首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Bioactivity guided separation of Walsura trichostemon stem methanolic extract led to the isolation of four new dammarane (14) and two new apotirucallane triterpenoids (56), together with one limonoid (7), 11,25-dideacetyltrichostemonate, 12β, 20S, 24R-trihydroxydammar-25-en-3-one and 12β, 20S, 25-trihydroxydammar-23-en-3-one. Compounds 17 showed in vitro inhibitory activity on the proliferation of A549, human lung adenocarcinoma cell line.

  相似文献   

2.
Tang  Qing  Luo  Ding  Lin  Ding-Chai  Wang  Wen-Zhi  Li  Can-Jie  Zhuo  Xue-Fang  Wu  Zhong-Nan  Zhang  Yu-Bo  Wang  Guo-Cai  Li  Yao-Lan 《Journal of natural medicines》2021,75(3):682-687

Five matrine-type alkaloids (1?5) including two new compounds (1 and 3) and a new natural product (2) were isolated from the roots of Sophora tonkinesis. Their structures were identified by extensive spectroscopic analysis (UV, IR, HRESIMS and NMR). The absolute configurations of 2 and 3 were determined by X-ray diffraction. Compounds 1?5 were evaluated their activity against inflammatory cytokines TNF-α and IL-6 levels on LPS-induced RAW 264.7 macrophages, and compound 1 showed the most significant activity, potent than that of matrine, the representative ingredient from Sophora plants.

Graphic abstract
  相似文献   

3.
Ryu  Soo Ho  Kim  Chaeyeong  Kim  Nayeon  Lee  Wonhwa  Bae  Jong-Sup 《Journal of natural medicines》2022,76(2):451-461

Transforming growth factor β-induced protein (TGFBIp), as an extracellular matrix protein, is expressed TGF-β in some types of cells. Experimental sepsis is mediated by expressed and released TGFBIp in primary human umbilical vein endothelial cells (HUVECs). Cornuside (CNS) is a bisiridoid glucoside compound found in the fruit of Cornus officinalis SIEB. et ZUCC. Based on the known functions of CNS, such as the immunomodulatory and anti-inflammatory activities, we tested whether TGFBIp-mediated septic responses were suppressed by CNS in human endothelial cells and mice and investigated the underlying anti-septic mechanisms of CNS. Data showed that the secretion of TGFBIp by lipopolysaccharide (LPS) and severe septic responses by TGFBIp were effectively inhibited by CNS. And, TGFBIp-mediated sepsis lethality and pulmonary injury were reduced by CNS. Therefore, the suppression of TGFBIp-mediated septic responses by CNS suggested that CNS may be used as a potential therapeutic agent for several vascular inflammatory diseases, with the inhibition of the TGFBIp signaling pathway as the mechanism of action.

Graphical abstract
  相似文献   

4.

Skeletal muscle is a major tissue of glucose consumption and plays an important role in glucose homeostasis. Prenylflavonoids, a component of Macaranga tanarius fruits, have been reported to have antioxidant, antibacterial, and anticancer effects. However, the effects of these compounds on skeletal muscle glucose metabolism are unclear. Here, we isolated five prenylflavonoids from M. tanarius fruits, and investigated the mechanism of action of these compounds on skeletal muscle cells using L6 myotubes. We found that isonymphaeol B and 3′-geranyl naringenin increased glucose uptake in a dose-dependent manner. Furthermore, both isonymphaeol B and 3′-geranyl naringenin increased AMPK phosphorylation but did not affect PI3K-Akt phosphorylation. Isonymphaeol B and 3′-geranyl naringenin also increased Glut1 mRNA expression and plasma membrane GLUT1 protein levels. These results suggest that isonymphaeol B and 3′-geranyl naringenin have beneficial effects on glucose metabolism through AMPK and GLUT1 pathway. Isonymphaeol B and 3′-geranyl naringenin may be potential lead candidates for antidiabetic drug development.

Graphical abstract
  相似文献   

5.
6.

This guest commentary introduces “The Neuroimmune Pharmacology of SARS-CoV-2,” a special theme issue for The Journal of Neuroimmune Pharmacology led by the Society on NeuroImmune Pharmacology. The issue builds on the Society’s Virtual Workshop on COVID-19 held April 9, 2021.

Graphical abstract

Top row from left: Drs. Santosh Kumar, Sowmya Yelamanchili, Pankaj Seth, Jean M. Bidlack; Bottom row from left: Drs. Gurudutt Pendyala, Sanjay Maggirwar, and Sulie L. Chang.

  相似文献   

7.

Pueraria candollei is an ingredient of Thai herbal medicine, dietary supplements, and cosmetics. The in vitro and in vivo studies of this plant supported anti-osteoporotic activity and used for hormone replacement therapy. Deoxymiroestrol shows the most potent phytoconstituent in tuberous root of P. candollei with estrogenic activity. The quality controls are important for good agricultural practice (GAP) and good manufacturing practice (GMP) of plant-derived raw materials. The rapid detection of lateral flow immunoassay (LFIA) using colloidal gold is simply method, easy visualize detection and produce less waste than conventional chromatographic detection. In this study, LFIA for qualitative detection of deoxymiroestrol using antigen-binding fragment antibody (Fab) was developed. The result showed that the developed LFIA displays specific detection of deoxymiroestrol. Cross reactivity of this method was analyzed with miroestrol, isomiroestrol and methylisomiroestrol which showed 39.97%, 7.71% and 5.72%, respectively. After optimal condition, limit of detection (LOD) for deoxymiroestrol is 250 ng/ml. Plant samples were applied to strip test compare with indirect competitive ELISA using polyclonal antibody to confirm the application of LFIA. The results of LFIA method were comparable with those from ELISA. This developed lateral flow immunoassay can apply to detect deoxymiroestrol for the rapid testing. The developed method can use for quality control in plant samples as deoxymiroestrol is biomarker compound in P. candollei.

Graphic abstract
  相似文献   

8.
9.

OGATA Koan (1810–63) was a physician and the director of Tekijuku, and he contributed to Western medicine in the late Edo period. Osaka University preserves two of his medicine chests. One of the chests, which was used in his last years (the second chest) contained 22 glass bottles and 6 wooden cylinders. These bottles and cylinders contained formulated medicines; however, about half cannot be opened because of the long-term storage. It is necessary to comprehend the physical property of both the containers and their contents for investigation of this adequate preservation method; however, destructive analysis is not allowed. To analyze the medicines sealed in the glass bottles, we focused on muonic X-ray analysis, which has high transmittance. First, we certified the analytical methods using a historical medicinal specimen preserved in Osaka University. Thereafter, we applied the method on the bottles stored in the second chest. X-ray fluorescence identified the glass of those bottles to be lead potash glass. Among these bottles, we chose the bottle with the label “甘,” which contains white powdered medication, for muonic X-ray analysis. We identified the contents of the medication in the glass to be Hg2Cl2. Through this study, we first applied muonic X-ray analysis on the medical inheritances and succeeded to detect the elements contained both in the container and in the contents of the sealed bottle. This would be a new method for nondestructive analysis of such cultural properties.

Graphic abstract
  相似文献   

10.
11.

Worldwide petroleum exploration and transportation continue to impact the health of the marine environment through both catastrophic and chronic spillage. Of the impacted fauna, marine reptiles are often overlooked. While marine reptiles are sensitive to xenobiotics, there is a paucity of petroleum toxicity data for these specialized fauna in peer reviewed literature. Here we review the known impacts of petroleum spillage to marine reptiles, specifically to marine turtles and iguanas with an emphasis on physiology and fitness related toxicological effects. Secondly, we recommend standardized toxicity testing on surrogate species to elucidate the mechanisms by which petroleum related mortalities occur in the field following catastrophic spillage and to better link physiological and fitness related endpoints. Finally, we propose that marine reptiles could serve as sentinel species for marine ecosystem monitoring in the case of petroleum spillage. Comprehensive petroleum toxicity data on marine reptiles is needed in order to serve as a foundation for future research with newer, unconventional crude oils of unknown toxicity such as diluted bitumen.

  相似文献   

12.
13.

Multiple sclerosis (MS) is the most common chronic autoimmune disease of the central nervous system. Efficacy of treatments for MS is associated with risk of adverse effects, and effective and well-tolerated drugs remain a major unmet need. Cannabis (Cannabis sativa L., fam. Cannabaceae) and cannabinoids are popular among MS patients to treat spasticity and pain. Cannabinoids are endowed with remarkable immunomodulating properties, and in particular the non-psychotropic cannabinoid cannabidiol (CBD) is increasingly recognized as anti-inflammatory and immunosuppressive, nevertheless with excellent tolerability even at high doses. In this systematic review, we retrieved and critically evaluated available evidence regarding the immune and disease-modifying effects of CBD in experimental autoimmune encephalomyelitis (EAE) and in MS. Evidence in rodent models of EAE strongly supports CBD as effective, while clinical evidence is still limited and usually negative, due to paucity of studies and possibly to the use of suboptimal dosing regimens. Better characterization of targets acted upon by CBD in MS should be obtained in ex vivo/in vitro studies in human immune cells, and higher doses should be tested in well-designed clinical trials with clinically relevant efficacy endpoints.

Graphical Abstract

  相似文献   

14.

Extensive work has characterized endoplasmic reticulum (ER) and mitochondrial stress responses. In contrast, very little has been published about stress responses in lysosomes; subcellular acidic organelles that are physiologically important and are of pathological relevance. The greater lysosomal system is dynamic and is comprised of endosomes, lysosomes, multivesicular bodies, autophagosomes, and autophagolysosomes. They are important regulators of cellular physiology, they represent about 5% of the total cellular volume, they are heterogeneous in their sizes and distribution patterns, they are electron dense, and their subcellular positioning within cells varies in response to stimuli, insults and pH. These organelles are also integral to the pathogenesis of lysosomal storage diseases and it is increasingly recognized that lysosomes play important roles in the pathogenesis of such diverse conditions as neurodegenerative disorders and cancer. The purpose of this review is to focus attention on lysosomal stress responses (LSR), compare LSR with better characterized stress responses in ER and mitochondria, and form a framework for future characterizations of LSR. We synthesized data into the concept of LSR and present it here such that the definition of LSR can be modified as new knowledge is added and specific therapeutics are developed.

Graphical Abstract
  相似文献   

15.

The SARS-CoV-2 spike protein has been shown to disrupt blood–brain barrier (BBB) function, but its pathogenic mechanism of action is unknown. Whether angiotensin converting enzyme 2 (ACE2), the viral binding site for SARS-CoV-2, contributes to the spike protein-induced barrier disruption also remains unclear. Here, a 3D-BBB microfluidic model was used to interrogate mechanisms by which the spike protein may facilitate barrier dysfunction. The spike protein upregulated the expression of ACE2 in response to laminar shear stress. Moreover, interrogating the role of ACE2 showed that knock-down affected endothelial barrier properties. These results identify a possible role of ACE2 in barrier homeostasis. Analysis of RhoA, a key molecule in regulating endothelial cytoskeleton and tight junction complex dynamics, reveals that the spike protein triggers RhoA activation. Inhibition of RhoA with C3 transferase rescues its effect on tight junction disassembly. Overall, these results indicate a possible means by which the engagement of SARS-CoV-2 with ACE2 facilitates disruption of the BBB via RhoA activation. Understanding how SARS-CoV-2 dysregulates the BBB may lead to strategies to prevent the neurological deficits seen in COVID-19 patients.

Graphic Abstract
  相似文献   

16.

A number of neurological disease complications have been seen following infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While most person with COVID-19 respiratory disease demonstrate headache, nausea and vomiting, up to 40% present also experience dizziness, confusion, cerebrovascular disease, muscle pain, ataxia and seizures. Loss of taste and smell, defects in visual acuity and pain occur in parallel. Such central nervous system (CNS) signs and symptoms linked to laboratory-confirmed SARS-CoV-2 infection is often life threatening. Health care providers currently evaluating patients with neurologic symptoms need consider COVID-19 in any differential diagnosis. These considerations will facilitate prompt testing, isolation and prevention of viral transmission speeding best clinical outcomes.

Graphical Abstract

  相似文献   

17.

COVID-19 epidemic has resulted in devastating mortality and morbidity consisting of socioeconomic and health effects that have included respiratory/pulmonary, cardiovascular, mental health and neurological consequences such as anxiety, depression, and substance use. Several effective vaccines have been developed and extensive efforts are underway to develop therapeutics to treat COVID-19. Cannabis and/or its product-cannabidiol (CBD) are being advertised for the treatment of COVID-19 associated mental/neurological complications and substance use disorders. However, research reviewed shows that there is insufficient data from clinical studies to support the use of cannabis or CBD for the treatment of COVID-19 associated mental health and neurological complications. Additional basic and clinical research is suggested to develop cannabis or cannabidiol for the treatment of mental health problems associated with coronavirus infection and or substance use disorders. In the meantime, it is important that the addiction physician/psychiatrist must caution while prescribing or recommending cannabis or CBD for treating such clinical indications.

Graphical abstract

Research shows that currently there is no clinical evidence to support the use of cannabis or any of its compounds including CBD for treating any of the neuropsychiatric complications of COVID-19. Thus, it is important that the addiction physicians/psychiatrists caution their patients from using cannabis or cannabis products for treating any such complications.

  相似文献   

18.

Mixed lineage kinases (MLKs) are a group of serine-threonine kinases that evolved in part to respond to endogenous and exogenous insults that result in oxidative stress and pro-inflammatory responses from innate immune cells. Human immunodeficiency virus type 1 (HIV-1) thrives in these conditions and is associated with the development of associated neurocognitive disorders (HAND). As part of a drug discovery program to identify new therapeutic strategies for HAND, we created a library of broad spectrum MLK inhibitors with drug-like properties. Serendipitously, the lead compound, URMC-099 has proved useful not only in reversing damage to synaptic architecture in models of HAND, but also serves to restore autophagy as a protective response when given in concert with nanoformulated antiretroviral therapy (nanoART) in persistently infected macrophages. These findings are reviewed in the context of MLK3 biology and cellular signaling pathways relevant to new HIV-1 therapies.

Graphical abstract

  相似文献   

19.

The aim of this experimental study was to investigate hepatotoxicity effects of noise and toluene, and in particular, to study hepatotoxicity effects of simultaneous exposure to noise and toluene by histopathological and biochemical experiments. To experiment hepatotoxicity effects of noise and toluene, 100 dB white noise and 1000 ppm toluene vapors were generated during two consecutive weeks in healthy male New Zealand White rabbits. Non-simultaneous exposure to noise and toluene increased liver enzymes and the serum levels of superoxide dismutase, malondialdehyde, and total antioxidant capacity, and also decreased serum level of glutathione peroxidase. Alanine transaminase, aspartate transaminase, gamma-glutamyl transferase, malondialdehyde, total antioxidant capacity, and superoxide dismutase levels increased by simultaneous exposure to noise and toluene. Furthermore, catalase and alkaline phosphatase level decreased by simultaneous exposure to noise and toluene. The hematoxylin and eosin stain (H&E) experiments indicated significant swelling, lipidosis, eosinophilic cytoplasm, pyknosis, karyorrhexis, and disruption of the cytoplasmic membrane in the liver tissue due to exposure to noise, toluene and simultaneous exposure to them.

  相似文献   

20.

SARS-CoV-2 infection begins with the attachment of its spike (S) protein to angiotensin-converting enzyme-2 (ACE2) followed by complex host immune responses with cardiovascular and neurological implications. Our meta-analyses used QIAGEN Ingenuity Pathway Analysis (IPA) and Knowledge Base (QKB) to investigate how the expression of amyloid precursor protein (APP) was modulated by attachment of SARS-CoV-2 S protein in the brain microvascular endothelial cells (BMVECs) and during COVID-19 in progress. Published 80 host response genes reported to be modulated in BMVECs following SARS-CoV-2 S protein binding were used to identify key canonical pathways and intermediate molecules mediating the regulation of APP production following the attachment of S protein to endothelial cells. This revealed that the attachment of SARS-CoV-2 S protein may inhibit APP expression in the BMVECs. Our results shed light on the molecular mechanisms by which SARS-CoV-2 infection may potentiate the incidence of stroke by inhibiting the production of APP in the BMVECs. We also analyzed molecules associated with COVID-19, which revealed six upstream regulators, TNF, IFNG, STAT1, IL1β, IL6, and STAT3. The upstream regulators mediate the increased production of APP via intermediators, with eleven regulated by all six upstream regulators. These COVID-19 upstream regulators increased APP expression with a statistically significant Z-score of 3.705 (p value = 0.000211). These findings have revealed molecular mechanisms by which COVID-19 disease may lead to long-term neurological manifestations resulting from the elevated APP expression in line with immune response in the host. Altogether, our study revealed two distinct scenarios which may have differential impact on APP expression.

Graphic Abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号