首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
2.
Oxytocin is an essential hormone for mammalian labor and lactation. Here, we show a new function of oxytocin in causing plastic changes in hippocampal synapses during motherhood. In oxytocin-perfused hippocampal slices, one-train tetanus stimulation induced long-lasting, long-term potentiation (L-LTP) and phosphorylation of cyclic AMP-responsive element binding protein (CREB), and MAP kinase inhibitors blocked these inductions. An increase in CREB phosphorylation and L-LTP induced by one-train tetanus were observed in the multiparous mouse hippocampus without oxytocin application. Furthermore, intracerebroventricular injection of oxytocin in virgin mice improved long-term spatial learning in vivo, whereas an injection of oxytocin antagonist in multiparous mice significantly inhibited the improved spatial memory, L-LTP and CREB phosphorylation. These findings indicate that oxytocin is critically involved in improving hippocampus-dependent learning and memory during motherhood in mice.  相似文献   

3.
Long-term depression (LTD) of synaptic transmission can be induced by several mechanisms, one thought to involve Ca2+-dependent activation of postsynaptic nitric oxide (NO) synthase and subsequent diffusion of NO to the presynaptic terminal. We used the stable NO donor S-nitroso-N-acetylpenicillamine (SNAP) to study the NO-dependent form of LTD at Schaffer collateral-CA1 synapses in vitro. SNAP (100 microM) enhanced the induction of LTD via a cascade that was blocked by the N-methyl-D-aspartate receptor antagonist D-2-amino-5-phosphonopentanoic acid (50 microM), NO guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one (10 microM), and the PKG inhibitor KT5823 (1 microM). We further show that LTD induced by low-frequency stimulation in the absence of SNAP also is blocked by KT5823 or Rp-8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphorothioate (10 microM), cyclic guanosine 3',5' monophosphate-dependent protein kinase (PKG) inhibitors with different mechanisms of action. Furthermore SNAP-facilitated LTD was blocked when release from intracellular calcium stores was inhibited by ryanodine (10 microM). Finally, two cell-permeant antagonists of the cyclic ADP-ribose binding site on ryanodine receptors also were able to block the induction of LTD. These results support a cascade for induction of homosynaptic, NO-dependent LTD involving activation of guanylyl cyclase, production of guanosine 3',5' cyclic monophosphate and subsequent PKG activation. This process has an additional requirement for release of Ca2+ from ryanodine-sensitive stores, perhaps dependent on the second-messenger cyclic ADP ribose.  相似文献   

4.
A variety of substances with different chemical structures elicits a bitter taste. Several different transduction mechanisms underlie detection of bitter tastants; however, these have been described in detail for only a few compounds. In addition, most studies have focused on mammalian taste cells, of which only a small subset is responsive to any particular bitter compound. In contrast, approximately 80% of the taste cells in the mudpuppy, Necturus maculosus, are bitter-responsive. In this study, we used Ca(2+) imaging and giga-seal whole cell recording to compare the transduction of dextromethorphan (DEX), a bitter antitussive, with transduction of the well-studied bitter compound denatonium. Bath perfusion of DEX (2.5 mM) increased the intracellular Ca(2+) level in most taste cells. The DEX-induced Ca(2+) increase was inhibited by thapsigargin, an inhibitor of Ca(2+) transport into intracellular stores, but not by U73122, an inhibitor of phospholipase C, or by ryanodine, an inhibitor of ryanodine-sensitive Ca(2+) stores. Increasing intracellular cAMP levels with a cell-permeant cAMP analogue and a phosphodiesterase inhibitor enhanced the DEX-induced Ca(2+) increase, which was inhibited partially by H89, a protein kinase A inhibitor. Electrophysiological measurements showed that DEX depolarized the membrane potential and inhibited voltage-gated Na(+) and K(+) currents in the presence of GDP-beta-S, a blocker of G-protein activation. DEX also inhibited voltage-gated Ca(2+) channels. We suggest that DEX, like quinine, depolarizes taste cells by block of voltage-gated K channels, which are localized to the apical membrane in mudpuppy. In addition, DEX causes release of Ca(2+) from intracellular stores by a phospholipase C-independent mechanism. We speculate that the membrane-permeant DEX may enter taste cells and interact directly with Ca(2+) stores. Comparing transduction of DEX with that of denatonium, both compounds release Ca(2+) from intracellular stores. However, denatonium requires activation of phospholipase C, and the mechanism results in a hyperpolarization rather than a depolarization of the membrane potential. These data support the hypothesis that single taste receptor cells can use multiple mechanisms for transducing the same bitter compound.  相似文献   

5.
The activity of nitric oxide synthase (NOS) in rat parotid acinar cells was measured using a newly synthesized fluorescent NO indicator DAF-2/DA. Our results show that NO production is most effectively stimulated by activation of the beta-adrenergic receptor, and to a minor extent by substance P (SP). NO activates the production of cGMP, an intracellular messenger that has been shown to release Ca2+ from ryanodine-sensitive intracellular stores. We found that cGMP is also able to release Ca2+ from ryanodine-insensitive intracellular stores. Our data show that a rise in the cGMP concentration induces inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] synthesis and Ca2+ release from intracellular stores.  相似文献   

6.
Although it is well established that cyclic adenosine monophosphate (cAMP) signalling via cAMP-dependent protein kinase (PKA)within neurons plays an important role in depression and antidepressant treatment, the importance of several newly discovered targets that function independently from PKA, such as exchange protein activated by cAMP (Epac), remains unexplored in this regard. In this study we used a cAMP analogue that inhibits PKA but not Epac (Rp-8-Br-cAMP), to explore the modifying actions of these two targets on immobility in the forced swim test (FST) and cerebellar cAMP response element binding protein (CREB) phosphorylation in rats. In addition, we assessed central cAMP and cGMP levels and investigated the involvement of cGMP-dependent protein kinase (PKG) on any observed effects by using a selective PKG inhibitor (Rp-8-Br-PET-cGMPS).Interestingly, Rp-8-Br-cAMPS strongly reduced immobility in the FST and induced an increase in the phosphorylation of CREB in the cerebellum, effects that were unaltered by the co-administration of Rp-8-Br-PET-cGMPS. Furthermore, Rp-8-Br-cAMPS increased the accumulation of cAMP and cGMP in the hippocampus, frontal cortex and cerebellum of these rats. Together, these results suggest that in addition to activating PKA, elevated cAMP may also stimulate other targets that mediate antidepressant activity. According to the pharmacodynamic profile of Rp-8-Br-cAMPS and taking into consideration what has recently been discovered regarding the cAMP signalling system, a likely candidate is the guanine nucleotide exchange factor, Epac.  相似文献   

7.
Haji A  Ohi Y 《Neuroscience》2006,140(1):343-354
The cytosolic Ca(2+) released from internal stores is important for distinctive cell functions. To assess the role of ryanodine/Ca(2+) releasing mechanisms in the rhythmic activity of respiratory neurons, effects of intracellular injection of ryanodine on the membrane potential trajectory of postinspiratory and augmenting inspiratory neurons were investigated in unanesthetized, decerebrate, paralyzed and artificially ventilated cats. Ryanodine injection hyperpolarized the membrane and decreased input resistance throughout the respiratory cycle in both types of respiratory neurons. Specifically, membrane repolarization during postinspiration was accelerated in postinspiratory neurons, and the large hyperpolarization at the onset of postinspiration was increased in augmenting inspiratory neurons. Spike-afterhyperpolarization consisting of a fast, early component and slow, late component increased in size after ryanodine, resulting in prolongation of inter-spike intervals and decrease of burst discharge. Intracellular injection of caffeine produced similar effects on these respiratory neurons, and Ruthenium Red, an antagonist of ryanodine receptors, had opposite effects. Immunoreactivity for ryanodine receptors was detected in all respiratory neurons labeled intracellularly with neurobiotin. These results demonstrate that ryanodine-sensitive Ca(2+) stores modulate the periodic membrane potential fluctuations and spike activity in respiratory neurons.  相似文献   

8.
Intracellular photorelease of caged D-myo-inositol 1,4,5-trisphosphate (IP(3)), caffeine application, and immunofluorescence confocal microscopy were used to determine that D-myo-inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and ryanodine receptors (RyRs) coexist in rabbit vagal sensory nodose ganglion neurons (NGNs). ATP, an extracellular physiological signaling molecule, consistently evoked robust transient increases in cytosolic free Ca(2+) concentration (Ca(2+) transients). ATP applied in Ca(2+)-free physiological saline elicited Ca(2+) transients that averaged approximately 70% of the amplitude of transients evoked in the presence of extracellular Ca(2+). The component of the ATP-evoked Ca(2+) transient that was independent of extracellular Ca(2+) corresponds to Ca(2+) release from intracellular stores. This release component was sensitive to the pharmacological antagonists pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), U73122, neomycin, and heparin (13.5-15 kD), indicating that P2 purinoreceptors (P2Y) and the IP(3) signaling pathway are required for ATP-evoked Ca(2+) release. Additionally, a portion of ATP-evoked Ca(2+) release was inhibited by ryanodine, a selective blocker of RyRs. The ryanodine-insensitive component (approximately 70%) of ATP-evoked Ca(2+) release corresponds to IP(3)-induced Ca(2+) release via IP(3)Rs, while the ryanodine-sensitive component (approximately 30%) corresponds to consequent Ca(2+)-induced Ca(2+) release (CICR) via RyRs. These results indicate that functional IP(3)Rs and RyRs coexist in nodose neurons and that both IP(3)-induced Ca(2+) release and CICR can be activated by ATP.  相似文献   

9.
The cellular mechanisms responsible for large miniature currents in some brain synapses remain undefined. In Purkinje cells, we found that large-amplitude miniature inhibitory postsynaptic currents (mIPSCs) were inhibited by ryanodine or by long-term removal of extracellular Ca2+. Two-photon Ca2+ imaging revealed random, ryanodine-sensitive intracellular Ca2+ transients, spatially constrained at putative presynaptic terminals. At high concentration, ryanodine decreased action-potential-evoked rises in intracellular Ca2+. Immuno-localization showed ryanodine receptors in these terminals. Our data suggest that large mIPSCs are multivesicular events regulated by Ca2+ release from ryanodine-sensitive presynaptic Ca2+ stores.  相似文献   

10.
The goal of this study was to evaluate an effect of interleukin-10 (IL-10) on the Ca(2+) response induced by repeated NMDA receptor activation with brief hypoxia in cultured hippocampal neurons. We focused on the importance of internal Ca(2+) stores in the modulation of this Ca(2+) response by IL-10. To test this, we compared roles of InsP(3)- and ryanodine-sensitive internal stores in the effects of IL-10. Measurements of intracellular cytosolic calcium concentration ([Ca(2+)](i)) in cultured hippocampal neurons were made by imaging Fura-2AM loaded hippocampal cells. Repeated episodes of NMDA receptor activation with brief hypoxia induced the spontaneous (s) [Ca(2+)](i) increases about 3 min after each hypoxic episode. The amplitude of the s[Ca(2+)](i) increases was progressively enhanced from the first hypoxic episode to the third one. IL-10 (1 ng/ml) abolished these s[Ca(2+)](i) increases. Exposure of cultured hippocampal neurons with thapsigargin (1 μM) or an inhibitor of phospholipase C (U73122, 1 μM) for 10 min also abolished the s[Ca(2+)](i) increases. On the other hand, antagonist of ryanodine receptors (ryanodine, 1 μM) did not affect this Ca(2+) response. These studies appear to provide the first evidence that Ca(2+) release from internal stores is affected by anti-inflammatory cytokine IL-10 in brain neurons. It is suggested that these data increase our understanding of the neuroprotective mechanisms of IL-10 in the early phase of hypoxia.  相似文献   

11.
Synaptic inhibition is a vital component in the control of cell excitability within the brain. Here we report a newly identified form of inhibitory synaptic plasticity, termed depolarization-induced potentiation of inhibition, in rodents. This mechanism strongly potentiated synaptic transmission from interneurons to Purkinje cells after the termination of depolarization-induced suppression of inhibition. It was triggered by an elevation of Ca(2+) in Purkinje cells and the subsequent retrograde activation of presynaptic NMDA receptors. These glutamate receptors promoted the spontaneous release of Ca(2+) from presynaptic ryanodine-sensitive Ca(2+) stores. Thus, NMDA receptor-mediated facilitation of transmission at this synapse provides a regulatory mechanism that can dynamically alter the synaptic efficacy at inhibitory synapses.  相似文献   

12.
It has been demonstrated that stimulation of protein kinase A (PKA) results in enhanced synaptic transmission in the hippocampus and other brain areas. To investigate mechanisms of the PKA-mediated potentiation of synaptic transmission, we used rat hippocampal embryonic cultures. In low-density cultures, paired recordings under the perforated patch demonstrated that 15-min forskolin treatment produced long-lasting potentiation of evoked excitatory postsynaptic currents (eEPSCs) mediated by the cAMP/PKA pathway. eEPSC amplitudes increased to 240 +/- 10% of baseline after 15 min of forskolin treatment (early). After forskolin washout, eEPSCs declined to a potentiated level. Potentiation was sustained for > or = 85 min after forskolin washout and, 60 min after forskolin washout, constituted 152 +/- 7% of baseline (late potentiation). Disruption of presynaptic processes with the whole cell configuration and internal solution containing PKA inhibitor peptide did not affect forskolin-induced potentiation. Disruption of postsynaptic processes, in contrast, impaired early potentiation and abolished late potentiation. Study of mEPSCs confirmed the contribution of postsynaptic mechanisms. Forskolin-induced enhancement of mEPSC frequency observed under the perforated patch was attenuated by the whole cell configuration. Forskolin also induced an increase of mEPSC amplitudes in the perforated patch, but not in the whole cell, experiments. Potentiation of eEPSCs was not activity dependent, persisting in the absence of stimulation. NMDA receptor blockade did not abolish forskolin-induced potentiation. In summary, we demonstrate that forskolin-induced potentiation of eEPSCs was mediated by postsynaptic mechanisms, presumably by upregulation of AMPA receptors by phosphorylation.  相似文献   

13.
14.
The structural elements of the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signaling pathway have been described in the vestibular peripheral system. However, the functions of NO in the vestibular endorgans are still not clear. We evaluated the action of NO on the Ca(2+) currents in hair cells isolated from the semicircular canal crista ampullaris of the rat (P14-P18) by using the whole cell and perforated-cell patch-clamp technique. The NO donors 3-morpholinosydnonimine (SIN-1), sodium nitroprusside (SNP), and (+/-)-(E)-4-ethyl-2-[(Z)-hydroxyimino]-5-nitro-3-hexen-1-yl-nicotinamide (NOR-4) inhibited the Ca(2+) current in hair cells in a voltage-independent manner. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO) prevented the inhibitory effect of SNP on the Ca(2+) current. The selective inhibitor of the soluble form of the enzyme guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), also decreased the SNP-induced inhibition of the Ca(2+) current. The membrane-permeant cGMP analogue 8-Br-cGMP mimicked the SNP effect. KT-5823, a specific inhibitor of cGMP-dependent protein kinase (PGK), prevented the inhibition of the Ca(2+) current by SNP and 8-Br-cGMP. In the presence of N-ethylmaleimide (NEM), a sulfhydryl alkylating agent that prevents the S-nitrosylation reaction, the SNP effect on the Ca(2+) current was significantly diminished. These results demonstrated that NO inhibits in a voltage-independent manner the voltage-activated Ca(2+) current in rat vestibular hair cells by the activation of a cGMP-signaling pathway and through a direct action on the channel protein by a S-nitrosylation reaction. The inhibition of the Ca(2+) current by NO may contribute to the regulation of the intracellular Ca(2+) concentration and hair-cell synaptic transmission.  相似文献   

15.
16.
This study demonstrated that the methylxanthines, theophylline, IBMX and caffeine, activate the human, intermediate-conductance, Ca2+-activated K+ channel (hIK) stably expressed in HEK-293 cells. Whole-cell voltage-clamp experiments showed that the hIK current increased reversibly and voltage independently after the addition of methylxanthines. In current-clamp experiments, theophylline dose-dependently hyperpolarised the cell membrane from a resting potential of -18 mV to -56 mV. The methylxanthines did not affect large-conductance (BK) or small-conductance (SK2), Ca2+-activated K+ channels, demonstrating that the effects were not secondary to a rise in intracellular Ca2+. However, the activation of hIK by theophylline required an intracellular [Ca2+] above 30 nM. The hIK current was insensitive to 8-bromoadenosine cyclic 3',5'-monophosphate (8-bromo-cAMP), forskolin, 8-bromoguanosine cyclic 3',5'-monophosphate (8-bromo-cGMP) and sodium nitroprusside. Moreover, in the presence of inhibitors of protein kinase A (PKA) or protein kinase G (PKG) theophylline still activated the current. Finally, mutation of the putative PKA/PKG consensus phosphorylation site (Ser334) had no effect on the theophylline-induced activation of hIK. Since the observed activation is independent of changes in PKA/PKG-phosphorylation and of fluctuations in intracellular Ca2+, we suggest that the methylxanthines interact directly with the hIK protein.  相似文献   

17.
Interferon-gamma (IFN-gamma) is a macrophage-activating cytokine that serves critical functions in innate and adaptive immunity and is thought to be mediated by the Jak-Stat signaling pathway. The present study establishes for the first time that cyclic adenosine monophosphate, protein kinase A, and cAMP response element-binding protein (cAMP/PKA/CREB) are coregulators of the IFN-gamma signaling pathway. Experimental data indicate that exogenous IFN-gamma stimulated cAMP accumulation and PKA activation in time-dependent and dose-dependent manners in murine peritoneal macrophages. Moreover, IFN-gamma stimulated CREB phosphorylation and CREB DNA binding, which could be significantly attenuated by PKA inhibition with H89. It appears that a novel cAMP/PKA/CREB signaling pathway is activated by IFN-gamma in macrophages, suggesting that an alternate signaling pathway exists in macrophages in response to IFN-gamma.  相似文献   

18.
Previously, we have shown that ethanol (EtOH) stimulates a rapid increase in the ciliary beat frequency (CBF) of bovine bronchial epithelial cells (BBECs) via the activation of PKA. We have also shown that inhibitors of nitric oxide synthase block EtOH-stimulated increases in CBF. We hypothesize that EtOH acutely stimulates CBF via the activation of both PKA and PKG pathways. Using chemiluminescence detection of nitric oxide (NO), we directly measured increases in NO production in BBECs treated with 100 mmol/L of EtOH beginning at 25 minutes. Pretreatment of BBECs with guanylyl cyclase inhibitors, ODQ or LY83583, resulted in the inhibition of EtOH-stimulated CBF. Low concentrations (1 nmol/L) of cyclic nucleotide analogues do not stimulate CBF increases. However, a combination of both 1 nmol/L of 8Br-cAMP and 8Br-cGMP stimulates a significant increase over baseline CBF. This effect could be blocked by pretreating BBECs with inhibitors of either PKA or PKG. Very high concentrations of either 8Br-cAMP or 8Br-cGMP (> or =100 micromol/L) were required to cross-activate both PKA and PKG. This suggests that cross-activation of PKA by cGMP is not occurring at the concentrations (1 nmol/L) capable of stimulating CBF. 8-pCPT-cGMPS, an antagonist analogue to cGMP, blocked EtOH-stimulated PKA activity increases. These data support that EtOH-stimulated increases in CBF require the dual activation of both PKA (via cAMP) and PKG (via NO).  相似文献   

19.
Regulation of the efficacy of synaptic transmission by activity-dependent processes has been implicated in learning and memory as well as in developmental processes. We previously described transient potentiation of excitatory synapses onto layer 2/3 pyramidal neurons in the visual cortex that is induced by coincident presynaptic stimulation and postsynaptic depolarization. In the adult visual cortex, activation of N-methyl-d-aspartate (NMDA) glutamate receptors is necessary to induce this plasticity. These receptors act as coincidence detectors, sensing presynaptic glutamate release and postsynaptic depolarization, and cause an influx of Ca(2+) that is necessary for the potentiation. In the neurons of the neonatal visual cortex, on the other hand, coincident presynaptic stimulation and postsynaptic depolarization induce stable long-term potentiation (LTP). In addition, reduced but significant LTP can be induced in many neurons in the presence of the NMDA receptor (NMDAR) antagonist, 2-amino-5-phosphonovaleric acid despite the Ca(2+) requirement. Therefore there must be an alternative postsynaptic Ca(2+) source and coincidence detection mechanism linked to the LTP induction mechanism in the neonatal cortex operating in addition to NMDARs. In this study, we find that in layer 2/3 pyramidal neurons, release of Ca(2+) from inositol trisphosphate (InsP(3)) receptor-mediated intracellular stores and influx through voltage-gated Ca(2+) channels (VGCCs) provide alternative postsynaptic Ca(2+) sources. We hypothesize that InsP(3)Rs are coincidence detectors, sensing presynaptic glutamate release through linkage with group I metabotropic glutamate receptors (mGluRs), and depolarization, through VGCCs. We also find that the downstream protein kinases, PKA and PKC, have a role in potentiation in layer 2/3 pyramidal neurons of the neonatal visual cortex.  相似文献   

20.
The simplest cellular model for classical conditioning in the nudibranch mollusk, Hermissenda crassicornis, involves the presynaptic hair cells and postsynaptic photoreceptors. Whereas the cellular mechanisms for postsynaptic photoreceptors have been studied extensively, the presynaptic mechanisms remain uncertain. Here, we determined the phenotype of the voltage-dependent Ca(2+) current in the presynaptic hair cells that may be directly involved in changes in synaptic efficacy during classical conditioning. The Ca(2+) current can be classified as a P-type current because its activation voltage under seawater recording conditions is approximately -30 mV, it showed slow inactivation, and it is reversibly blocked by omega-agatoxin-IVA. The steady-state activation and inactivation curves revealed a window current, and the single-channel conductance is approximately 20 pS. The P-type current was enhanced by cAMP analogs (approximately 1.3-fold), and by forskolin, an activator of adenylyl cyclase (approximately 1.25-fold). In addition, the P-type current showed voltage-dependent facilitation, which is mediated by protein kinase A (PKA). Specifically, the PKA inhibitor peptide [PKI(6-22)amide] blocked the enhancement of the Ca(2+) current produced by conditioning depolarization prepulses. Because neurotransmitter release is mediated by Ca(2+) influx via voltage-gated Ca(2+) channels, and because of the nonlinear relationship between the Ca(2+) influx and neurotransmitter release, we propose that voltage-dependent facilitation of the P-type current in hair cells would produce a robust change in synaptic efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号