首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
all-trans-Retinoic acid (ATRA) induces complete remission in majority of patients with acute promyelocytic leukemia (APL). However, accelerated metabolism of ATRA that is induced by chronic daily administration of oral ATRA has been implicated as one of the mechanisms leading to a reduced sensitivity or resistance to ATRA therapy. We investigated the expression and regulation of CYP26, a novel p450 enzyme, which is highly specific for ATRA, in promyelocytic leukemia cells (NB4 and HL-60). We found that treatment of NB4 cells with a pharmacological concentration of ATRA (1 microM) induced rapid and dose-dependent expression of CYP26 mRNA. The CYP26 expression returned to pretreatment levels in both cells after ATRA was removed from the media. Retinoic acid receptor-alpha (RARalpha) specific antagonist (CD2503) totally abolished the ATRA-induced expression of CYP26 mRNA in HL-60 and NB4 cells. Furthermore, HL-60R, a HL-60 subclone expressing nonfunctional RAR because of a point mutation in the ligand-binding domain of RARalpha, failed to show CYP26 mRNA expression in response to ATRA. ATRA-induced expression of CYP26 was restored in HL-60R cells retrovirally transduced with RARalpha, but not in those cells transduced with the other retinoid receptors. In conclusion, ATRA induces expression of CYP26 in myeloid and promyelocytic leukemia cells and this expression is modulated by RARalpha. The induction of CYP26 expression by ATRA treatment might be related to a substrate-driven feedback mechanism to regulate intracellular concentrations of ATRA and its over expression in some clones may be partly responsible for reduced sensitivity or resistance to ATRA therapy.  相似文献   

2.
3.
Chen  GQ; Zhu  J; Shi  XG; Ni  JH; Zhong  HJ; Si  GY; Jin  XL; Tang  W; Li  XS; Xong  SM; Shen  ZX; Sun  GL; Ma  J; Zhang  P; Zhang  TD; Gazin  C; Naoe  T; Chen  SJ; Wang  ZY; Chen  Z 《Blood》1996,88(3):1052-1061
It has been shown recently in China that arsenic trioxide (As2O3) is a very effective treatment for acute promyelocytic leukemia (APL). APL patients resistant to all-trans retinoic acid (ATRA) and conventional chemotherapy can still respond to AS2O3. In this study, we addressed the possible cellular and molecular mechanisms of this treatment by using NB4 cells as a model. The results show that: (1) As2O3 triggers relatively specific NB4 cell apoptosis at micromolar concentration, as proved by morphology, histogramic related nuclear DNA contents, and DNA gel eletrophoresis. (2) As2O3 does not influence bax, bcl-x, c-myc, and p53 gene expression, but downregulates bcl-2 gene expression at both mRNA and protein levels. (3) As2O3 induces a significant modulation of the PML staining pattern in NB4 cells and HL-60 cells. The micropunctates characteristic of PML-RAR alpha in NB4 cells dissappear after treatment with As2O3, whereas a diffuse PML staining occurs in the perinuclear cytoplasmic region. In addition, a low percentage of untreated NB4 cells exhibits an accumulation of PML positive particles in a compartment of cytoplasm. The percentage of these cells can be significantly increased after As2O3 treatment. A similar PML staining pattern is observed in apoptotic cells. (4) ATRA pretreatment does not influence As2O3-induced apoptosis. These results suggest that induction of cell apoptosis can be one of the mechanisms of the therapeutic effect of As2O3. Moreover, this apoptosis induction occurs independently of the retinoid pathway and may be mediated, at least partly, through the modulation of bcl-2, as well as PML-RAR alpha and/ or PML proteins.  相似文献   

4.
5.
6.
The expression pattern of microRNAs (miRNAs) and their potential target genes were investigated in acute promyelocytic leukemia (APL) cell line NB4 cells during all-trans-retinoid acid (ATRA) treatment by using a miRNA microarrays platform and real-time quantitative PCR (RTQ-PCR). MiR-146a as one of the miRNAs down-regulated by ATRA during APL differentiation was identified. Direct interaction between miR146a and its predictive target gene Smad4 were confirmed by Luciferase assay. Down-regulation of miR-146a and upregulation of Smad4 at protein levels were demonstrated. These data suggested that miR-146a might influence proliferation of APL cells through TGF-β1/Smad signal transduction pathway during ATRA induction.  相似文献   

7.
The human IL-3 receptor is composed of both α and β subunits. In early studies, we showed that the level of IL-3Rβ expression was lower in patients with acute promyelocytic leukemia (APL) than healthy donors and patients in complete remission by real-time quantitative polymerase chain reaction (RT-qPCR). With the differentiation of cells, enhanced expression of IL-3Rβ was also observed in all-trans-retinoic acid (ATRA)-induced NB4 cells. To unravel the role of IL-3Rβ upregulation in NB4 cells induced with ATRA, we knocked down IL-3Rβ expression by RNA interference (RNAi). Knockdown of IL-3Rβ resulted in decreased proliferation in NB4 cells induced with or without ATRA, observed by cell growth curves, colony formation assays and cell cycle analysis. Surface expression of CD11b antigen and nitroblue tetrazolium (NBT) reduction assays were also carried out at different time points. However, no significant difference was observed between the experimental and control groups treated with ATRA. Other findings suggested that IL-3Rα was decreased in NB4-IL-3Rβ shRNA cells by western blot. Down-regulation of IL-3Rβ also caused a decrease in PML/RARα expression detected with RT-qPCR. Together, these results suggest that abnormalities of IL-3Rβ expression were observed in APL; knockdown of IL-3Rβ inhibited the proliferation of NB4 cells with or without ATRA, but no effect was detected in the cellular differentiation. When NB4 cells exposed to ATAR, the up-regulation of IL-3Rβ expression may contribute to the maintenance of proliferation rather than cell differentiation.  相似文献   

8.
We analysed the relationship between all-trans retinoic acid (ATRA) resistance and P-glycoprotein (P-gp)-associated multidrug resistance (MDR) in acute promyelocytic leukaemia (APL). There was no difference in the intracellular ATRA accumulation between NB4 cells and an MDR1 cDNA-transduced NB4 subline and between ATRA-resistant NB4 cells (NB4/RA) and an MDR1 cDNA-transduced NB4/RA subline. PSC833, a MDR modifier, did not increase the intracellular accumulation of ATRA or affect the expression of CD11b, the nitroblue tetrazolium (NBT) reduction activity, the proportion of apoptotic cells or the morphology of these four ATRA-treated cell lines. Similar results were obtained in the analysis of APL cells from five patients relapsed after ATRA-induced complete remission.  相似文献   

9.
Falanga  A; Marchetti  M; Giovanelli  S; Barbui  T 《Blood》1996,87(2):613-617
Therapy with all-trans-retinoic acid (ATRA) can rapidly improve the coagulopathy of acute promyelocytic leukemia (APL). This study was designed to evaluate whether the APL cell line NB4 induces the procoagulant activity (PCA) of human endothelial cells (ECs) in vitro, and whether this property is modified after ATRA-induced NB4 maturation. EC monolayers were incubated for 4 hours at 37 degrees C with the conditioned media (CM) of NB4 treated with 1 mumol/L ATRA (ATRA-NB4-CM) or the vehicle (control-NB4-CM). EC lysates were tested for PCA. ATRA-NB4-CM induced significantly more PCA:tissue factor (TF) than control-NB4-CM (P < .01). To identify the cause of TF induction, interleukin (IL)-1 beta antigen levels were measured in CM samples. ATRA-NB4-CM contained significantly more IL-1 beta than control-NB4-CM. EC PCA was significantly inhibited by an anti-IL-1 beta antibody. The addition to the media of 10 mumol/L ATRA counteracted the EC TF expression induced by NB4-CM. These data indicate that ATRA increases the promyelocyte-induced EC TF, partly through increased IL-1 beta production. However, ATRA can protect the endothelium from the procoagulant stimulus of leukemic cells.  相似文献   

10.
Kini AR  Peterson LA  Tallman MS  Lingen MW 《Blood》2001,97(12):3919-3924
Recent studies indicate that angiogenesis is important in the pathogenesis of leukemias, apart from its well-established role in solid tumors. In this study, the possible role of angiogenesis in acute promyelocytic leukemia (APL) was explored. Bone marrow trephine biopsies from patients with APL showed significantly increased microvessel density and hot spot density compared with normal control bone marrow biopsies. To identify the mediators of angiogenesis in APL, quantitative and functional assays were performed using the NB4 APL cell line as a model system. Conditioned media (CM) from the NB4 cells strongly stimulated endothelial cell migration. CM from the NB4 cells contained high levels of vascular endothelial growth factor (VEGF) but not basic fibroblast growth factor (bFGF). Most important, the addition of neutralizing VEGF antibodies completely inhibited the ability of NB4 CM to stimulate endothelial cell migration, suggesting that APL angiogenesis is mediated by VEGF. The effect of all-trans retinoic acid (ATRA) on APL angiogenesis was then studied. ATRA therapy resulted in a decrease in bone marrow microvessel density and hot spot density. CM from ATRA-treated APL cells did not stimulate endothelial cell migration. Finally, quantitative assays showed that ATRA treatment resulted in the abrogation of VEGF production by the NB4 cells. These results show that there is increased angiogenesis and VEGF production in APL and that ATRA therapy inhibits VEGF production and suppresses angiogenesis. The addition of specific antiangiogenic agents to differentiation therapy or chemotherapy should be explored. (Blood. 2001;97:3919-3924)  相似文献   

11.
Acute promyelocytic leukemia (APL) is an interesting model for cancer research because of the presence of the specific PML-RARalpha fusion gene associated with the clinical response to retinoic acid differentiation therapy. To better understand and improve differentiation induction with retinoic acid, we have established a human APL-ascites model in SCID mice using the NB4 human APL cell line. NB4 (1 x 10(6) cells) were transplanted into the peritoneum (IP) of SCID mice for 1 month. NB4 ascites cells (A-NB4) appeared, which were then engrafted in SCID mice periodically for 18 passages at an interval of 3 to 4 weeks with a 100% success rate of tumor induction. The mean survival times of SCID mice transplanted with 1 x 10(6) A-NB4 cells was 21.6 +/- 2.3 days. Analysis of the biologic characteristics of ninth passage NB4 ascitic cells was performed and they were found to have the morphologic, immunologic, cytogenetic, and molecular features of cultured NB4 cells. Furthermore, A-NB4 cells were capable of differentiating when treated with all-trans retinoic acid (ATRA), as manifested by enhanced NBT reduction and CD11b expression. In vivo treatment with ATRA in SCID mice for 4 days also increased NBT reduction by A-NB4 cells. ATRA treatment significantly prolonged survival time in the group after transplantation (28.1 +/- 6.8 to 29.1 +/- 8.4 days) compared with the control (P < .001). Furthermore, treatment with adriamycin, an effective chemotherapeutic drug in APL, had a strong growth suppressive effect on A-NB4 cells. These results demonstrate that this SCID-APL (NB4 ascites cells) model is a useful preclinical system for evaluating new or known drugs in the treatment of APL.  相似文献   

12.
Li SW  Tang D  Ahrens KP  She JX  Braylan RC  Yang L 《Blood》2003,101(5):1977-1980
  相似文献   

13.
Müller C  Yang R  Park DJ  Serve H  Berdel WE  Koeffler HP 《Blood》2000,96(12):3894-3899
Cyclin A1 is a newly discovered cyclin that is overexpressed in certain myeloid leukemias. Previously, the authors found that the frequency of cyclin A1 overexpression is especially high in acute promyelocytic leukemia (APL). In this study, the authors investigated the mechanism of cyclin A1 overexpression in APL cells and showed that the APL-associated aberrant fusion proteins (PML-retinoic acid receptor alpha [PML-RAR alpha] or PLZF-RAR alpha) caused the increased levels of cyclin A1 in these cells. The ectopic expression of either PML-RAR alpha or PLZF-RAR alpha in U937 cells, a non-APL myeloid cell line, led to a dramatic increase of cyclin A1 messenger RNA and protein. This elevation of cyclin A1 was reversed by treatment with all-trans retinoic acid (ATRA) in cells expressing PML-RAR alpha but not PLZF-RAR alpha. ATRA also greatly reduced the high levels of cyclin A1 in the APL cell lines NB4 and UF-1. No effect of ATRA on cyclin A1 levels was found in the ATRA-resistant NB4-R2 cells. Further studies using ligands selective for various retinoic acid receptors suggested that cyclin A1 expression is negatively regulated by activated RAR alpha. Reporter assays showed that PML-RAR alpha led to activation of the cyclin A1 promoter. Addition of ATRA inhibited PML-RAR alpha-induced cyclin A1 promoter activity. Taken together, our data suggest that PML-RAR alpha and PLZF-RAR alpha cause the high-level expression of cyclin A1 seen in acute promyelocytic leukemia. (Blood. 2000;96:3894-3899)  相似文献   

14.
All-trans retinoic acid (ATRA) is successfully used in the cyto- differentiating treatment of acute promyelocytic leukemia (APL). Paradoxically, APL cells express PML-RAR, an aberrant form of the retinoic acid receptor type alpha (RAR alpha) derived from the leukemia- specific t(15;17) chromosomal translocation. We show here that AM580, a stable retinobenzoic derivative originally synthesized as a RAR alpha agonist, is a powerful inducer of granulocytic maturation in NB4, an APL-derived cell line, and in freshly isolated APL blasts. After treatment of APL cells with AM580 either alone or in combination with granulocyte colony-stimulating factor (G-CSF), the compound induces granulocytic maturation, as assessed by determination of the levels of leukocyte alkaline phosphatase, CD11b, CD33, and G-CSF receptor mRNA, at concentrations that are 10- to 100-fold lower than those of ATRA necessary to produce similar effects. By contrast, AM580 is not effective as ATRA in modulating the expression of these differentiation markers in the HL-60 cell line and in freshly isolated granulocytes obtained from the peripheral blood of chronic myelogenous leukemia patients during the stable phase of the disease. In NB4 cells, two other synthetic nonselective RAR ligands are capable of inducing LAP as much as AM580, whereas RAR beta- or RAR gamma-specific ligands are totally ineffective. These results show that AM580 is more powerful than ATRA in modulating the expression of differentiation antigens only in cells in which PML-RAR is present. Binding experiments, using COS-7 cells transiently transfected with PML-RAR and the normal RAR alpha, show that AM580 has a lower affinity than ATRA for both receptors. However, in the presence of PML-RAR, the synthetic retinoid is a much better transactivator of retinoic acid-responsive element-containing promoters than the natural retinoid, whereas, in the presence of RAR alpha, AM580 and ATRA have similar activity. This may explain the strong cyto-differentiating potential of AM580 in PML-RAR-containing leukemic cells.  相似文献   

15.
Myeloid cell differentiation is the process by which stem cells develop into mature monocytes or granulocytes. This process is achieved by the sequential activation of variety of genes. Disruption of this process can result in immunodeficiency, bone marrow failure syndrome, or leukemia. Acute promyelocytic leukemia (APL) is characterized by the t(15;17) translocation and can be treated by a combination of all-trans retinoic acid (ATRA) and anthracycline. This treatment can induce leukemic cell differentiation, leading to extremely high remission rates. XAB2, a molecule involved in nucleotide excision repair (NER), is downregulated during granulocyte differentiation and shows reduced expression in NB4 APL-derived cells in vitro. Differentiation of APL by ATRA treatment reduced XAB2 expression levels in vivo. These observations suggest that cellular differentiation is associated with reduced NER activity and provides new insights into combined differentiation induction. NB4 cells were more susceptible than the immature myeloid leukemic cell lines, Kasumi-3 and Kasumi-1, to the DNA interstrand crosslinking agent cisplatin.  相似文献   

16.
17.
18.
Most acute promyelocytic leukaemia (APL) patients suffer from disordered haemostasis. APL can be treated successfully in most instances by all-trans retinoic acid (ATRA) therapy, which induces endpoint maturation of the leukaemic promyelocytes with the characteristic t(15;17). Annexin II (AnII), a profibrinolytic protein, has been implicated in the bleeding manifestation seen in APL. Our group has shown previously that high levels of AnII are expressed on other acute myeloid leukaemia subtypes that are sometimes associated with disordered haemostasis, albeit less frequently than APL. This study examined the effects of ATRA on AnII expression and cell differentiation, on myeloid leukaemia cell lines to determine whether a regulatory influence on AnII may contribute to the return of haemostatic stability in APL following treatment. The results confirmed that AnII expression in the APL cell line (NB4) was significantly downregulated in response to ATRA (P < 0.01), with associated morphological and immunophenotypical evidence of myeloid differentiation. ATRA also downregulated AnII expression on other myeloid cell lines, albeit to a lesser extent than observed on NB4 cells. The results provide evidence that ATRA may resolve the hyperfibrinolysis in APL by downregulation of AnII expression.  相似文献   

19.
20.
The mechanism(s) by which acute promyelocytic leukemia (APL) cells acquire resistance to all-trans retinoic acid (ATRA) is poorly understood. We describe here an APL cell line, named NB4.306, that shows resistance to the anti-proliferative action of ATRA. This cell line is also operationally resistant to most ATRA-induced phenotypic modifications (CD11b, CD11c, CD13, and CD33). No significant differences in ATRA intracellular accumulation, efflux, or metabolism were found between NB4.306 and the parent NB4 cell line that could explain the observed resistance of the NB4.306 line. The NB4.306 cell line was found to be positive for the t15;17 translocation and showed the usual pml/RAR alpha fusion bands in both Southern and Northern blot assays, but expressed no detectable amount of the usual pml/RAR alpha protein, as assayed by Western blot analysis using an anti-RAR alpha antibody. These results were confirmed in 14 of 14 clones obtained from the NB4.306 cell line, while 30 of 30 clones obtained from the parental NB4 line expressed the usual 110-Kd fusion polypeptide. It is concluded that the occurrence of resistance to ATRA in the NB4.306 cell line is closely associated to the loss of expression of the intact pml/RAR alpha protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号