially lead to higher %DC, in applications where light is not completely blocked by the overlying restoration.  相似文献   

18.
ObjectivesThe objectives of this study were to examine the effect of pulpal pressure on the microtensile bond strength (mTBS) of luting resin cements to human dentin and the permeability of dentin surfaces pre-treated with an adhesive and a self-etching primer.MethodsCylindrical composite blocks were luted with resin cements (RelyX ARC, 3M ESPE: ARC; Panavia F, Kuraray Medical Inc.: PF; RelyX Unicem, 3M ESPE: UN) in the absence or presence of simulated pulpal pressure. The application of Adper Single Bond 2 (3M ESPE) and ED primer 2.0 (Kuraray) was performed under 0 cm H2O. After each resin cement was applied, the pulpal pressure group was subjected to 20 cm H2O of hydrostatic pressure for 10 min during the initial setting period. Testing for mTBS was performed on 0.9 mm × 0.9 mm sectioned beams after 24 h water-storage. Scanning electron microscopy was performed to investigate the fractured surfaces after mTBS testing and additional dentin surfaces that were treated by an etchant, ED primer 2.0 and UN. Fluid permeability was measured on dentin surfaces that were applied with Adper Single Bond 2 and ED primer 2.0.ResultsApplication of pulpal pressure reduced mTBS significantly in groups ARC and PF. Porous bonding interfaces due to water permeability through the cured adhesive were observed on fractured surfaces. Dentin surfaces that were applied with the adhesive and the primer were more permeable than smear layer-covered dentin. The mTBS of UN was significantly lower than ARC and PF regardless of the absence/presence of pulpal pressure.SignificanceFluid permeation during the initial setting period deteriorated the bonding quality of resin cements.  相似文献   

19.
《Dental materials》2019,35(11):1557-1567
ObjectiveTo evaluate the effect of surface treatments on yttria-tetragonal zirconia polycrystal (Y-TZP) characteristics and on resin-mediated zirconia bond.MethodsY-TZP slabs were grit blasted with 45 μm alumina or with 30 μm silica-coated alumina particles. The chemical treatments were: no-chemical treatment (NC), silane-containing primer (SP), MDP (10-Methacryloyloxydecyl dihydrogen phosphate) and silane-containing primer (MPS), MDP-containing primer (MP) and MDP and silane-containing adhesive (MPA). Contact angle as a function of surface roughness (θm) and surface roughness parameter (Sdr) were measured using Fringe Projection Phase Shifting (FPPS). Surface free energy (γsTOT) was calculated with a goniometer. Chemical interaction between primers/adhesive and zirconia was analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Resin cement microshear bond strength (μSBS) was analyzed at either 24-h or 8-months water storage (37 °C). θm values, Sdr values, γsTOT and μSBS values were analyzed using Analysis of variance (ANOVA) and post hoc Tukey test (α = 0.05).ResultsChemical treatment had an effect (p < 0.001) on all surface parameters analyzed: θm, γsTOT and Sdr. MP-treated group showed higher incidence of P–O–Zr bonds than the other groups, indicating more chemical linkages. Grit blasting (p < 0.001) and the interaction chemical treatment*storage (p < 0.001) did not affect μSBS; all silane-containing primers showed significant drop in μSBS after aging.SignificanceMDP and/or silane-based solutions affect the physicochemical properties of blasted-zirconia. An MDP-based primer is fundamental to achieve a stable resin-zirconia bonding, but the chemical reactivity of MDP is impaired when this molecule is present in a multicomponent system.  相似文献   

20.
ObjectivesTo determine polymerization shrinkage-strain (SY) and shrinkage-stress (SZ) of six resin-cements and to compare their performance with the aid of degree of conversion (DC) data.MethodsVariolink 2 (VL2), Multilink Automix (MA), Multilink Sprint (MS, all Ivoclar-Vivadent), Nexus 2 (NX2), Maxcem (MX, both Kerr) and RelyX Unicem (RX, 3M-Espe) were investigated. MS, MX and RX were self-adhesive; others require a bonding-agent. All measurements were conducted at 23 °C for 60 min (n = 5), except 80 min for RX, with materials self-cured only (sc) and dual-cured (dc); NX2 and VL2 were additionally light-cured only (lc). SY was measured by the bonded-disk method [Watts DC, Cash AJ. Determination of polymerization shrinkage kinetics in visible-light-cured materials: methods development. Dent Mater 1991;7(4):281–7; Watts DC, Marouf AS. Optimal specimen geometry in bonded-disk shrinkage-strain measurements on light-cured biomaterials. Dent Mater 2000;16(6):447–51]; SZ by the Bioman instrument [Watts DC, Satterthwaite JD. Axial shrinkage-stress depends upon both C-factor and composite mass. Dent Mater 2008;24(1):1–8 [Epub October 24, 2007]; Watts DC, Marouf AS, Al-Hindi AM. Photo-polymerization shrinkage-stress kinetics in resin-composites: methods development. Dent Mater 2003;19(1):1–11]. Light-cure was achieved by QTH at 500 mW/cm2. The respective DCs were measured under the same conditions by FTIR–ATR spectroscopy. Data were analyzed by One-Way ANOVA plus Bonferroni test, and by t-test, at p < 0.05.ResultsDC by self-curing was less than the DC by dual-curing, for all cements. Shrinkage-strain ranged from 1.77 to 5.29% and shrinkage-stress from 3.36 to 10.37 MPa. NX2 and VL2 were not significantly different, when light-cured only. Except for RX, sc and dc shrinkage-strain varied maximally by 0.4%. MX showed the highest SY, RX the lowest. When sc, RX initially expanded by <0.5% (t  5 min). For most materials, SY correlated with their filler loading. The highest stress with sc was exerted by MX, and when dc by MS, which was not statistically different from MX.SignificanceShrinkage data of resin-cements are of intrinsic clinical importance. Self-cure, despite a lower DC, did not necessarily result in a lower SY compared to dual-cure. SY-rate and SZ development depend upon cure mode and SY upon filler fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号